parry3d/shape/
cuboid.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
//! Support mapping based Cuboid shape.

use crate::math::{Point, Real, Vector};
#[cfg(feature = "dim3")]
use crate::shape::Segment;
use crate::shape::{FeatureId, PackedFeatureId, PolygonalFeature, SupportMap};
use crate::utils::WSign;
use na::Unit;

#[cfg(not(feature = "std"))]
use na::RealField; // for .copysign()

#[cfg(feature = "rkyv")]
use rkyv::{bytecheck, CheckBytes};

/// Shape of a box.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "bytemuck", derive(bytemuck::Pod, bytemuck::Zeroable))]
#[cfg_attr(
    feature = "rkyv",
    derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize, CheckBytes),
    archive(as = "Self")
)]
#[derive(PartialEq, Debug, Copy, Clone)]
#[repr(C)]
pub struct Cuboid {
    /// The half-extents of the cuboid.
    pub half_extents: Vector<Real>,
}

impl Cuboid {
    /// Creates a new box from its half-extents. Half-extents are the box half-width along each
    /// axis. Each half-extent must be positive.
    #[inline]
    pub fn new(half_extents: Vector<Real>) -> Cuboid {
        Cuboid { half_extents }
    }

    /// Computes a scaled version of this cuboid.
    pub fn scaled(self, scale: &Vector<Real>) -> Self {
        let new_hext = self.half_extents.component_mul(scale);
        Self {
            half_extents: new_hext,
        }
    }

    /// Return the id of the vertex of this cuboid with a normal that maximizes
    /// the dot product with `dir`.
    #[cfg(feature = "dim2")]
    pub fn vertex_feature_id(vertex: Point<Real>) -> u32 {
        // TODO: is this still correct with the f64 version?
        #[allow(clippy::unnecessary_cast)] // Unnecessary for f32 but necessary for f64.
        {
            ((vertex.x.to_bits() >> 31) & 0b001 | (vertex.y.to_bits() >> 30) & 0b010) as u32
        }
    }

    /// Return the feature of this cuboid with a normal that maximizes
    /// the dot product with `dir`.
    #[cfg(feature = "dim2")]
    pub fn support_feature(&self, local_dir: Vector<Real>) -> PolygonalFeature {
        // In 2D, it is best for stability to always return a face.
        // It won't have any notable impact on performances anyway.
        self.support_face(local_dir)
    }

    /// Return the face of this cuboid with a normal that maximizes
    /// the dot product with `local_dir`.
    #[cfg(feature = "dim2")]
    pub fn support_face(&self, local_dir: Vector<Real>) -> PolygonalFeature {
        let he = self.half_extents;
        let i = local_dir.iamin();
        let j = (i + 1) % 2;
        let mut a = Point::origin();
        a[i] = he[i];
        a[j] = he[j].copysign(local_dir[j]);

        let mut b = a;
        b[i] = -he[i];

        let vid1 = Self::vertex_feature_id(a);
        let vid2 = Self::vertex_feature_id(b);
        let fid = (vid1.max(vid2) << 2) | vid1.min(vid2) | 0b11_00_00;

        PolygonalFeature {
            vertices: [a, b],
            vids: PackedFeatureId::vertices([vid1, vid2]),
            fid: PackedFeatureId::face(fid),
            num_vertices: 2,
        }
    }

    /// Return the face of this cuboid with a normal that maximizes
    /// the dot product with `local_dir`.
    #[cfg(feature = "dim3")]
    pub fn support_feature(&self, local_dir: Vector<Real>) -> PolygonalFeature {
        // TODO: this should actually return the feature.
        // And we should change all the callers of this method to use
        // `.support_face` instead of this method to preserve their old behavior.
        self.support_face(local_dir)
        /*
        const MAX_DOT_THRESHOLD: Real = crate::utils::COS_10_DEGREES;
        const MIN_DOT_THRESHOLD: Real = 1.0 - MAX_DOT_THRESHOLD;

        let amax = local_dir.amax();
        let amin = local_dir.amin();

        if amax > MAX_DOT_THRESHOLD {
            // Support face.
            CuboidFeature::Face(support_face(self, local_dir))
        } else if amin < MIN_DOT_THRESHOLD {
            // Support edge.
            CuboidFeature::Edge(support_edge(self, local_dir))
        } else {
            // Support vertex.
            CuboidFeature::Vertex(support_vertex(self, local_dir))
        }
        */
    }

    // #[cfg(feature = "dim3")
    // pub(crate) fn support_vertex(&self, local_dir: Vector<Real>) -> CuboidFeatureVertex {
    //     let vertex = local_support_point(self, local_dir);
    //     let vid = vertex_feature_id(vertex);
    //
    //     CuboidFeatureVertex { vertex, vid }
    // }

    /// Return the edge segment of this cuboid with a normal cone containing
    /// a direction that that maximizes the dot product with `local_dir`.
    #[cfg(feature = "dim3")]
    pub fn local_support_edge_segment(&self, local_dir: Vector<Real>) -> Segment {
        let he = self.half_extents;
        let i = local_dir.iamin();
        let j = (i + 1) % 3;
        let k = (i + 2) % 3;
        let mut a = Point::origin();
        a[i] = he[i];
        a[j] = he[j].copysign(local_dir[j]);
        a[k] = he[k].copysign(local_dir[k]);

        let mut b = a;
        b[i] = -he[i];

        Segment::new(a, b)
    }

    /// Computes the face with a normal that maximizes the dot-product with `local_dir`.
    #[cfg(feature = "dim3")]
    pub fn support_face(&self, local_dir: Vector<Real>) -> PolygonalFeature {
        // NOTE: can we use the orthonormal basis of local_dir
        // to make this AoSoA friendly?
        let he = self.half_extents;
        let iamax = local_dir.iamax();
        let sign = (1.0 as Real).copysign(local_dir[iamax]);

        let vertices = match iamax {
            0 => [
                Point::new(he.x * sign, he.y, he.z),
                Point::new(he.x * sign, -he.y, he.z),
                Point::new(he.x * sign, -he.y, -he.z),
                Point::new(he.x * sign, he.y, -he.z),
            ],
            1 => [
                Point::new(he.x, he.y * sign, he.z),
                Point::new(-he.x, he.y * sign, he.z),
                Point::new(-he.x, he.y * sign, -he.z),
                Point::new(he.x, he.y * sign, -he.z),
            ],
            2 => [
                Point::new(he.x, he.y, he.z * sign),
                Point::new(he.x, -he.y, he.z * sign),
                Point::new(-he.x, -he.y, he.z * sign),
                Point::new(-he.x, he.y, he.z * sign),
            ],
            _ => unreachable!(),
        };

        pub fn vid(i: u32) -> u32 {
            // Each vertex has an even feature id.
            i * 2
        }

        let sign_index = ((sign as i8 + 1) / 2) as usize;
        // The vertex id as numbered depending on the sign of the vertex
        // component. A + sign means the corresponding bit is 0 while a -
        // sign means the corresponding bit is 1.
        // For exampl the vertex [2.0, -1.0, -3.0] has the id 0b011
        let vids = match iamax {
            0 => [
                [vid(0b000), vid(0b010), vid(0b011), vid(0b001)],
                [vid(0b100), vid(0b110), vid(0b111), vid(0b101)],
            ][sign_index],
            1 => [
                [vid(0b000), vid(0b100), vid(0b101), vid(0b001)],
                [vid(0b010), vid(0b110), vid(0b111), vid(0b011)],
            ][sign_index],
            2 => [
                [vid(0b000), vid(0b010), vid(0b110), vid(0b100)],
                [vid(0b001), vid(0b011), vid(0b111), vid(0b101)],
            ][sign_index],
            _ => unreachable!(),
        };

        // The feature ids of edges is obtained from the vertex ids
        // of their endpoints.
        // Assuming vid1 > vid2, we do:   (vid1 << 3) | vid2 | 0b11000000
        //
        let eids = match iamax {
            0 => [
                [0b11_010_000, 0b11_011_010, 0b11_011_001, 0b11_001_000],
                [0b11_110_100, 0b11_111_110, 0b11_111_101, 0b11_101_100],
            ][sign_index],
            1 => [
                [0b11_100_000, 0b11_101_100, 0b11_101_001, 0b11_001_000],
                [0b11_110_010, 0b11_111_110, 0b11_111_011, 0b11_011_010],
            ][sign_index],
            2 => [
                [0b11_010_000, 0b11_110_010, 0b11_110_100, 0b11_100_000],
                [0b11_011_001, 0b11_111_011, 0b11_111_101, 0b11_101_001],
            ][sign_index],
            _ => unreachable!(),
        };

        // The face with normals [x, y, z] are numbered [10, 11, 12].
        // The face with negated normals are numbered [13, 14, 15].
        let fid = iamax + sign_index * 3 + 10;

        PolygonalFeature {
            vertices,
            vids: PackedFeatureId::vertices(vids),
            eids: PackedFeatureId::edges(eids),
            fid: PackedFeatureId::face(fid as u32),
            num_vertices: 4,
        }
    }

    /// The normal of the given feature of this shape.
    #[cfg(feature = "dim2")]
    pub fn feature_normal(&self, feature: FeatureId) -> Option<Unit<Vector<Real>>> {
        match feature {
            FeatureId::Face(id) => {
                let mut dir: Vector<Real> = na::zero();

                if id < 2 {
                    dir[id as usize] = 1.0;
                } else {
                    dir[id as usize - 2] = -1.0;
                }
                Some(Unit::new_unchecked(dir))
            }
            FeatureId::Vertex(id) => {
                let mut dir: Vector<Real> = na::zero();

                match id {
                    0b00 => {
                        dir[0] = 1.0;
                        dir[1] = 1.0;
                    }
                    0b01 => {
                        dir[1] = 1.0;
                        dir[0] = -1.0;
                    }
                    0b11 => {
                        dir[0] = -1.0;
                        dir[1] = -1.0;
                    }
                    0b10 => {
                        dir[1] = -1.0;
                        dir[0] = 1.0;
                    }
                    _ => return None,
                }

                Some(Unit::new_normalize(dir))
            }
            _ => None,
        }
    }

    /// The normal of the given feature of this shape.
    #[cfg(feature = "dim3")]
    pub fn feature_normal(&self, feature: FeatureId) -> Option<Unit<Vector<Real>>> {
        match feature {
            FeatureId::Face(id) => {
                let mut dir: Vector<Real> = na::zero();

                if id < 3 {
                    dir[id as usize] = 1.0;
                } else {
                    dir[id as usize - 3] = -1.0;
                }
                Some(Unit::new_unchecked(dir))
            }
            FeatureId::Edge(id) => {
                let edge = id & 0b011;
                let face1 = (edge + 1) % 3;
                let face2 = (edge + 2) % 3;
                let signs = id >> 2;

                let mut dir: Vector<Real> = na::zero();

                if signs & (1 << face1) != 0 {
                    dir[face1 as usize] = -1.0
                } else {
                    dir[face1 as usize] = 1.0
                }

                if signs & (1 << face2) != 0 {
                    dir[face2 as usize] = -1.0
                } else {
                    dir[face2 as usize] = 1.0;
                }

                Some(Unit::new_normalize(dir))
            }
            FeatureId::Vertex(id) => {
                let mut dir: Vector<Real> = na::zero();
                for i in 0..3 {
                    if id & (1 << i) != 0 {
                        dir[i] = -1.0;
                    } else {
                        dir[i] = 1.0
                    }
                }

                Some(Unit::new_normalize(dir))
            }
            _ => None,
        }
    }
}

impl SupportMap for Cuboid {
    #[inline]
    fn local_support_point(&self, dir: &Vector<Real>) -> Point<Real> {
        dir.copy_sign_to(self.half_extents).into()
    }
}

/*
impl ConvexPolyhedron for Cuboid {
    fn vertex(&self, id: FeatureId) -> Point<Real> {
        let vid = id.unwrap_vertex();
        let mut res = self.half_extents;

        for i in 0..DIM {
            if vid & (1 << i) != 0 {
                res[i] = -res[i]
            }
        }

        Point::from(res)
    }

    #[cfg(feature = "dim3")]
    fn edge(&self, id: FeatureId) -> (Point<Real>, Point<Real>, FeatureId, FeatureId) {
        let eid = id.unwrap_edge();
        let mut res = self.half_extents;

        let edge_i = eid & 0b11;
        let vertex_i = eid >> 2;

        for i in 0..DIM {
            if i as u32 != edge_i && (vertex_i & (1 << i) != 0) {
                res[i] = -res[i]
            }
        }

        let p1 = Point::from(res);
        res[edge_i as usize] = -res[edge_i as usize];
        let p2 = Point::from(res);
        let vid1 = FeatureId::Vertex(vertex_i & !(1 << edge_i));
        let vid2 = FeatureId::Vertex(vertex_i | (1 << edge_i));

        (p1, p2, vid1, vid2)
    }

    fn face(&self, id: FeatureId, out: &mut ConvexPolygonalFeature) {
        out.clear();

        let i = id.unwrap_face() as usize;
        let i1;
        let sign;

        if i < DIM {
            i1 = i;
            sign = 1.0;
        } else {
            i1 = i - DIM;
            sign = -1.0;
        }

        #[cfg(feature = "dim2")]
        {
            let i2 = (i1 + 1) % 2;

            let mut vertex = self.half_extents;
            vertex[i1] *= sign;
            vertex[i2] *= if i1 == 0 { -sign } else { sign };

            let p1 = Point::from(vertex);
            vertex[i2] = -vertex[i2];
            let p2 = Point::from(vertex);

            let mut vertex_id1 = if sign < 0.0 {
                1 << i1
            } else {
                0
            };
            let mut vertex_id2 = vertex_id1;
            if p1[i2] < 0.0 {
                vertex_id1 |= 1 << i2;
            } else {
                vertex_id2 |= 1 << i2;
            }

            out.push(p1, FeatureId::Vertex(vertex_id1));
            out.push(p2, FeatureId::Vertex(vertex_id2));

            let mut normal: Vector<Real> = na::zero();
            normal[i1] = sign;
            out.set_normal(Unit::new_unchecked(normal));
            out.set_feature_id(FeatureId::Face(i as u32));
        }
        #[cfg(feature = "dim3")]
        {
            let i2 = (i1 + 1) % 3;
            let i3 = (i1 + 2) % 3;
            let (edge_i2, edge_i3) = if sign > 0.0 {
                (i2, i3)
            } else {
                (i3, i2)
            };
            let mask_i2 = !(1 << edge_i2); // The masks are for ensuring each edge has a unique ID.
            let mask_i3 = !(1 << edge_i3);
            let mut vertex = self.half_extents;
            vertex[i1] *= sign;

            let (sbit, msbit) = if sign < 0.0 {
                (1, 0)
            } else {
                (0, 1)
            };
            let mut vertex_id = sbit << i1;
            out.push(Point::from(vertex), FeatureId::Vertex(vertex_id));
            out.push_edge_feature_id(FeatureId::Edge(
                edge_i2 as u32 | ((vertex_id & mask_i2) << 2),
            ));

            vertex[i2] = -sign * self.half_extents[i2];
            vertex[i3] = sign * self.half_extents[i3];
            vertex_id |= msbit << i2 | sbit << i3;
            out.push(Point::from(vertex), FeatureId::Vertex(vertex_id));
            out.push_edge_feature_id(FeatureId::Edge(
                edge_i3 as u32 | ((vertex_id & mask_i3) << 2),
            ));

            vertex[i2] = -self.half_extents[i2];
            vertex[i3] = -self.half_extents[i3];
            vertex_id |= 1 << i2 | 1 << i3;
            out.push(Point::from(vertex), FeatureId::Vertex(vertex_id));
            out.push_edge_feature_id(FeatureId::Edge(
                edge_i2 as u32 | ((vertex_id & mask_i2) << 2),
            ));

            vertex[i2] = sign * self.half_extents[i2];
            vertex[i3] = -sign * self.half_extents[i3];
            vertex_id = sbit << i1 | sbit << i2 | msbit << i3;
            out.push(Point::from(vertex), FeatureId::Vertex(vertex_id));
            out.push_edge_feature_id(FeatureId::Edge(
                edge_i3 as u32 | ((vertex_id & mask_i3) << 2),
            ));

            let mut normal: Vector<Real> = na::zero();
            normal[i1] = sign;
            out.set_normal(Unit::new_unchecked(normal));

            if sign > 0.0 {
                out.set_feature_id(FeatureId::Face(i1 as u32));
            } else {
                out.set_feature_id(FeatureId::Face(i1 as u32 + 3));
            }

            out.recompute_edge_normals();
        }
    }

    fn support_face_toward(
        &self,
        m: &Isometry<Real>,
        dir: &Unit<Vector<Real>>,
        out: &mut ConvexPolygonalFeature,
    ) {
        out.clear();
        let local_dir = m.inverse_transform_vector(dir);

        let mut iamax = 0;
        let mut amax = local_dir[0].abs();

        // TODO: we should use nalgebra's iamax method.
        for i in 1..DIM {
            let candidate = local_dir[i].abs();
            if candidate > amax {
                amax = candidate;
                iamax = i;
            }
        }

        if local_dir[iamax] > 0.0 {
            self.face(FeatureId::Face(iamax as u32), out);
            out.transform_by(m);
        } else {
            self.face(FeatureId::Face((iamax + DIM) as u32), out);
            out.transform_by(m);
        }
    }

    fn support_feature_toward(
        &self,
        m: &Isometry<Real>,
        dir: &Unit<Vector<Real>>,
        angle: Real,
        out: &mut ConvexPolygonalFeature,
    ) {
        let local_dir = m.inverse_transform_vector(dir);
        let cang = ComplexField::cos(angle);
        let mut support_point = self.half_extents;

        out.clear();

        #[cfg(feature = "dim2")]
        {
            let mut support_point_id = 0;
            for i1 in 0..2 {
                let sign = local_dir[i1].signum();
                if sign * local_dir[i1] >= cang {
                    if sign > 0.0 {
                        self.face(FeatureId::Face(i1 as u32), out);
                        out.transform_by(m);
                    } else {
                        self.face(FeatureId::Face(i1 as u32 + 2), out);
                        out.transform_by(m);
                    }
                    return;
                } else {
                    if sign < 0.0 {
                        support_point_id |= 1 << i1;
                    }
                    support_point[i1] *= sign;
                }
            }

            // We are not on a face, return the support vertex.
            out.push(
                m * Point::from(support_point),
                FeatureId::Vertex(support_point_id),
            );
            out.set_feature_id(FeatureId::Vertex(support_point_id));
        }

        #[cfg(feature = "dim3")]
        {
            let sang = ComplexField::sin(angle);
            let mut support_point_id = 0;

            // Check faces.
            for i1 in 0..3 {
                let sign = local_dir[i1].signum();
                if sign * local_dir[i1] >= cang {
                    if sign > 0.0 {
                        self.face(FeatureId::Face(i1 as u32), out);
                        out.transform_by(m);
                    } else {
                        self.face(FeatureId::Face(i1 as u32 + 3), out);
                        out.transform_by(m);
                    }
                    return;
                } else {
                    if sign < 0.0 {
                        support_point[i1] *= sign;
                        support_point_id |= 1 << i1;
                    }
                }
            }

            // Check edges.
            for i in 0..3 {
                let sign = local_dir[i].signum();

                // sign * local_dir[i] <= cos(pi / 2 - angle)
                if sign * local_dir[i] <= sang {
                    support_point[i] = -self.half_extents[i];
                    let p1 = Point::from(support_point);
                    support_point[i] = self.half_extents[i];
                    let p2 = Point::from(support_point);
                    let p2_id = support_point_id & !(1 << i);
                    out.push(m * p1, FeatureId::Vertex(support_point_id | (1 << i)));
                    out.push(m * p2, FeatureId::Vertex(p2_id));

                    let edge_id = FeatureId::Edge(i as u32 | (p2_id << 2));
                    out.push_edge_feature_id(edge_id);
                    out.set_feature_id(edge_id);
                    return;
                }
            }

            // We are not on a face or edge, return the support vertex.
            out.push(
                m * Point::from(support_point),
                FeatureId::Vertex(support_point_id),
            );
            out.set_feature_id(FeatureId::Vertex(support_point_id));
        }
    }

    fn support_feature_id_toward(&self, local_dir: &Unit<Vector<Real>>) -> FeatureId {
        let one_degree: Real = na::convert::<f64, Real>(f64::consts::PI / 180.0);
        let cang = ComplexField::cos(one_degree);

        #[cfg(feature = "dim2")]
        {
            let mut support_point_id = 0;
            for i1 in 0..2 {
                let sign = local_dir[i1].signum();
                if sign * local_dir[i1] >= cang {
                    if sign > 0.0 {
                        return FeatureId::Face(i1 as u32);
                    } else {
                        return FeatureId::Face(i1 as u32 + 2);
                    }
                } else {
                    if sign < 0.0 {
                        support_point_id |= 1 << i1;
                    }
                }
            }

            // We are not on a face, return the support vertex.
            FeatureId::Vertex(support_point_id)
        }

        #[cfg(feature = "dim3")]
        {
            let sang = ComplexField::sin(one_degree);
            let mut support_point_id = 0;

            // Check faces.
            for i1 in 0..3 {
                let sign = local_dir[i1].signum();
                if sign * local_dir[i1] >= cang {
                    if sign > 0.0 {
                        return FeatureId::Face(i1 as u32);
                    } else {
                        return FeatureId::Face(i1 as u32 + 3);
                    }
                } else {
                    if sign < 0.0 {
                        support_point_id |= 1 << i1;
                    }
                }
            }

            // Check edges.
            for i in 0..3 {
                let sign = local_dir[i].signum();

                // sign * local_dir[i] <= cos(pi / 2 - angle)
                if sign * local_dir[i] <= sang {
                    let mask_i = !(1 << i); // To ensure each edge has a unique id.
                    return FeatureId::Edge(i as u32 | ((support_point_id & mask_i) << 2));
                }
            }

            FeatureId::Vertex(support_point_id)
        }
    }
}
*/