parry3d/shape/cuboid.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
//! Support mapping based Cuboid shape.
use crate::math::{Point, Real, Vector};
#[cfg(feature = "dim3")]
use crate::shape::Segment;
use crate::shape::{FeatureId, PackedFeatureId, PolygonalFeature, SupportMap};
use crate::utils::WSign;
use na::Unit;
#[cfg(not(feature = "std"))]
use na::RealField; // for .copysign()
#[cfg(feature = "rkyv")]
use rkyv::{bytecheck, CheckBytes};
/// Shape of a box.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "bytemuck", derive(bytemuck::Pod, bytemuck::Zeroable))]
#[cfg_attr(
feature = "rkyv",
derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize, CheckBytes),
archive(as = "Self")
)]
#[derive(PartialEq, Debug, Copy, Clone)]
#[repr(C)]
pub struct Cuboid {
/// The half-extents of the cuboid.
pub half_extents: Vector<Real>,
}
impl Cuboid {
/// Creates a new box from its half-extents. Half-extents are the box half-width along each
/// axis. Each half-extent must be positive.
#[inline]
pub fn new(half_extents: Vector<Real>) -> Cuboid {
Cuboid { half_extents }
}
/// Computes a scaled version of this cuboid.
pub fn scaled(self, scale: &Vector<Real>) -> Self {
let new_hext = self.half_extents.component_mul(scale);
Self {
half_extents: new_hext,
}
}
/// Return the id of the vertex of this cuboid with a normal that maximizes
/// the dot product with `dir`.
#[cfg(feature = "dim2")]
pub fn vertex_feature_id(vertex: Point<Real>) -> u32 {
// TODO: is this still correct with the f64 version?
#[allow(clippy::unnecessary_cast)] // Unnecessary for f32 but necessary for f64.
{
((vertex.x.to_bits() >> 31) & 0b001 | (vertex.y.to_bits() >> 30) & 0b010) as u32
}
}
/// Return the feature of this cuboid with a normal that maximizes
/// the dot product with `dir`.
#[cfg(feature = "dim2")]
pub fn support_feature(&self, local_dir: Vector<Real>) -> PolygonalFeature {
// In 2D, it is best for stability to always return a face.
// It won't have any notable impact on performances anyway.
self.support_face(local_dir)
}
/// Return the face of this cuboid with a normal that maximizes
/// the dot product with `local_dir`.
#[cfg(feature = "dim2")]
pub fn support_face(&self, local_dir: Vector<Real>) -> PolygonalFeature {
let he = self.half_extents;
let i = local_dir.iamin();
let j = (i + 1) % 2;
let mut a = Point::origin();
a[i] = he[i];
a[j] = he[j].copysign(local_dir[j]);
let mut b = a;
b[i] = -he[i];
let vid1 = Self::vertex_feature_id(a);
let vid2 = Self::vertex_feature_id(b);
let fid = (vid1.max(vid2) << 2) | vid1.min(vid2) | 0b11_00_00;
PolygonalFeature {
vertices: [a, b],
vids: PackedFeatureId::vertices([vid1, vid2]),
fid: PackedFeatureId::face(fid),
num_vertices: 2,
}
}
/// Return the face of this cuboid with a normal that maximizes
/// the dot product with `local_dir`.
#[cfg(feature = "dim3")]
pub fn support_feature(&self, local_dir: Vector<Real>) -> PolygonalFeature {
// TODO: this should actually return the feature.
// And we should change all the callers of this method to use
// `.support_face` instead of this method to preserve their old behavior.
self.support_face(local_dir)
/*
const MAX_DOT_THRESHOLD: Real = crate::utils::COS_10_DEGREES;
const MIN_DOT_THRESHOLD: Real = 1.0 - MAX_DOT_THRESHOLD;
let amax = local_dir.amax();
let amin = local_dir.amin();
if amax > MAX_DOT_THRESHOLD {
// Support face.
CuboidFeature::Face(support_face(self, local_dir))
} else if amin < MIN_DOT_THRESHOLD {
// Support edge.
CuboidFeature::Edge(support_edge(self, local_dir))
} else {
// Support vertex.
CuboidFeature::Vertex(support_vertex(self, local_dir))
}
*/
}
// #[cfg(feature = "dim3")
// pub(crate) fn support_vertex(&self, local_dir: Vector<Real>) -> CuboidFeatureVertex {
// let vertex = local_support_point(self, local_dir);
// let vid = vertex_feature_id(vertex);
//
// CuboidFeatureVertex { vertex, vid }
// }
/// Return the edge segment of this cuboid with a normal cone containing
/// a direction that that maximizes the dot product with `local_dir`.
#[cfg(feature = "dim3")]
pub fn local_support_edge_segment(&self, local_dir: Vector<Real>) -> Segment {
let he = self.half_extents;
let i = local_dir.iamin();
let j = (i + 1) % 3;
let k = (i + 2) % 3;
let mut a = Point::origin();
a[i] = he[i];
a[j] = he[j].copysign(local_dir[j]);
a[k] = he[k].copysign(local_dir[k]);
let mut b = a;
b[i] = -he[i];
Segment::new(a, b)
}
/// Computes the face with a normal that maximizes the dot-product with `local_dir`.
#[cfg(feature = "dim3")]
pub fn support_face(&self, local_dir: Vector<Real>) -> PolygonalFeature {
// NOTE: can we use the orthonormal basis of local_dir
// to make this AoSoA friendly?
let he = self.half_extents;
let iamax = local_dir.iamax();
let sign = (1.0 as Real).copysign(local_dir[iamax]);
let vertices = match iamax {
0 => [
Point::new(he.x * sign, he.y, he.z),
Point::new(he.x * sign, -he.y, he.z),
Point::new(he.x * sign, -he.y, -he.z),
Point::new(he.x * sign, he.y, -he.z),
],
1 => [
Point::new(he.x, he.y * sign, he.z),
Point::new(-he.x, he.y * sign, he.z),
Point::new(-he.x, he.y * sign, -he.z),
Point::new(he.x, he.y * sign, -he.z),
],
2 => [
Point::new(he.x, he.y, he.z * sign),
Point::new(he.x, -he.y, he.z * sign),
Point::new(-he.x, -he.y, he.z * sign),
Point::new(-he.x, he.y, he.z * sign),
],
_ => unreachable!(),
};
pub fn vid(i: u32) -> u32 {
// Each vertex has an even feature id.
i * 2
}
let sign_index = ((sign as i8 + 1) / 2) as usize;
// The vertex id as numbered depending on the sign of the vertex
// component. A + sign means the corresponding bit is 0 while a -
// sign means the corresponding bit is 1.
// For exampl the vertex [2.0, -1.0, -3.0] has the id 0b011
let vids = match iamax {
0 => [
[vid(0b000), vid(0b010), vid(0b011), vid(0b001)],
[vid(0b100), vid(0b110), vid(0b111), vid(0b101)],
][sign_index],
1 => [
[vid(0b000), vid(0b100), vid(0b101), vid(0b001)],
[vid(0b010), vid(0b110), vid(0b111), vid(0b011)],
][sign_index],
2 => [
[vid(0b000), vid(0b010), vid(0b110), vid(0b100)],
[vid(0b001), vid(0b011), vid(0b111), vid(0b101)],
][sign_index],
_ => unreachable!(),
};
// The feature ids of edges is obtained from the vertex ids
// of their endpoints.
// Assuming vid1 > vid2, we do: (vid1 << 3) | vid2 | 0b11000000
//
let eids = match iamax {
0 => [
[0b11_010_000, 0b11_011_010, 0b11_011_001, 0b11_001_000],
[0b11_110_100, 0b11_111_110, 0b11_111_101, 0b11_101_100],
][sign_index],
1 => [
[0b11_100_000, 0b11_101_100, 0b11_101_001, 0b11_001_000],
[0b11_110_010, 0b11_111_110, 0b11_111_011, 0b11_011_010],
][sign_index],
2 => [
[0b11_010_000, 0b11_110_010, 0b11_110_100, 0b11_100_000],
[0b11_011_001, 0b11_111_011, 0b11_111_101, 0b11_101_001],
][sign_index],
_ => unreachable!(),
};
// The face with normals [x, y, z] are numbered [10, 11, 12].
// The face with negated normals are numbered [13, 14, 15].
let fid = iamax + sign_index * 3 + 10;
PolygonalFeature {
vertices,
vids: PackedFeatureId::vertices(vids),
eids: PackedFeatureId::edges(eids),
fid: PackedFeatureId::face(fid as u32),
num_vertices: 4,
}
}
/// The normal of the given feature of this shape.
#[cfg(feature = "dim2")]
pub fn feature_normal(&self, feature: FeatureId) -> Option<Unit<Vector<Real>>> {
match feature {
FeatureId::Face(id) => {
let mut dir: Vector<Real> = na::zero();
if id < 2 {
dir[id as usize] = 1.0;
} else {
dir[id as usize - 2] = -1.0;
}
Some(Unit::new_unchecked(dir))
}
FeatureId::Vertex(id) => {
let mut dir: Vector<Real> = na::zero();
match id {
0b00 => {
dir[0] = 1.0;
dir[1] = 1.0;
}
0b01 => {
dir[1] = 1.0;
dir[0] = -1.0;
}
0b11 => {
dir[0] = -1.0;
dir[1] = -1.0;
}
0b10 => {
dir[1] = -1.0;
dir[0] = 1.0;
}
_ => return None,
}
Some(Unit::new_normalize(dir))
}
_ => None,
}
}
/// The normal of the given feature of this shape.
#[cfg(feature = "dim3")]
pub fn feature_normal(&self, feature: FeatureId) -> Option<Unit<Vector<Real>>> {
match feature {
FeatureId::Face(id) => {
let mut dir: Vector<Real> = na::zero();
if id < 3 {
dir[id as usize] = 1.0;
} else {
dir[id as usize - 3] = -1.0;
}
Some(Unit::new_unchecked(dir))
}
FeatureId::Edge(id) => {
let edge = id & 0b011;
let face1 = (edge + 1) % 3;
let face2 = (edge + 2) % 3;
let signs = id >> 2;
let mut dir: Vector<Real> = na::zero();
if signs & (1 << face1) != 0 {
dir[face1 as usize] = -1.0
} else {
dir[face1 as usize] = 1.0
}
if signs & (1 << face2) != 0 {
dir[face2 as usize] = -1.0
} else {
dir[face2 as usize] = 1.0;
}
Some(Unit::new_normalize(dir))
}
FeatureId::Vertex(id) => {
let mut dir: Vector<Real> = na::zero();
for i in 0..3 {
if id & (1 << i) != 0 {
dir[i] = -1.0;
} else {
dir[i] = 1.0
}
}
Some(Unit::new_normalize(dir))
}
_ => None,
}
}
}
impl SupportMap for Cuboid {
#[inline]
fn local_support_point(&self, dir: &Vector<Real>) -> Point<Real> {
dir.copy_sign_to(self.half_extents).into()
}
}
/*
impl ConvexPolyhedron for Cuboid {
fn vertex(&self, id: FeatureId) -> Point<Real> {
let vid = id.unwrap_vertex();
let mut res = self.half_extents;
for i in 0..DIM {
if vid & (1 << i) != 0 {
res[i] = -res[i]
}
}
Point::from(res)
}
#[cfg(feature = "dim3")]
fn edge(&self, id: FeatureId) -> (Point<Real>, Point<Real>, FeatureId, FeatureId) {
let eid = id.unwrap_edge();
let mut res = self.half_extents;
let edge_i = eid & 0b11;
let vertex_i = eid >> 2;
for i in 0..DIM {
if i as u32 != edge_i && (vertex_i & (1 << i) != 0) {
res[i] = -res[i]
}
}
let p1 = Point::from(res);
res[edge_i as usize] = -res[edge_i as usize];
let p2 = Point::from(res);
let vid1 = FeatureId::Vertex(vertex_i & !(1 << edge_i));
let vid2 = FeatureId::Vertex(vertex_i | (1 << edge_i));
(p1, p2, vid1, vid2)
}
fn face(&self, id: FeatureId, out: &mut ConvexPolygonalFeature) {
out.clear();
let i = id.unwrap_face() as usize;
let i1;
let sign;
if i < DIM {
i1 = i;
sign = 1.0;
} else {
i1 = i - DIM;
sign = -1.0;
}
#[cfg(feature = "dim2")]
{
let i2 = (i1 + 1) % 2;
let mut vertex = self.half_extents;
vertex[i1] *= sign;
vertex[i2] *= if i1 == 0 { -sign } else { sign };
let p1 = Point::from(vertex);
vertex[i2] = -vertex[i2];
let p2 = Point::from(vertex);
let mut vertex_id1 = if sign < 0.0 {
1 << i1
} else {
0
};
let mut vertex_id2 = vertex_id1;
if p1[i2] < 0.0 {
vertex_id1 |= 1 << i2;
} else {
vertex_id2 |= 1 << i2;
}
out.push(p1, FeatureId::Vertex(vertex_id1));
out.push(p2, FeatureId::Vertex(vertex_id2));
let mut normal: Vector<Real> = na::zero();
normal[i1] = sign;
out.set_normal(Unit::new_unchecked(normal));
out.set_feature_id(FeatureId::Face(i as u32));
}
#[cfg(feature = "dim3")]
{
let i2 = (i1 + 1) % 3;
let i3 = (i1 + 2) % 3;
let (edge_i2, edge_i3) = if sign > 0.0 {
(i2, i3)
} else {
(i3, i2)
};
let mask_i2 = !(1 << edge_i2); // The masks are for ensuring each edge has a unique ID.
let mask_i3 = !(1 << edge_i3);
let mut vertex = self.half_extents;
vertex[i1] *= sign;
let (sbit, msbit) = if sign < 0.0 {
(1, 0)
} else {
(0, 1)
};
let mut vertex_id = sbit << i1;
out.push(Point::from(vertex), FeatureId::Vertex(vertex_id));
out.push_edge_feature_id(FeatureId::Edge(
edge_i2 as u32 | ((vertex_id & mask_i2) << 2),
));
vertex[i2] = -sign * self.half_extents[i2];
vertex[i3] = sign * self.half_extents[i3];
vertex_id |= msbit << i2 | sbit << i3;
out.push(Point::from(vertex), FeatureId::Vertex(vertex_id));
out.push_edge_feature_id(FeatureId::Edge(
edge_i3 as u32 | ((vertex_id & mask_i3) << 2),
));
vertex[i2] = -self.half_extents[i2];
vertex[i3] = -self.half_extents[i3];
vertex_id |= 1 << i2 | 1 << i3;
out.push(Point::from(vertex), FeatureId::Vertex(vertex_id));
out.push_edge_feature_id(FeatureId::Edge(
edge_i2 as u32 | ((vertex_id & mask_i2) << 2),
));
vertex[i2] = sign * self.half_extents[i2];
vertex[i3] = -sign * self.half_extents[i3];
vertex_id = sbit << i1 | sbit << i2 | msbit << i3;
out.push(Point::from(vertex), FeatureId::Vertex(vertex_id));
out.push_edge_feature_id(FeatureId::Edge(
edge_i3 as u32 | ((vertex_id & mask_i3) << 2),
));
let mut normal: Vector<Real> = na::zero();
normal[i1] = sign;
out.set_normal(Unit::new_unchecked(normal));
if sign > 0.0 {
out.set_feature_id(FeatureId::Face(i1 as u32));
} else {
out.set_feature_id(FeatureId::Face(i1 as u32 + 3));
}
out.recompute_edge_normals();
}
}
fn support_face_toward(
&self,
m: &Isometry<Real>,
dir: &Unit<Vector<Real>>,
out: &mut ConvexPolygonalFeature,
) {
out.clear();
let local_dir = m.inverse_transform_vector(dir);
let mut iamax = 0;
let mut amax = local_dir[0].abs();
// TODO: we should use nalgebra's iamax method.
for i in 1..DIM {
let candidate = local_dir[i].abs();
if candidate > amax {
amax = candidate;
iamax = i;
}
}
if local_dir[iamax] > 0.0 {
self.face(FeatureId::Face(iamax as u32), out);
out.transform_by(m);
} else {
self.face(FeatureId::Face((iamax + DIM) as u32), out);
out.transform_by(m);
}
}
fn support_feature_toward(
&self,
m: &Isometry<Real>,
dir: &Unit<Vector<Real>>,
angle: Real,
out: &mut ConvexPolygonalFeature,
) {
let local_dir = m.inverse_transform_vector(dir);
let cang = ComplexField::cos(angle);
let mut support_point = self.half_extents;
out.clear();
#[cfg(feature = "dim2")]
{
let mut support_point_id = 0;
for i1 in 0..2 {
let sign = local_dir[i1].signum();
if sign * local_dir[i1] >= cang {
if sign > 0.0 {
self.face(FeatureId::Face(i1 as u32), out);
out.transform_by(m);
} else {
self.face(FeatureId::Face(i1 as u32 + 2), out);
out.transform_by(m);
}
return;
} else {
if sign < 0.0 {
support_point_id |= 1 << i1;
}
support_point[i1] *= sign;
}
}
// We are not on a face, return the support vertex.
out.push(
m * Point::from(support_point),
FeatureId::Vertex(support_point_id),
);
out.set_feature_id(FeatureId::Vertex(support_point_id));
}
#[cfg(feature = "dim3")]
{
let sang = ComplexField::sin(angle);
let mut support_point_id = 0;
// Check faces.
for i1 in 0..3 {
let sign = local_dir[i1].signum();
if sign * local_dir[i1] >= cang {
if sign > 0.0 {
self.face(FeatureId::Face(i1 as u32), out);
out.transform_by(m);
} else {
self.face(FeatureId::Face(i1 as u32 + 3), out);
out.transform_by(m);
}
return;
} else {
if sign < 0.0 {
support_point[i1] *= sign;
support_point_id |= 1 << i1;
}
}
}
// Check edges.
for i in 0..3 {
let sign = local_dir[i].signum();
// sign * local_dir[i] <= cos(pi / 2 - angle)
if sign * local_dir[i] <= sang {
support_point[i] = -self.half_extents[i];
let p1 = Point::from(support_point);
support_point[i] = self.half_extents[i];
let p2 = Point::from(support_point);
let p2_id = support_point_id & !(1 << i);
out.push(m * p1, FeatureId::Vertex(support_point_id | (1 << i)));
out.push(m * p2, FeatureId::Vertex(p2_id));
let edge_id = FeatureId::Edge(i as u32 | (p2_id << 2));
out.push_edge_feature_id(edge_id);
out.set_feature_id(edge_id);
return;
}
}
// We are not on a face or edge, return the support vertex.
out.push(
m * Point::from(support_point),
FeatureId::Vertex(support_point_id),
);
out.set_feature_id(FeatureId::Vertex(support_point_id));
}
}
fn support_feature_id_toward(&self, local_dir: &Unit<Vector<Real>>) -> FeatureId {
let one_degree: Real = na::convert::<f64, Real>(f64::consts::PI / 180.0);
let cang = ComplexField::cos(one_degree);
#[cfg(feature = "dim2")]
{
let mut support_point_id = 0;
for i1 in 0..2 {
let sign = local_dir[i1].signum();
if sign * local_dir[i1] >= cang {
if sign > 0.0 {
return FeatureId::Face(i1 as u32);
} else {
return FeatureId::Face(i1 as u32 + 2);
}
} else {
if sign < 0.0 {
support_point_id |= 1 << i1;
}
}
}
// We are not on a face, return the support vertex.
FeatureId::Vertex(support_point_id)
}
#[cfg(feature = "dim3")]
{
let sang = ComplexField::sin(one_degree);
let mut support_point_id = 0;
// Check faces.
for i1 in 0..3 {
let sign = local_dir[i1].signum();
if sign * local_dir[i1] >= cang {
if sign > 0.0 {
return FeatureId::Face(i1 as u32);
} else {
return FeatureId::Face(i1 as u32 + 3);
}
} else {
if sign < 0.0 {
support_point_id |= 1 << i1;
}
}
}
// Check edges.
for i in 0..3 {
let sign = local_dir[i].signum();
// sign * local_dir[i] <= cos(pi / 2 - angle)
if sign * local_dir[i] <= sang {
let mask_i = !(1 << i); // To ensure each edge has a unique id.
return FeatureId::Edge(i as u32 | ((support_point_id & mask_i) << 2));
}
}
FeatureId::Vertex(support_point_id)
}
}
}
*/