1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
#[cfg(feature = "std")]
use na::DMatrix;
use std::ops::Range;

use crate::bounding_volume::Aabb;
use crate::math::{Real, Vector};
use crate::shape::{FeatureId, Triangle, TrianglePseudoNormals};
use na::{Point3, Unit};

#[cfg(not(feature = "std"))]
use na::ComplexField;

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "rkyv",
    derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize),
    archive(as = "Self")
)]
#[derive(Clone, Copy, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
/// The status of the cell of an heightfield.
pub struct HeightFieldCellStatus(u8);

bitflags::bitflags! {
    impl HeightFieldCellStatus: u8 {
        /// If this bit is set, the concerned heightfield cell is subdivided using a Z pattern.
        const ZIGZAG_SUBDIVISION = 0b00000001;
        /// If this bit is set, the leftmost triangle of the concerned heightfield cell is removed.
        const LEFT_TRIANGLE_REMOVED = 0b00000010;
        /// If this bit is set, the rightmost triangle of the concerned heightfield cell is removed.
        const RIGHT_TRIANGLE_REMOVED = 0b00000100;
        /// If this bit is set, both triangles of the concerned heightfield cell are removed.
        const CELL_REMOVED = Self::LEFT_TRIANGLE_REMOVED.bits() | Self::RIGHT_TRIANGLE_REMOVED.bits();
    }
}

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "rkyv",
    derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize),
    archive(as = "Self")
)]
#[repr(C)]
#[derive(Clone, Copy, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
/// Flags controlling the behavior of some operations involving heightfields.
pub struct HeightFieldFlags(u8);

bitflags::bitflags! {
    impl HeightFieldFlags: u8 {
        /// If set, a special treatment will be applied to contact manifold calculation to eliminate
        /// or fix contacts normals that could lead to incorrect bumps in physics simulation (especially
        /// on flat surfaces).
        ///
        /// This is achieved by taking into account adjacent triangle normals when computing contact
        /// points for a given triangle.
        const FIX_INTERNAL_EDGES = 1 << 0;
    }
}

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
// TODO: Archive isn’t implemented for VecStorage yet.
// #[cfg_attr(
//     feature = "rkyv",
//     derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize),
//     archive(check_bytes)
// )]
#[derive(Debug, Clone)]
#[repr(C)]
/// A 3D heightfield.
pub struct HeightField {
    heights: DMatrix<Real>,
    status: DMatrix<HeightFieldCellStatus>,

    scale: Vector<Real>,
    aabb: Aabb,
    num_triangles: usize,
    flags: HeightFieldFlags,
}

#[cfg(feature = "std")]
impl HeightField {
    /// Initializes a new heightfield with the given heights, scaling factor, and flags.
    pub fn new(heights: DMatrix<Real>, scale: Vector<Real>) -> Self {
        Self::with_flags(heights, scale, HeightFieldFlags::empty())
    }

    /// Initializes a new heightfield with the given heights and a scaling factor.
    pub fn with_flags(
        heights: DMatrix<Real>,
        scale: Vector<Real>,
        flags: HeightFieldFlags,
    ) -> Self {
        assert!(
            heights.nrows() > 1 && heights.ncols() > 1,
            "A heightfield heights must have at least 2 rows and columns."
        );
        let max = heights.max();
        let min = heights.min();
        let hscale = scale * 0.5;
        let aabb = Aabb::new(
            Point3::new(-hscale.x, min * scale.y, -hscale.z),
            Point3::new(hscale.x, max * scale.y, hscale.z),
        );
        let num_triangles = (heights.nrows() - 1) * (heights.ncols() - 1) * 2;
        let status = DMatrix::repeat(
            heights.nrows() - 1,
            heights.ncols() - 1,
            HeightFieldCellStatus::default(),
        );

        HeightField {
            heights,
            scale,
            aabb,
            num_triangles,
            status,
            flags,
        }
    }
}

impl HeightField {
    /// The number of rows of this heightfield.
    pub fn nrows(&self) -> usize {
        self.heights.nrows() - 1
    }

    /// The number of columns of this heightfield.
    pub fn ncols(&self) -> usize {
        self.heights.ncols() - 1
    }

    fn triangle_id(&self, i: usize, j: usize, left: bool) -> u32 {
        let tid = j * (self.heights.nrows() - 1) + i;
        if left {
            tid as u32
        } else {
            (tid + self.num_triangles / 2) as u32
        }
    }

    fn split_triangle_id(&self, id: u32) -> (usize, usize, bool) {
        let left = id < self.num_triangles as u32 / 2;
        let tri_id = if left {
            id as usize
        } else {
            id as usize - self.num_triangles / 2
        };
        let j = tri_id / (self.heights.nrows() - 1);
        let i = tri_id - j * (self.heights.nrows() - 1);
        (i, j, left)
    }

    fn face_id(&self, i: usize, j: usize, left: bool, front: bool) -> u32 {
        let tid = self.triangle_id(i, j, left);
        if front {
            tid
        } else {
            tid + self.num_triangles as u32
        }
    }

    fn quantize_floor_unclamped(&self, val: Real, cell_size: Real) -> isize {
        ((val + 0.5) / cell_size).floor() as isize
    }

    fn quantize_ceil_unclamped(&self, val: Real, cell_size: Real) -> isize {
        ((val + 0.5) / cell_size).ceil() as isize
    }

    fn quantize_floor(&self, val: Real, cell_size: Real, num_cells: usize) -> usize {
        na::clamp(
            ((val + 0.5) / cell_size).floor(),
            0.0,
            (num_cells - 1) as Real,
        ) as usize
    }

    fn quantize_ceil(&self, val: Real, cell_size: Real, num_cells: usize) -> usize {
        na::clamp(((val + 0.5) / cell_size).ceil(), 0.0, num_cells as Real) as usize
    }

    /// The pair of index of the cell containing the vertical projection of the given point.
    pub fn closest_cell_at_point(&self, pt: &Point3<Real>) -> (usize, usize) {
        let scaled_pt = pt.coords.component_div(&self.scale);
        let cell_width = self.unit_cell_width();
        let cell_height = self.unit_cell_height();
        let ncells_x = self.ncols();
        let ncells_z = self.nrows();

        let j = self.quantize_floor(scaled_pt.x, cell_width, ncells_x);
        let i = self.quantize_floor(scaled_pt.z, cell_height, ncells_z);
        (i, j)
    }

    /// The pair of index of the cell containing the vertical projection of the given point.
    pub fn cell_at_point(&self, pt: &Point3<Real>) -> Option<(usize, usize)> {
        let scaled_pt = pt.coords.component_div(&self.scale);
        let cell_width = self.unit_cell_width();
        let cell_height = self.unit_cell_height();
        let ncells_x = self.ncols();
        let ncells_z = self.nrows();

        if scaled_pt.x < -0.5 || scaled_pt.x > 0.5 || scaled_pt.z < -0.5 || scaled_pt.z > 0.5 {
            // Outside of the heightfield bounds.
            None
        } else {
            let j = self.quantize_floor(scaled_pt.x, cell_width, ncells_x);
            let i = self.quantize_floor(scaled_pt.z, cell_height, ncells_z);
            Some((i, j))
        }
    }

    /// The pair of index of the cell containing the vertical projection of the given point.
    pub fn unclamped_cell_at_point(&self, pt: &Point3<Real>) -> (isize, isize) {
        let scaled_pt = pt.coords.component_div(&self.scale);
        let cell_width = self.unit_cell_width();
        let cell_height = self.unit_cell_height();

        let j = self.quantize_floor_unclamped(scaled_pt.x, cell_width);
        let i = self.quantize_floor_unclamped(scaled_pt.z, cell_height);
        (i, j)
    }

    /// The smallest x coordinate of the `j`-th column of this heightfield.
    pub fn x_at(&self, j: usize) -> Real {
        (-0.5 + self.unit_cell_width() * (j as Real)) * self.scale.x
    }

    /// The smallest z coordinate of the start of the `i`-th row of this heightfield.
    pub fn z_at(&self, i: usize) -> Real {
        (-0.5 + self.unit_cell_height() * (i as Real)) * self.scale.z
    }

    /// The smallest x coordinate of the `j`-th column of this heightfield.
    pub fn signed_x_at(&self, j: isize) -> Real {
        (-0.5 + self.unit_cell_width() * (j as Real)) * self.scale.x
    }

    /// The smallest z coordinate of the start of the `i`-th row of this heightfield.
    pub fn signed_z_at(&self, i: isize) -> Real {
        (-0.5 + self.unit_cell_height() * (i as Real)) * self.scale.z
    }

    /// An iterator through all the triangles of this heightfield.
    pub fn triangles(&self) -> impl Iterator<Item = Triangle> + '_ {
        HeightFieldTriangles {
            heightfield: self,
            curr: (0, 0),
            tris: self.triangles_at(0, 0),
        }
    }

    /// An iterator through all the triangles around the given point, after vertical projection on the heightfield.
    pub fn triangles_around_point(&self, point: &Point3<Real>) -> HeightFieldRadialTriangles {
        let center = self.closest_cell_at_point(point);
        HeightFieldRadialTriangles {
            heightfield: self,
            center,
            curr_radius: 0,
            curr_element: 0,
            tris: self.triangles_at(center.0, center.1),
        }
    }

    /// Gets the vertices of the triangle identified by `id`.
    pub fn triangle_at_id(&self, id: u32) -> Option<Triangle> {
        let (i, j, left) = self.split_triangle_id(id);
        if left {
            self.triangles_at(i, j).0
        } else {
            self.triangles_at(i, j).1
        }
    }

    /// Gets the vertex indices of the triangle identified by `id`.
    pub fn triangle_vids_at_id(&self, id: u32) -> Option<[u32; 3]> {
        let (i, j, left) = self.split_triangle_id(id);
        if left {
            self.triangles_vids_at(i, j).0
        } else {
            self.triangles_vids_at(i, j).1
        }
    }

    /// Gets the indices of the vertices of the (up to) two triangles for the cell (i, j).
    pub fn triangles_vids_at(&self, i: usize, j: usize) -> (Option<[u32; 3]>, Option<[u32; 3]>) {
        if i >= self.heights.nrows() - 1 || j >= self.heights.ncols() - 1 {
            return (None, None);
        }

        let status = self.status[(i, j)];

        if status.contains(
            HeightFieldCellStatus::LEFT_TRIANGLE_REMOVED
                | HeightFieldCellStatus::RIGHT_TRIANGLE_REMOVED,
        ) {
            return (None, None);
        }

        let p00 = (i + j * self.heights.nrows()) as u32;
        let p10 = ((i + 1) + j * self.heights.nrows()) as u32;
        let p01 = (i + (j + 1) * self.heights.nrows()) as u32;
        let p11 = ((i + 1) + (j + 1) * self.heights.nrows()) as u32;

        if status.contains(HeightFieldCellStatus::ZIGZAG_SUBDIVISION) {
            let tri1 = if status.contains(HeightFieldCellStatus::LEFT_TRIANGLE_REMOVED) {
                None
            } else {
                Some([p00, p10, p11])
            };

            let tri2 = if status.contains(HeightFieldCellStatus::RIGHT_TRIANGLE_REMOVED) {
                None
            } else {
                Some([p00, p11, p01])
            };

            (tri1, tri2)
        } else {
            let tri1 = if status.contains(HeightFieldCellStatus::LEFT_TRIANGLE_REMOVED) {
                None
            } else {
                Some([p00, p10, p01])
            };

            let tri2 = if status.contains(HeightFieldCellStatus::RIGHT_TRIANGLE_REMOVED) {
                None
            } else {
                Some([p10, p11, p01])
            };

            (tri1, tri2)
        }
    }

    /// The two triangles at the cell (i, j) of this heightfield.
    ///
    /// Returns `None` fore triangles that have been removed because of their user-defined status
    /// flags (described by the `HeightFieldCellStatus` bitfield).
    pub fn triangles_at(&self, i: usize, j: usize) -> (Option<Triangle>, Option<Triangle>) {
        if i >= self.heights.nrows() - 1 || j >= self.heights.ncols() - 1 {
            return (None, None);
        }

        let status = self.status[(i, j)];

        if status.contains(
            HeightFieldCellStatus::LEFT_TRIANGLE_REMOVED
                | HeightFieldCellStatus::RIGHT_TRIANGLE_REMOVED,
        ) {
            return (None, None);
        }

        let cell_width = self.unit_cell_width();
        let cell_height = self.unit_cell_height();

        let z0 = -0.5 + cell_height * (i as Real);
        let z1 = -0.5 + cell_height * ((i + 1) as Real);

        let x0 = -0.5 + cell_width * (j as Real);
        let x1 = -0.5 + cell_width * ((j + 1) as Real);

        let y00 = self.heights[(i, j)];
        let y10 = self.heights[(i + 1, j)];
        let y01 = self.heights[(i, j + 1)];
        let y11 = self.heights[(i + 1, j + 1)];

        let mut p00 = Point3::new(x0, y00, z0);
        let mut p10 = Point3::new(x0, y10, z1);
        let mut p01 = Point3::new(x1, y01, z0);
        let mut p11 = Point3::new(x1, y11, z1);

        // Apply scales:
        p00.coords.component_mul_assign(&self.scale);
        p10.coords.component_mul_assign(&self.scale);
        p01.coords.component_mul_assign(&self.scale);
        p11.coords.component_mul_assign(&self.scale);

        if status.contains(HeightFieldCellStatus::ZIGZAG_SUBDIVISION) {
            let tri1 = if status.contains(HeightFieldCellStatus::LEFT_TRIANGLE_REMOVED) {
                None
            } else {
                Some(Triangle::new(p00, p10, p11))
            };

            let tri2 = if status.contains(HeightFieldCellStatus::RIGHT_TRIANGLE_REMOVED) {
                None
            } else {
                Some(Triangle::new(p00, p11, p01))
            };

            (tri1, tri2)
        } else {
            let tri1 = if status.contains(HeightFieldCellStatus::LEFT_TRIANGLE_REMOVED) {
                None
            } else {
                Some(Triangle::new(p00, p10, p01))
            };

            let tri2 = if status.contains(HeightFieldCellStatus::RIGHT_TRIANGLE_REMOVED) {
                None
            } else {
                Some(Triangle::new(p10, p11, p01))
            };

            (tri1, tri2)
        }
    }

    /// Computes the pseudo-normals of the triangle identified by the given id.
    ///
    /// Returns `None` if the heightfield’s [`HeightfieldFlags::FIX_INTERNAL_EDGES`] isn’t set, or
    /// if the triangle doesn’t exist due to it being removed by its status flag
    /// (`HeightFieldCellStatus::LEFT_TRIANGLE_REMOVED` or
    /// `HeightFieldCellStatus::RIGHT_TRIANGLE_REMOVED`).
    pub fn triangle_normal_constraints(&self, id: u32) -> Option<TrianglePseudoNormals> {
        if self.flags.contains(HeightFieldFlags::FIX_INTERNAL_EDGES) {
            let (i, j, left) = self.split_triangle_id(id);
            let status = self.status[(i, j)];

            let (tri_left, tri_right) = self.triangles_at(i, j);
            let tri_normal = if left {
                *tri_left?.normal()?
            } else {
                *tri_right?.normal()?
            };

            // TODO: we only compute bivectors where v is a specific direction
            //       (+/-X, +/-Z, or a combination of both). So this bivector
            //       calculation could be simplified/optimized quite a bit.
            // Computes the pseudo-normal of an edge where the adjacent triangle is missing.
            let bivector = |v: Vector<Real>| tri_normal.cross(&v).cross(&tri_normal).normalize();
            // Pseudo-normal computed from an adjacent triangle’s normal and the current triangle’s normal.
            let adj_pseudo_normal = |adj: Option<Triangle>| {
                adj.map(|adj| adj.normal().map(|n| *n).unwrap_or(tri_normal))
            };

            let diag_dir = if status.contains(HeightFieldCellStatus::ZIGZAG_SUBDIVISION) {
                Vector::new(-1.0, 0.0, 1.0)
            } else {
                Vector::new(1.0, 0.0, 1.0)
            };

            let (left_pseudo_normal, right_pseudo_normal) = if left {
                let adj_left = adj_pseudo_normal(self.triangles_at(i.overflowing_sub(1).0, j).1)
                    .unwrap_or_else(|| bivector(-Vector::z()));
                let adj_right = adj_pseudo_normal(tri_right).unwrap_or_else(|| bivector(diag_dir));
                (adj_left, adj_right)
            } else {
                let adj_left = adj_pseudo_normal(tri_left).unwrap_or_else(|| bivector(-diag_dir));
                let adj_right = adj_pseudo_normal(self.triangles_at(i + 1, j).0)
                    .unwrap_or_else(|| bivector(Vector::z()));
                (adj_left, adj_right)
            };

            // The third neighbor depends on the combination of zigzag scheme
            // and right/left position.
            let top_or_bottom_pseudo_normal = if left
                != status.contains(HeightFieldCellStatus::ZIGZAG_SUBDIVISION)
            {
                // The neighbor is below.
                let ((bot_left, bot_right), bot_status) = if j > 0 {
                    (self.triangles_at(i, j - 1), self.status[(i, j - 1)])
                } else {
                    ((None, None), HeightFieldCellStatus::empty())
                };

                let bot_tri = if bot_status.contains(HeightFieldCellStatus::ZIGZAG_SUBDIVISION) {
                    bot_left
                } else {
                    bot_right
                };

                adj_pseudo_normal(bot_tri).unwrap_or_else(|| bivector(-Vector::x()))
            } else {
                // The neighbor is above.
                let ((top_left, top_right), top_status) = if j < self.heights.ncols() - 2 {
                    (self.triangles_at(i, j + 1), self.status[(i, j + 1)])
                } else {
                    ((None, None), HeightFieldCellStatus::empty())
                };

                let top_tri = if top_status.contains(HeightFieldCellStatus::ZIGZAG_SUBDIVISION) {
                    top_right
                } else {
                    top_left
                };

                adj_pseudo_normal(top_tri).unwrap_or_else(|| bivector(Vector::x()))
            };

            // NOTE: the normalization can only succeed due to the heightfield’s definition.
            let pseudo_normal1 = Unit::new_normalize((tri_normal + left_pseudo_normal) / 2.0);
            let pseudo_normal2 = Unit::new_normalize((tri_normal + right_pseudo_normal) / 2.0);
            let pseudo_normal3 =
                Unit::new_normalize((tri_normal + top_or_bottom_pseudo_normal) / 2.0);

            Some(TrianglePseudoNormals {
                face: Unit::new_unchecked(tri_normal), // No need to re-normalize.
                // TODO: the normals are given in no particular order. So they are **not**
                //       guaranteed to be provided in the same order as the triangle’s edge.
                edges: [pseudo_normal1, pseudo_normal2, pseudo_normal3],
            })
        } else {
            None
        }
    }

    /// The number of cells of this heightfield along each dimension.
    pub fn num_cells_ij(&self) -> (usize, usize) {
        (self.nrows(), self.ncols())
    }

    /// The status of the `(i, j)`-th cell.
    pub fn cell_status(&self, i: usize, j: usize) -> HeightFieldCellStatus {
        self.status[(i, j)]
    }

    /// Set the status of the `(i, j)`-th cell.
    pub fn set_cell_status(&mut self, i: usize, j: usize, status: HeightFieldCellStatus) {
        self.status[(i, j)] = status;
    }

    /// The statuses of all the cells of this heightfield.
    pub fn cells_statuses(&self) -> &DMatrix<HeightFieldCellStatus> {
        &self.status
    }

    /// The mutable statuses of all the cells of this heightfield.
    pub fn cells_statuses_mut(&mut self) -> &mut DMatrix<HeightFieldCellStatus> {
        &mut self.status
    }

    /// The heightfield’s flags controlling internal-edges handling.
    pub fn flags(&self) -> HeightFieldFlags {
        self.flags
    }

    /// Sets the heightfield’s flags controlling internal-edges handling.
    pub fn set_flags(&mut self, flags: HeightFieldFlags) {
        self.flags = flags;
    }

    /// The heights of this heightfield.
    pub fn heights(&self) -> &DMatrix<Real> {
        &self.heights
    }

    /// The scale factor applied to this heightfield.
    pub fn scale(&self) -> &Vector<Real> {
        &self.scale
    }

    /// Sets the scale factor applied to this heightfield.
    pub fn set_scale(&mut self, new_scale: Vector<Real>) {
        let ratio = new_scale.component_div(&self.scale);
        self.aabb.mins.coords.component_mul_assign(&ratio);
        self.aabb.maxs.coords.component_mul_assign(&ratio);
        self.scale = new_scale;
    }

    /// Returns a scaled version of this heightfield.
    pub fn scaled(mut self, scale: &Vector<Real>) -> Self {
        self.set_scale(self.scale.component_mul(scale));
        self
    }

    /// The width (extent along its local `x` axis) of each cell of this heightmap, including the scale factor.
    pub fn cell_width(&self) -> Real {
        self.unit_cell_width() * self.scale.x
    }

    /// The height (extent along its local `z` axis) of each cell of this heightmap, including the scale factor.
    pub fn cell_height(&self) -> Real {
        self.unit_cell_height() * self.scale.z
    }

    /// The width (extent along its local `x` axis) of each cell of this heightmap, excluding the scale factor.
    pub fn unit_cell_width(&self) -> Real {
        1.0 / (self.heights.ncols() as Real - 1.0)
    }

    /// The height (extent along its local `z` axis) of each cell of this heightmap, excluding the scale factor.
    pub fn unit_cell_height(&self) -> Real {
        1.0 / (self.heights.nrows() as Real - 1.0)
    }

    /// The [`Aabb`] of this heightmap.
    pub fn root_aabb(&self) -> &Aabb {
        &self.aabb
    }

    /// Converts the FeatureID of the left or right triangle at the cell `(i, j)` into a FeatureId
    /// of the whole heightfield.
    pub fn convert_triangle_feature_id(
        &self,
        i: usize,
        j: usize,
        left: bool,
        fid: FeatureId,
    ) -> FeatureId {
        match fid {
            FeatureId::Vertex(ivertex) => {
                let nrows = self.heights.nrows();
                let ij = i + j * nrows;

                if self.status[(i, j)].contains(HeightFieldCellStatus::ZIGZAG_SUBDIVISION) {
                    if left {
                        FeatureId::Vertex([ij, ij + 1, ij + 1 + nrows][ivertex as usize] as u32)
                    } else {
                        FeatureId::Vertex([ij, ij + 1 + nrows, ij + nrows][ivertex as usize] as u32)
                    }
                } else if left {
                    FeatureId::Vertex([ij, ij + 1, ij + nrows][ivertex as usize] as u32)
                } else {
                    FeatureId::Vertex([ij + 1, ij + 1 + nrows, ij + nrows][ivertex as usize] as u32)
                }
            }
            FeatureId::Edge(iedge) => {
                let (nrows, ncols) = (self.heights.nrows(), self.heights.ncols());
                let vshift = 0; // First vertical line index.
                let hshift = (nrows - 1) * ncols; // First horizontal line index.
                let dshift = hshift + nrows * (ncols - 1); // First diagonal line index.
                let idiag = dshift + i + j * (nrows - 1);
                let itop = hshift + i + j * nrows;
                let ibottom = itop + 1;
                let ileft = vshift + i + j * (nrows - 1);
                let iright = ileft + nrows - 1;

                if self.status[(i, j)].contains(HeightFieldCellStatus::ZIGZAG_SUBDIVISION) {
                    if left {
                        // Triangle:
                        //
                        // |\
                        // |_\
                        //
                        FeatureId::Edge([ileft, ibottom, idiag][iedge as usize] as u32)
                    } else {
                        // Triangle:
                        // ___
                        // \ |
                        //  \|
                        //
                        FeatureId::Edge([idiag, iright, itop][iedge as usize] as u32)
                    }
                } else if left {
                    // Triangle:
                    // ___
                    // | /
                    // |/
                    //
                    FeatureId::Edge([ileft, idiag, itop][iedge as usize] as u32)
                } else {
                    // Triangle:
                    //
                    //  /|
                    // /_|
                    //
                    FeatureId::Edge([ibottom, iright, idiag][iedge as usize] as u32)
                }
            }
            FeatureId::Face(iface) => {
                if iface == 0 {
                    FeatureId::Face(self.face_id(i, j, left, true))
                } else {
                    FeatureId::Face(self.face_id(i, j, left, false))
                }
            }
            FeatureId::Unknown => FeatureId::Unknown,
        }
    }

    /// The range of segment ids that may intersect the given local Aabb.
    pub fn unclamped_elements_range_in_local_aabb(
        &self,
        aabb: &Aabb,
    ) -> (Range<isize>, Range<isize>) {
        let ref_mins = aabb.mins.coords.component_div(&self.scale);
        let ref_maxs = aabb.maxs.coords.component_div(&self.scale);
        let cell_width = self.unit_cell_width();
        let cell_height = self.unit_cell_height();

        let min_x = self.quantize_floor_unclamped(ref_mins.x, cell_width);
        let min_z = self.quantize_floor_unclamped(ref_mins.z, cell_height);

        let max_x = self.quantize_ceil_unclamped(ref_maxs.x, cell_width);
        let max_z = self.quantize_ceil_unclamped(ref_maxs.z, cell_height);
        (min_z..max_z, min_x..max_x)
    }

    /// Applies the function `f` to all the triangles of this heightfield intersecting the given Aabb.
    pub fn map_elements_in_local_aabb(&self, aabb: &Aabb, f: &mut impl FnMut(u32, &Triangle)) {
        let ncells_x = self.ncols();
        let ncells_z = self.nrows();

        let ref_mins = aabb.mins.coords.component_div(&self.scale);
        let ref_maxs = aabb.maxs.coords.component_div(&self.scale);
        let cell_width = self.unit_cell_width();
        let cell_height = self.unit_cell_height();

        if ref_maxs.x <= -0.5 || ref_maxs.z <= -0.5 || ref_mins.x >= 0.5 || ref_mins.z >= 0.5 {
            // Outside of the heightfield bounds.
            return;
        }

        let min_x = self.quantize_floor(ref_mins.x, cell_width, ncells_x);
        let min_z = self.quantize_floor(ref_mins.z, cell_height, ncells_z);

        let max_x = self.quantize_ceil(ref_maxs.x, cell_width, ncells_x);
        let max_z = self.quantize_ceil(ref_maxs.z, cell_height, ncells_z);

        // TODO: find a way to avoid recomputing the same vertices
        // multiple times.
        for j in min_x..max_x {
            for i in min_z..max_z {
                let status = self.status[(i, j)];

                if status.contains(HeightFieldCellStatus::CELL_REMOVED) {
                    continue;
                }

                let z0 = -0.5 + cell_height * (i as Real);
                let z1 = z0 + cell_height;

                let x0 = -0.5 + cell_width * (j as Real);
                let x1 = x0 + cell_width;

                let y00 = self.heights[(i, j)];
                let y10 = self.heights[(i + 1, j)];
                let y01 = self.heights[(i, j + 1)];
                let y11 = self.heights[(i + 1, j + 1)];

                if (y00 > ref_maxs.y && y10 > ref_maxs.y && y01 > ref_maxs.y && y11 > ref_maxs.y)
                    || (y00 < ref_mins.y
                        && y10 < ref_mins.y
                        && y01 < ref_mins.y
                        && y11 < ref_mins.y)
                {
                    continue;
                }

                let mut p00 = Point3::new(x0, y00, z0);
                let mut p10 = Point3::new(x0, y10, z1);
                let mut p01 = Point3::new(x1, y01, z0);
                let mut p11 = Point3::new(x1, y11, z1);

                // Apply scales:
                p00.coords.component_mul_assign(&self.scale);
                p10.coords.component_mul_assign(&self.scale);
                p01.coords.component_mul_assign(&self.scale);
                p11.coords.component_mul_assign(&self.scale);

                // Build the two triangles, contact processors and call f.
                if !status.contains(HeightFieldCellStatus::LEFT_TRIANGLE_REMOVED) {
                    let tri1 = if status.contains(HeightFieldCellStatus::ZIGZAG_SUBDIVISION) {
                        Triangle::new(p00, p10, p11)
                    } else {
                        Triangle::new(p00, p10, p01)
                    };

                    let tid = self.triangle_id(i, j, true);
                    f(tid, &tri1);
                }

                if !status.contains(HeightFieldCellStatus::RIGHT_TRIANGLE_REMOVED) {
                    let tri2 = if status.contains(HeightFieldCellStatus::ZIGZAG_SUBDIVISION) {
                        Triangle::new(p00, p11, p01)
                    } else {
                        Triangle::new(p10, p11, p01)
                    };
                    let tid = self.triangle_id(i, j, false);
                    f(tid, &tri2);
                }
            }
        }
    }
}

struct HeightFieldTriangles<'a> {
    heightfield: &'a HeightField,
    curr: (usize, usize),
    tris: (Option<Triangle>, Option<Triangle>),
}

impl<'a> Iterator for HeightFieldTriangles<'a> {
    type Item = Triangle;

    fn next(&mut self) -> Option<Triangle> {
        loop {
            if let Some(tri1) = self.tris.0.take() {
                return Some(tri1);
            } else if let Some(tri2) = self.tris.1.take() {
                return Some(tri2);
            } else {
                self.curr.0 += 1;

                if self.curr.0 >= self.heightfield.nrows() {
                    if self.curr.1 >= self.heightfield.ncols() - 1 {
                        return None;
                    }

                    self.curr.0 = 0;
                    self.curr.1 += 1;
                }

                // tri1 and tri2 are None
                self.tris = self.heightfield.triangles_at(self.curr.0, self.curr.1);
            }
        }
    }
}

/// An iterator through all the triangles around the given point, after vertical projection on the heightfield.
pub struct HeightFieldRadialTriangles<'a> {
    heightfield: &'a HeightField,
    center: (usize, usize),
    curr_radius: usize,
    curr_element: usize,
    tris: (Option<Triangle>, Option<Triangle>),
}

impl<'a> HeightFieldRadialTriangles<'a> {
    /// Returns the next triangle in this iterator.
    ///
    /// Returns `None` no triangle closest than `max_dist` remain
    /// to be yielded. The `max_dist` can be modified at each iteration
    /// as long as the the new value is smaller or equal to the previous value.
    pub fn next(&mut self, max_dist: Real) -> Option<Triangle> {
        let max_rad = if max_dist == Real::MAX {
            usize::MAX
        } else {
            (max_dist / self.heightfield.cell_width())
                .ceil()
                .max((max_dist / self.heightfield.cell_height()).ceil()) as usize
        };

        loop {
            if let Some(tri1) = self.tris.0.take() {
                return Some(tri1);
            } else if let Some(tri2) = self.tris.1.take() {
                return Some(tri2);
            } else {
                let mut curr_cell = (0, 0);

                loop {
                    self.curr_element += 1;

                    if self.curr_element >= 8 * self.curr_radius {
                        if self.curr_radius >= max_rad {
                            return None;
                        }

                        self.curr_element = 0;
                        self.curr_radius += 1;
                    }

                    let side_max_index = self.curr_radius + self.curr_radius;
                    let curr_index_in_side = self.curr_element % side_max_index;
                    let curr_side = self.curr_element / side_max_index;

                    let mins = (
                        self.center.0 as isize - self.curr_radius as isize,
                        self.center.1 as isize - self.curr_radius as isize,
                    );
                    let maxs = (
                        self.center.0 as isize + self.curr_radius as isize,
                        self.center.1 as isize + self.curr_radius as isize,
                    );

                    if curr_cell.0 < 0
                        && curr_cell.1 < 0
                        && (curr_cell.0 as usize) >= self.heightfield.nrows()
                        && (curr_cell.1 as usize) >= self.heightfield.ncols()
                    {
                        // We already visited all the triangles of the heightfield.
                        return None;
                    }

                    let side_origins = [
                        (mins.0, mins.1),
                        (maxs.0, mins.1),
                        (maxs.0, maxs.1),
                        (mins.0, maxs.1),
                    ];
                    let side_directions = [(1, 0), (0, 1), (-1, 0), (0, -1)];

                    curr_cell = (
                        side_origins[curr_side].0
                            + side_directions[curr_side].0 * (curr_index_in_side as isize),
                        side_origins[curr_side].1
                            + side_directions[curr_side].1 * (curr_index_in_side as isize),
                    );

                    if curr_cell.0 >= 0
                        && curr_cell.1 >= 0
                        && (curr_cell.0 as usize) < self.heightfield.nrows()
                        && (curr_cell.1 as usize) < self.heightfield.ncols()
                    {
                        break;
                    }
                }

                self.tris = self
                    .heightfield
                    .triangles_at(curr_cell.0 as usize, curr_cell.1 as usize);
            }
        }
    }
}