1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
use crate::bounding_volume::Aabb;
use crate::math::{Isometry, Point, Real, Vector};
use crate::partitioning::Qbvh;
use crate::query::{PointProjection, PointQueryWithLocation};
use crate::shape::composite_shape::SimdCompositeShape;
use crate::shape::{FeatureId, Segment, SegmentPointLocation, Shape, TypedSimdCompositeShape};
use crate::query::details::NormalConstraints;
#[cfg(not(feature = "std"))]
use na::ComplexField; // for .abs()
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "rkyv",
derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize),
archive(check_bytes)
)]
/// A polyline.
pub struct Polyline {
qbvh: Qbvh<u32>,
vertices: Vec<Point<Real>>,
indices: Vec<[u32; 2]>,
}
impl Polyline {
/// Creates a new polyline from a vertex buffer and an index buffer.
pub fn new(vertices: Vec<Point<Real>>, indices: Option<Vec<[u32; 2]>>) -> Self {
let indices =
indices.unwrap_or_else(|| (0..vertices.len() as u32 - 1).map(|i| [i, i + 1]).collect());
let data = indices.iter().enumerate().map(|(i, idx)| {
let aabb =
Segment::new(vertices[idx[0] as usize], vertices[idx[1] as usize]).local_aabb();
(i as u32, aabb)
});
let mut qbvh = Qbvh::new();
// NOTE: we apply no dilation factor because we won't
// update this tree dynamically.
qbvh.clear_and_rebuild(data, 0.0);
Self {
qbvh,
vertices,
indices,
}
}
/// Compute the axis-aligned bounding box of this polyline.
pub fn aabb(&self, pos: &Isometry<Real>) -> Aabb {
self.qbvh.root_aabb().transform_by(pos)
}
/// Gets the local axis-aligned bounding box of this polyline.
pub fn local_aabb(&self) -> &Aabb {
self.qbvh.root_aabb()
}
pub(crate) fn qbvh(&self) -> &Qbvh<u32> {
&self.qbvh
}
/// The number of segments forming this polyline.
pub fn num_segments(&self) -> usize {
self.indices.len()
}
/// An iterator through all the segments of this mesh.
pub fn segments(&self) -> impl ExactSizeIterator<Item = Segment> + '_ {
self.indices.iter().map(move |ids| {
Segment::new(
self.vertices[ids[0] as usize],
self.vertices[ids[1] as usize],
)
})
}
/// Get the `i`-th segment of this mesh.
pub fn segment(&self, i: u32) -> Segment {
let idx = self.indices[i as usize];
Segment::new(
self.vertices[idx[0] as usize],
self.vertices[idx[1] as usize],
)
}
/// Transforms the feature-id of a segment to the feature-id of this polyline.
pub fn segment_feature_to_polyline_feature(
&self,
segment: u32,
_feature: FeatureId,
) -> FeatureId {
// TODO: return a vertex feature when it makes sense.
#[cfg(feature = "dim2")]
return FeatureId::Face(segment);
#[cfg(feature = "dim3")]
return FeatureId::Edge(segment);
}
/// The vertex buffer of this mesh.
pub fn vertices(&self) -> &[Point<Real>] {
&self.vertices[..]
}
/// The index buffer of this mesh.
pub fn indices(&self) -> &[[u32; 2]] {
&self.indices
}
/// A flat view of the index buffer of this mesh.
pub fn flat_indices(&self) -> &[u32] {
unsafe {
let len = self.indices.len() * 2;
let data = self.indices.as_ptr() as *const u32;
std::slice::from_raw_parts(data, len)
}
}
/// Computes a scaled version of this polyline.
pub fn scaled(mut self, scale: &Vector<Real>) -> Self {
self.vertices
.iter_mut()
.for_each(|pt| pt.coords.component_mul_assign(scale));
Self {
qbvh: self.qbvh.scaled(scale),
vertices: self.vertices,
indices: self.indices,
}
}
/// Reverse the orientation of this polyline by swapping the indices of all
/// its segments and reverting its index buffer.
pub fn reverse(&mut self) {
for idx in &mut self.indices {
idx.swap(0, 1);
}
self.indices.reverse();
// Because we reversed the indices, we need to
// adjust the segment indices stored in the Qbvh.
for (_, seg_id) in self.qbvh.iter_data_mut() {
*seg_id = self.indices.len() as u32 - *seg_id - 1;
}
}
/// Extracts the connected components of this polyline, consuming `self`.
///
/// This method is currently quite restrictive on the kind of allowed input. The polyline
/// represented by `self` must already have an index buffer sorted such that:
/// - Each connected component appears in the index buffer one after the other, i.e., a
/// connected component of this polyline must be a contiguous range of this polyline’s
/// index buffer.
/// - Each connected component is closed, i.e., each range of this polyline index buffer
/// `self.indices[i_start..=i_end]` forming a complete connected component, we must have
/// `self.indices[i_start][0] == self.indices[i_end][1]`.
/// - The indices for each component must already be in order, i.e., if the segments
/// `self.indices[i]` and `self.indices[i + 1]` are part of the same connected component then
/// we must have `self.indices[i][1] == self.indices[i + 1][0]`.
///
/// # Output
/// Returns the set of polylines. If the inputs fulfill the constraints mentioned above, each
/// polyline will be a closed loop with consistent edge orientations, i.e., for all indices `i`,
/// we have `polyline.indices[i][1] == polyline.indices[i + 1][0]`.
///
/// The orientation of each closed loop (clockwise or counterclockwise) are identical to their
/// original orientation in `self`.
pub fn extract_connected_components(&self) -> Vec<Polyline> {
let vertices = self.vertices();
let indices = self.indices();
if indices.is_empty() {
// Polyline is empty, return empty Vec
Vec::new()
} else {
let mut components = Vec::new();
let mut start_i = 0; // Start position of component
let mut start_node = indices[0][0]; // Start vertex index of component
let mut component_vertices = Vec::new();
let mut component_indices: Vec<[u32; 2]> = Vec::new();
// Iterate over indices, building polylines as we go
for (i, idx) in indices.iter().enumerate() {
component_vertices.push(vertices[idx[0] as usize]);
if idx[1] != start_node {
// Keep scanning and adding data
component_indices.push([(i - start_i) as u32, (i - start_i + 1) as u32]);
} else {
// Start node reached: build polyline and start next component
component_indices.push([(i - start_i) as u32, 0]);
components.push(Polyline::new(
std::mem::take(&mut component_vertices),
Some(std::mem::take(&mut component_indices)),
));
if i + 1 < indices.len() {
// More components to find
start_node = indices[i + 1][0];
start_i = i + 1;
}
}
}
components
}
}
/// Perform a point projection assuming a solid interior based on a counter-clock-wise orientation.
///
/// This is similar to `self.project_local_point_and_get_location` except that the resulting
/// `PointProjection::is_inside` will be set to true if the point is inside of the area delimited
/// by this polyline, assuming that:
/// - This polyline isn’t self-crossing.
/// - This polyline is closed with `self.indices[i][1] == self.indices[(i + 1) % num_indices][0]` where
/// `num_indices == self.indices.len()`.
/// - This polyline is oriented counter-clockwise.
/// - In 3D, the polyline is assumed to be fully coplanar, on a plane with normal given by
/// These properties are not checked.
pub fn project_local_point_assuming_solid_interior_ccw(
&self,
point: Point<Real>,
#[cfg(feature = "dim3")] axis: u8,
) -> (PointProjection, (u32, SegmentPointLocation)) {
let mut proj = self.project_local_point_and_get_location(&point, false);
let segment1 = self.segment((proj.1).0);
#[cfg(feature = "dim2")]
let normal1 = segment1.normal();
#[cfg(feature = "dim3")]
let normal1 = segment1.planar_normal(axis);
if let Some(normal1) = normal1 {
proj.0.is_inside = match proj.1 .1 {
SegmentPointLocation::OnVertex(i) => {
let dir2 = if i == 0 {
let adj_seg = if proj.1 .0 == 0 {
self.indices().len() as u32 - 1
} else {
proj.1 .0 - 1
};
assert_eq!(segment1.a, self.segment(adj_seg).b);
-self.segment(adj_seg).scaled_direction()
} else {
assert_eq!(i, 1);
let adj_seg = (proj.1 .0 + 1) % self.indices().len() as u32;
assert_eq!(segment1.b, self.segment(adj_seg).a);
self.segment(adj_seg).scaled_direction()
};
let dot = normal1.dot(&dir2);
// TODO: is this threshold too big? This corresponds to an angle equal to
// abs(acos(1.0e-3)) = (90 - 0.057) degrees.
// We did encounter some cases where this was needed, but perhaps the
// actual problem was an issue with the SegmentPointLocation (which should
// perhaps have been Edge instead of Vertex)?
let threshold = 1.0e-3 * dir2.norm();
if dot.abs() > threshold {
// If the vertex is a reentrant vertex, then the point is
// inside. Otherwise, it is outside.
dot >= 0.0
} else {
// If the two edges are collinear, we can’t classify the vertex.
// So check against the edge’s normal instead.
(point - proj.0.point).dot(&normal1) <= 0.0
}
}
SegmentPointLocation::OnEdge(_) => (point - proj.0.point).dot(&normal1) <= 0.0,
};
}
proj
}
}
impl SimdCompositeShape for Polyline {
fn map_part_at(
&self,
i: u32,
f: &mut dyn FnMut(Option<&Isometry<Real>>, &dyn Shape, Option<&dyn NormalConstraints>),
) {
let tri = self.segment(i);
f(None, &tri, None)
}
fn qbvh(&self) -> &Qbvh<u32> {
&self.qbvh
}
}
impl TypedSimdCompositeShape for Polyline {
type PartShape = Segment;
type PartNormalConstraints = ();
type PartId = u32;
#[inline(always)]
fn map_typed_part_at(
&self,
i: u32,
mut f: impl FnMut(
Option<&Isometry<Real>>,
&Self::PartShape,
Option<&Self::PartNormalConstraints>,
),
) {
let seg = self.segment(i);
f(None, &seg, None)
}
#[inline(always)]
fn map_untyped_part_at(
&self,
i: u32,
mut f: impl FnMut(Option<&Isometry<Real>>, &dyn Shape, Option<&dyn NormalConstraints>),
) {
let seg = self.segment(i);
f(None, &seg, None)
}
fn typed_qbvh(&self) -> &Qbvh<u32> {
&self.qbvh
}
}