parry3d/shape/segment.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
//! Definition of the segment shape.
use crate::math::{Isometry, Point, Real, Vector};
use crate::shape::{FeatureId, SupportMap};
use na::{self, Unit};
use std::mem;
#[cfg(feature = "rkyv")]
use rkyv::{bytecheck, CheckBytes};
/// A segment shape.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "bytemuck", derive(bytemuck::Pod, bytemuck::Zeroable))]
#[cfg_attr(
feature = "rkyv",
derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize, CheckBytes),
archive(as = "Self")
)]
#[derive(PartialEq, Debug, Copy, Clone)]
#[repr(C)]
pub struct Segment {
/// The segment first point.
pub a: Point<Real>,
/// The segment second point.
pub b: Point<Real>,
}
/// Logical description of the location of a point on a triangle.
#[derive(PartialEq, Debug, Clone, Copy)]
pub enum SegmentPointLocation {
/// The point lies on a vertex.
OnVertex(u32),
/// The point lies on the segment interior.
OnEdge([Real; 2]),
}
impl SegmentPointLocation {
/// The barycentric coordinates corresponding to this point location.
pub fn barycentric_coordinates(&self) -> [Real; 2] {
let mut bcoords = [0.0; 2];
match self {
SegmentPointLocation::OnVertex(i) => bcoords[*i as usize] = 1.0,
SegmentPointLocation::OnEdge(uv) => {
bcoords[0] = uv[0];
bcoords[1] = uv[1];
}
}
bcoords
}
}
impl Segment {
/// Creates a new segment from two points.
#[inline]
pub fn new(a: Point<Real>, b: Point<Real>) -> Segment {
Segment { a, b }
}
/// Creates the reference to a segment from the reference to an array of two points.
pub fn from_array(arr: &[Point<Real>; 2]) -> &Segment {
unsafe { mem::transmute(arr) }
}
/// Computes a scaled version of this segment.
pub fn scaled(self, scale: &Vector<Real>) -> Self {
Self::new(
na::Scale::from(*scale) * self.a,
na::Scale::from(*scale) * self.b,
)
}
/// The direction of this segment scaled by its length.
///
/// Points from `self.a` toward `self.b`.
pub fn scaled_direction(&self) -> Vector<Real> {
self.b - self.a
}
/// The length of this segment.
pub fn length(&self) -> Real {
self.scaled_direction().norm()
}
/// Swaps the two vertices of this segment.
pub fn swap(&mut self) {
mem::swap(&mut self.a, &mut self.b)
}
/// The unit direction of this segment.
///
/// Points from `self.a()` toward `self.b()`.
/// Returns `None` is both points are equal.
pub fn direction(&self) -> Option<Unit<Vector<Real>>> {
Unit::try_new(self.scaled_direction(), crate::math::DEFAULT_EPSILON)
}
/// In 2D, the not-normalized counterclockwise normal of this segment.
#[cfg(feature = "dim2")]
pub fn scaled_normal(&self) -> Vector<Real> {
let dir = self.scaled_direction();
Vector::new(dir.y, -dir.x)
}
/// The not-normalized counterclockwise normal of this segment, assuming it lies on the plane
/// with the normal collinear to the given axis (0 = X, 1 = Y, 2 = Z).
#[cfg(feature = "dim3")]
pub fn scaled_planar_normal(&self, plane_axis: u8) -> Vector<Real> {
let dir = self.scaled_direction();
match plane_axis {
0 => Vector::new(0.0, dir.z, -dir.y),
1 => Vector::new(-dir.z, 0.0, dir.x),
2 => Vector::new(dir.y, -dir.x, 0.0),
_ => panic!("Invalid axis given: must be 0 (X axis), 1 (Y axis) or 2 (Z axis)"),
}
}
/// In 2D, the normalized counterclockwise normal of this segment.
#[cfg(feature = "dim2")]
pub fn normal(&self) -> Option<Unit<Vector<Real>>> {
Unit::try_new(self.scaled_normal(), crate::math::DEFAULT_EPSILON)
}
/// Returns `None`. Exists only for API similarity with the 2D parry.
#[cfg(feature = "dim3")]
pub fn normal(&self) -> Option<Unit<Vector<Real>>> {
None
}
/// The normalized counterclockwise normal of this segment, assuming it lies on the plane
/// with the normal collinear to the given axis (0 = X, 1 = Y, 2 = Z).
#[cfg(feature = "dim3")]
pub fn planar_normal(&self, plane_axis: u8) -> Option<Unit<Vector<Real>>> {
Unit::try_new(
self.scaled_planar_normal(plane_axis),
crate::math::DEFAULT_EPSILON,
)
}
/// Applies the isometry `m` to the vertices of this segment and returns the resulting segment.
pub fn transformed(&self, m: &Isometry<Real>) -> Self {
Segment::new(m * self.a, m * self.b)
}
/// Computes the point at the given location.
pub fn point_at(&self, location: &SegmentPointLocation) -> Point<Real> {
match *location {
SegmentPointLocation::OnVertex(0) => self.a,
SegmentPointLocation::OnVertex(1) => self.b,
SegmentPointLocation::OnEdge(bcoords) => {
self.a * bcoords[0] + self.b.coords * bcoords[1]
}
_ => panic!(),
}
}
/// The normal of the given feature of this shape.
pub fn feature_normal(&self, feature: FeatureId) -> Option<Unit<Vector<Real>>> {
if let Some(direction) = self.direction() {
match feature {
FeatureId::Vertex(id) => {
if id == 0 {
Some(direction)
} else {
Some(-direction)
}
}
#[cfg(feature = "dim3")]
FeatureId::Edge(_) => {
let iamin = direction.iamin();
let mut normal = Vector::zeros();
normal[iamin] = 1.0;
normal -= *direction * direction[iamin];
Some(Unit::new_normalize(normal))
}
FeatureId::Face(id) => {
let mut dir = Vector::zeros();
if id == 0 {
dir[0] = direction[1];
dir[1] = -direction[0];
} else {
dir[0] = -direction[1];
dir[1] = direction[0];
}
Some(Unit::new_unchecked(dir))
}
_ => None,
}
} else {
Some(Vector::y_axis())
}
}
}
impl SupportMap for Segment {
#[inline]
fn local_support_point(&self, dir: &Vector<Real>) -> Point<Real> {
if self.a.coords.dot(dir) > self.b.coords.dot(dir) {
self.a
} else {
self.b
}
}
}
impl From<[Point<Real>; 2]> for Segment {
fn from(arr: [Point<Real>; 2]) -> Self {
*Self::from_array(&arr)
}
}
/*
impl ConvexPolyhedron for Segment {
fn vertex(&self, id: FeatureId) -> Point<Real> {
if id.unwrap_vertex() == 0 {
self.a
} else {
self.b
}
}
#[cfg(feature = "dim3")]
fn edge(&self, _: FeatureId) -> (Point<Real>, Point<Real>, FeatureId, FeatureId) {
(self.a, self.b, FeatureId::Vertex(0), FeatureId::Vertex(1))
}
#[cfg(feature = "dim3")]
fn face(&self, _: FeatureId, _: &mut ConvexPolygonalFeature) {
panic!("A segment does not have any face in dimensions higher than 2.")
}
#[cfg(feature = "dim2")]
fn face(&self, id: FeatureId, face: &mut ConvexPolygonalFeature) {
face.clear();
if let Some(normal) = utils::ccw_face_normal([&self.a, &self.b]) {
face.set_feature_id(id);
match id.unwrap_face() {
0 => {
face.push(self.a, FeatureId::Vertex(0));
face.push(self.b, FeatureId::Vertex(1));
face.set_normal(normal);
}
1 => {
face.push(self.b, FeatureId::Vertex(1));
face.push(self.a, FeatureId::Vertex(0));
face.set_normal(-normal);
}
_ => unreachable!(),
}
} else {
face.push(self.a, FeatureId::Vertex(0));
face.set_feature_id(FeatureId::Vertex(0));
}
}
#[cfg(feature = "dim2")]
fn support_face_toward(
&self,
m: &Isometry<Real>,
dir: &Unit<Vector<Real>>,
face: &mut ConvexPolygonalFeature,
) {
let seg_dir = self.scaled_direction();
if dir.perp(&seg_dir) >= 0.0 {
self.face(FeatureId::Face(0), face);
} else {
self.face(FeatureId::Face(1), face);
}
face.transform_by(m)
}
#[cfg(feature = "dim3")]
fn support_face_toward(
&self,
m: &Isometry<Real>,
_: &Unit<Vector<Real>>,
face: &mut ConvexPolygonalFeature,
) {
face.clear();
face.push(self.a, FeatureId::Vertex(0));
face.push(self.b, FeatureId::Vertex(1));
face.push_edge_feature_id(FeatureId::Edge(0));
face.set_feature_id(FeatureId::Edge(0));
face.transform_by(m)
}
fn support_feature_toward(
&self,
transform: &Isometry<Real>,
dir: &Unit<Vector<Real>>,
eps: Real,
face: &mut ConvexPolygonalFeature,
) {
face.clear();
let seg = self.transformed(transform);
let ceps = ComplexField::sin(eps);
if let Some(seg_dir) = seg.direction() {
let cang = dir.dot(&seg_dir);
if cang > ceps {
face.set_feature_id(FeatureId::Vertex(1));
face.push(seg.b, FeatureId::Vertex(1));
} else if cang < -ceps {
face.set_feature_id(FeatureId::Vertex(0));
face.push(seg.a, FeatureId::Vertex(0));
} else {
#[cfg(feature = "dim3")]
{
face.push(seg.a, FeatureId::Vertex(0));
face.push(seg.b, FeatureId::Vertex(1));
face.push_edge_feature_id(FeatureId::Edge(0));
face.set_feature_id(FeatureId::Edge(0));
}
#[cfg(feature = "dim2")]
{
if dir.perp(&seg_dir) >= 0.0 {
seg.face(FeatureId::Face(0), face);
} else {
seg.face(FeatureId::Face(1), face);
}
}
}
}
}
fn support_feature_id_toward(&self, local_dir: &Unit<Vector<Real>>) -> FeatureId {
if let Some(seg_dir) = self.direction() {
let eps: Real = na::convert::<f64, Real>(f64::consts::PI / 180.0);
let seps = ComplexField::sin(eps);
let dot = seg_dir.dot(local_dir.as_ref());
if dot <= seps {
#[cfg(feature = "dim2")]
{
if local_dir.perp(seg_dir.as_ref()) >= 0.0 {
FeatureId::Face(0)
} else {
FeatureId::Face(1)
}
}
#[cfg(feature = "dim3")]
{
FeatureId::Edge(0)
}
} else if dot >= 0.0 {
FeatureId::Vertex(1)
} else {
FeatureId::Vertex(0)
}
} else {
FeatureId::Vertex(0)
}
}
}
*/