parry3d/shape/triangle.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
//! Definition of the triangle shape.
use crate::math::{Isometry, Point, Real, Vector};
use crate::shape::SupportMap;
use crate::shape::{PolygonalFeature, Segment};
use crate::utils;
use na::{self, ComplexField, Unit};
use num::Zero;
use std::mem;
#[cfg(feature = "dim3")]
use {crate::shape::FeatureId, std::f64};
#[cfg(feature = "dim2")]
use crate::shape::PackedFeatureId;
#[cfg(feature = "rkyv")]
use rkyv::{bytecheck, CheckBytes};
/// A triangle shape.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "bytemuck", derive(bytemuck::Pod, bytemuck::Zeroable))]
#[cfg_attr(
feature = "rkyv",
derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize, CheckBytes),
archive(as = "Self")
)]
#[derive(PartialEq, Debug, Copy, Clone, Default)]
#[repr(C)]
pub struct Triangle {
/// The triangle first point.
pub a: Point<Real>,
/// The triangle second point.
pub b: Point<Real>,
/// The triangle third point.
pub c: Point<Real>,
}
/// Description of the location of a point on a triangle.
#[derive(Copy, Clone, Debug)]
pub enum TrianglePointLocation {
/// The point lies on a vertex.
OnVertex(u32),
/// The point lies on an edge.
///
/// The 0-st edge is the segment AB.
/// The 1-st edge is the segment BC.
/// The 2-nd edge is the segment AC.
// XXX: it appears the conversion of edge indexing here does not match the
// convention of edge indexing for the `fn edge` method (from the ConvexPolyhedron impl).
OnEdge(u32, [Real; 2]),
/// The point lies on the triangle interior.
///
/// The integer indicates on which side of the face the point is. 0 indicates the point
/// is on the half-space toward the CW normal of the triangle. 1 indicates the point is on the other
/// half-space. This is always set to 0 in 2D.
OnFace(u32, [Real; 3]),
/// The point lies on the triangle interior (for "solid" point queries).
OnSolid,
}
impl TrianglePointLocation {
/// The barycentric coordinates corresponding to this point location.
///
/// Returns `None` if the location is `TrianglePointLocation::OnSolid`.
pub fn barycentric_coordinates(&self) -> Option<[Real; 3]> {
let mut bcoords = [0.0; 3];
match self {
TrianglePointLocation::OnVertex(i) => bcoords[*i as usize] = 1.0,
TrianglePointLocation::OnEdge(i, uv) => {
let idx = match i {
0 => (0, 1),
1 => (1, 2),
2 => (0, 2),
_ => unreachable!(),
};
bcoords[idx.0] = uv[0];
bcoords[idx.1] = uv[1];
}
TrianglePointLocation::OnFace(_, uvw) => {
bcoords[0] = uvw[0];
bcoords[1] = uvw[1];
bcoords[2] = uvw[2];
}
TrianglePointLocation::OnSolid => {
return None;
}
}
Some(bcoords)
}
/// Returns `true` if the point is located on the relative interior of the triangle.
pub fn is_on_face(&self) -> bool {
matches!(*self, TrianglePointLocation::OnFace(..))
}
}
/// Orientation of a triangle.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum TriangleOrientation {
/// Orientation with a clockwise orientation, i.e., with a positive signed area.
Clockwise,
/// Orientation with a clockwise orientation, i.e., with a negative signed area.
CounterClockwise,
/// Degenerate triangle.
Degenerate,
}
impl From<[Point<Real>; 3]> for Triangle {
fn from(arr: [Point<Real>; 3]) -> Self {
*Self::from_array(&arr)
}
}
impl Triangle {
/// Creates a triangle from three points.
#[inline]
pub fn new(a: Point<Real>, b: Point<Real>, c: Point<Real>) -> Triangle {
Triangle { a, b, c }
}
/// Creates the reference to a triangle from the reference to an array of three points.
pub fn from_array(arr: &[Point<Real>; 3]) -> &Triangle {
unsafe { mem::transmute(arr) }
}
/// Reference to an array containing the three vertices of this triangle.
#[inline]
pub fn vertices(&self) -> &[Point<Real>; 3] {
unsafe { mem::transmute(self) }
}
/// The normal of this triangle assuming it is oriented ccw.
///
/// The normal points such that it is collinear to `AB × AC` (where `×` denotes the cross
/// product).
#[inline]
#[cfg(feature = "dim3")]
pub fn normal(&self) -> Option<Unit<Vector<Real>>> {
Unit::try_new(self.scaled_normal(), crate::math::DEFAULT_EPSILON)
}
/// The three edges of this triangle: [AB, BC, CA].
#[inline]
pub fn edges(&self) -> [Segment; 3] {
[
Segment::new(self.a, self.b),
Segment::new(self.b, self.c),
Segment::new(self.c, self.a),
]
}
/// Computes a scaled version of this triangle.
pub fn scaled(self, scale: &Vector<Real>) -> Self {
Self::new(
na::Scale::from(*scale) * self.a,
na::Scale::from(*scale) * self.b,
na::Scale::from(*scale) * self.c,
)
}
/// Returns a new triangle with vertices transformed by `m`.
#[inline]
pub fn transformed(&self, m: &Isometry<Real>) -> Self {
Triangle::new(m * self.a, m * self.b, m * self.c)
}
/// The three edges scaled directions of this triangle: [B - A, C - B, A - C].
#[inline]
pub fn edges_scaled_directions(&self) -> [Vector<Real>; 3] {
[self.b - self.a, self.c - self.b, self.a - self.c]
}
/// Return the edge segment of this cuboid with a normal cone containing
/// a direction that that maximizes the dot product with `local_dir`.
pub fn local_support_edge_segment(&self, dir: Vector<Real>) -> Segment {
let dots = na::Vector3::new(
dir.dot(&self.a.coords),
dir.dot(&self.b.coords),
dir.dot(&self.c.coords),
);
match dots.imin() {
0 => Segment::new(self.b, self.c),
1 => Segment::new(self.c, self.a),
_ => Segment::new(self.a, self.b),
}
}
/// Return the face of this triangle with a normal that maximizes
/// the dot product with `dir`.
#[cfg(feature = "dim3")]
pub fn support_face(&self, _dir: Vector<Real>) -> PolygonalFeature {
PolygonalFeature::from(*self)
}
/// Return the face of this triangle with a normal that maximizes
/// the dot product with `dir`.
#[cfg(feature = "dim2")]
pub fn support_face(&self, dir: Vector<Real>) -> PolygonalFeature {
let mut best = 0;
let mut best_dot = -Real::MAX;
for (i, tangent) in self.edges_scaled_directions().iter().enumerate() {
let normal = Vector::new(tangent.y, -tangent.x);
if let Some(normal) = Unit::try_new(normal, 0.0) {
let dot = normal.dot(&dir);
if normal.dot(&dir) > best_dot {
best = i;
best_dot = dot;
}
}
}
let pts = self.vertices();
let i1 = best;
let i2 = (best + 1) % 3;
PolygonalFeature {
vertices: [pts[i1], pts[i2]],
vids: PackedFeatureId::vertices([i1 as u32, i2 as u32]),
fid: PackedFeatureId::face(i1 as u32),
num_vertices: 2,
}
}
/// A vector normal of this triangle.
///
/// The vector points such that it is collinear to `AB × AC` (where `×` denotes the cross
/// product).
///
/// Note that on thin triangles the calculated normals can suffer from numerical issues.
/// For a more robust (but more computationally expensive) normal calculation, see
/// [`Triangle::robust_scaled_normal`].
#[inline]
#[cfg(feature = "dim3")]
pub fn scaled_normal(&self) -> Vector<Real> {
let ab = self.b - self.a;
let ac = self.c - self.a;
ab.cross(&ac)
}
/// Find a triangle normal more robustly than with [`Triangle::scaled_normal`].
///
/// Thin triangles can cause numerical issues when computing its normal. This method accounts
/// for these numerical issues more robustly than [`Triangle::scaled_normal`], but is more
/// computationally expensive.
#[inline]
#[cfg(feature = "dim3")]
pub fn robust_scaled_normal(&self) -> na::Vector3<Real> {
let pts = self.vertices();
let best_vertex = self.angle_closest_to_90();
let d1 = pts[(best_vertex + 2) % 3] - pts[(best_vertex + 1) % 3];
let d2 = pts[best_vertex] - pts[(best_vertex + 1) % 3];
d1.cross(&d2)
}
/// Similar to [`Triangle::robust_scaled_normal`], but returns the unit length normal.
#[inline]
#[cfg(feature = "dim3")]
pub fn robust_normal(&self) -> na::Vector3<Real> {
self.robust_scaled_normal().normalize()
}
/// Computes the extents of this triangle on the given direction.
///
/// This computes the min and max values of the dot products between each
/// vertex of this triangle and `dir`.
#[inline]
pub fn extents_on_dir(&self, dir: &Unit<Vector<Real>>) -> (Real, Real) {
let a = self.a.coords.dot(dir);
let b = self.b.coords.dot(dir);
let c = self.c.coords.dot(dir);
if a > b {
if b > c {
(c, a)
} else if a > c {
(b, a)
} else {
(b, c)
}
} else {
// b >= a
if a > c {
(c, b)
} else if b > c {
(a, b)
} else {
(a, c)
}
}
}
//
// #[cfg(feature = "dim3")]
// fn support_feature_id_toward(&self, local_dir: &Unit<Vector<Real>>, eps: Real) -> FeatureId {
// if let Some(normal) = self.normal() {
// let (seps, ceps) = ComplexField::sin_cos(eps);
//
// let normal_dot = local_dir.dot(&*normal);
// if normal_dot >= ceps {
// FeatureId::Face(0)
// } else if normal_dot <= -ceps {
// FeatureId::Face(1)
// } else {
// let edges = self.edges();
// let mut dots = [0.0; 3];
//
// let dir1 = edges[0].direction();
// if let Some(dir1) = dir1 {
// dots[0] = dir1.dot(local_dir);
//
// if dots[0].abs() < seps {
// return FeatureId::Edge(0);
// }
// }
//
// let dir2 = edges[1].direction();
// if let Some(dir2) = dir2 {
// dots[1] = dir2.dot(local_dir);
//
// if dots[1].abs() < seps {
// return FeatureId::Edge(1);
// }
// }
//
// let dir3 = edges[2].direction();
// if let Some(dir3) = dir3 {
// dots[2] = dir3.dot(local_dir);
//
// if dots[2].abs() < seps {
// return FeatureId::Edge(2);
// }
// }
//
// if dots[0] > 0.0 && dots[1] < 0.0 {
// FeatureId::Vertex(1)
// } else if dots[1] > 0.0 && dots[2] < 0.0 {
// FeatureId::Vertex(2)
// } else {
// FeatureId::Vertex(0)
// }
// }
// } else {
// FeatureId::Vertex(0)
// }
// }
/// The area of this triangle.
#[inline]
pub fn area(&self) -> Real {
// Kahan's formula.
let a = na::distance(&self.a, &self.b);
let b = na::distance(&self.b, &self.c);
let c = na::distance(&self.c, &self.a);
let (c, b, a) = utils::sort3(&a, &b, &c);
let a = *a;
let b = *b;
let c = *c;
let sqr = (a + (b + c)) * (c - (a - b)) * (c + (a - b)) * (a + (b - c));
// We take the max(0.0) because it can be slightly negative
// because of numerical errors due to almost-degenerate triangles.
ComplexField::sqrt(sqr.max(0.0)) * 0.25
}
/// Computes the unit angular inertia of this triangle.
#[cfg(feature = "dim2")]
pub fn unit_angular_inertia(&self) -> Real {
let factor = 1.0 / 6.0;
// Algorithm adapted from Box2D
let e1 = self.b - self.a;
let e2 = self.c - self.a;
let intx2 = e1.x * e1.x + e2.x * e1.x + e2.x * e2.x;
let inty2 = e1.y * e1.y + e2.y * e1.y + e2.y * e2.y;
factor * (intx2 + inty2)
}
/// The geometric center of this triangle.
#[inline]
pub fn center(&self) -> Point<Real> {
utils::center(&[self.a, self.b, self.c])
}
/// The perimeter of this triangle.
#[inline]
pub fn perimeter(&self) -> Real {
na::distance(&self.a, &self.b)
+ na::distance(&self.b, &self.c)
+ na::distance(&self.c, &self.a)
}
/// The circumcircle of this triangle.
pub fn circumcircle(&self) -> (Point<Real>, Real) {
let a = self.a - self.c;
let b = self.b - self.c;
let na = a.norm_squared();
let nb = b.norm_squared();
let dab = a.dot(&b);
let denom = 2.0 * (na * nb - dab * dab);
if denom.is_zero() {
// The triangle is degenerate (the three points are colinear).
// So we find the longest segment and take its center.
let c = self.a - self.b;
let nc = c.norm_squared();
if nc >= na && nc >= nb {
// Longest segment: [&self.a, &self.b]
(
na::center(&self.a, &self.b),
ComplexField::sqrt(nc) / na::convert::<f64, Real>(2.0f64),
)
} else if na >= nb && na >= nc {
// Longest segment: [&self.a, pc]
(
na::center(&self.a, &self.c),
ComplexField::sqrt(na) / na::convert::<f64, Real>(2.0f64),
)
} else {
// Longest segment: [&self.b, &self.c]
(
na::center(&self.b, &self.c),
ComplexField::sqrt(nb) / na::convert::<f64, Real>(2.0f64),
)
}
} else {
let k = b * na - a * nb;
let center = self.c + (a * k.dot(&b) - b * k.dot(&a)) / denom;
let radius = na::distance(&self.a, ¢er);
(center, radius)
}
}
/// Tests if this triangle is affinely dependent, i.e., its points are almost aligned.
#[cfg(feature = "dim3")]
pub fn is_affinely_dependent(&self) -> bool {
const EPS: Real = crate::math::DEFAULT_EPSILON * 100.0;
let p1p2 = self.b - self.a;
let p1p3 = self.c - self.a;
relative_eq!(p1p2.cross(&p1p3).norm_squared(), 0.0, epsilon = EPS * EPS)
// relative_eq!(
// self.area(),
// 0.0,
// epsilon = EPS * self.perimeter()
// )
}
/// Is this triangle degenerate or almost degenerate?
#[cfg(feature = "dim3")]
pub fn is_affinely_dependent_eps(&self, eps: Real) -> bool {
let p1p2 = self.b - self.a;
let p1p3 = self.c - self.a;
relative_eq!(
p1p2.cross(&p1p3).norm(),
0.0,
epsilon = eps * p1p2.norm().max(p1p3.norm())
)
// relative_eq!(
// self.area(),
// 0.0,
// epsilon = EPS * self.perimeter()
// )
}
/// Tests if a point is inside of this triangle.
#[cfg(feature = "dim2")]
pub fn contains_point(&self, p: &Point<Real>) -> bool {
let ab = self.b - self.a;
let bc = self.c - self.b;
let ca = self.a - self.c;
let sgn1 = ab.perp(&(p - self.a));
let sgn2 = bc.perp(&(p - self.b));
let sgn3 = ca.perp(&(p - self.c));
sgn1.signum() * sgn2.signum() >= 0.0
&& sgn1.signum() * sgn3.signum() >= 0.0
&& sgn2.signum() * sgn3.signum() >= 0.0
}
/// Tests if a point is inside of this triangle.
#[cfg(feature = "dim3")]
pub fn contains_point(&self, p: &Point<Real>) -> bool {
const EPS: Real = crate::math::DEFAULT_EPSILON;
let vb = self.b - self.a;
let vc = self.c - self.a;
let vp = p - self.a;
let n = vc.cross(&vb);
let n_norm = n.norm_squared();
if n_norm < EPS || vp.dot(&n).abs() > EPS * n_norm {
// the triangle is degenerate or the
// point does not lie on the same plane as the triangle.
return false;
}
// We are seeking B, C such that vp = vb * B + vc * C .
// If B and C are both in [0, 1] and B + C <= 1 then p is in the triangle.
//
// We can project this equation along a vector nb coplanar to the triangle
// and perpendicular to vb:
// vp.dot(nb) = vb.dot(nb) * B + vc.dot(nb) * C
// => C = vp.dot(nb) / vc.dot(nb)
// and similarly for B.
//
// In order to avoid divisions and sqrts we scale both B and C - so
// b = vb.dot(nc) * B and c = vc.dot(nb) * C - this results in harder-to-follow math but
// hopefully fast code.
let nb = vb.cross(&n);
let nc = vc.cross(&n);
let signed_blim = vb.dot(&nc);
let b = vp.dot(&nc) * signed_blim.signum();
let blim = signed_blim.abs();
let signed_clim = vc.dot(&nb);
let c = vp.dot(&nb) * signed_clim.signum();
let clim = signed_clim.abs();
c >= 0.0 && c <= clim && b >= 0.0 && b <= blim && c * blim + b * clim <= blim * clim
}
/// The normal of the given feature of this shape.
#[cfg(feature = "dim3")]
pub fn feature_normal(&self, _: FeatureId) -> Option<Unit<Vector<Real>>> {
self.normal()
}
/// The orientation of the triangle, based on its signed area.
///
/// Returns `TriangleOrientation::Degenerate` if the triangle’s area is
/// smaller than `epsilon`.
#[cfg(feature = "dim2")]
pub fn orientation(&self, epsilon: Real) -> TriangleOrientation {
let area2 = (self.b - self.a).perp(&(self.c - self.a));
// println!("area2: {}", area2);
if area2 > epsilon {
TriangleOrientation::CounterClockwise
} else if area2 < -epsilon {
TriangleOrientation::Clockwise
} else {
TriangleOrientation::Degenerate
}
}
/// The orientation of the 2D triangle, based on its signed area.
///
/// Returns `TriangleOrientation::Degenerate` if the triangle’s area is
/// smaller than `epsilon`.
pub fn orientation2d(
a: &na::Point2<Real>,
b: &na::Point2<Real>,
c: &na::Point2<Real>,
epsilon: Real,
) -> TriangleOrientation {
let area2 = (b - a).perp(&(c - a));
// println!("area2: {}", area2);
if area2 > epsilon {
TriangleOrientation::CounterClockwise
} else if area2 < -epsilon {
TriangleOrientation::Clockwise
} else {
TriangleOrientation::Degenerate
}
}
/// Find the index of a vertex in this triangle, such that the two
/// edges incident in that vertex form the angle closest to 90
/// degrees in the triangle.
pub fn angle_closest_to_90(&self) -> usize {
let points = self.vertices();
let mut best_cos = 2.0;
let mut selected_i = 0;
for i in 0..3 {
let d1 = (points[i] - points[(i + 1) % 3]).normalize();
let d2 = (points[(i + 2) % 3] - points[(i + 1) % 3]).normalize();
let cos_abs = d1.dot(&d2).abs();
if cos_abs < best_cos {
best_cos = cos_abs;
selected_i = i;
}
}
selected_i
}
/// Reverse the orientation of this triangle by swapping b and c.
pub fn reverse(&mut self) {
mem::swap(&mut self.b, &mut self.c);
}
}
impl SupportMap for Triangle {
#[inline]
fn local_support_point(&self, dir: &Vector<Real>) -> Point<Real> {
let d1 = self.a.coords.dot(dir);
let d2 = self.b.coords.dot(dir);
let d3 = self.c.coords.dot(dir);
if d1 > d2 {
if d1 > d3 {
self.a
} else {
self.c
}
} else if d2 > d3 {
self.b
} else {
self.c
}
}
}
/*
#[cfg(feature = "dim3")]
impl ConvexPolyhedron for Triangle {
fn vertex(&self, id: FeatureId) -> Point<Real> {
match id.unwrap_vertex() {
0 => self.a,
1 => self.b,
2 => self.c,
_ => panic!("Triangle vertex index out of bounds."),
}
}
fn edge(&self, id: FeatureId) -> (Point<Real>, Point<Real>, FeatureId, FeatureId) {
match id.unwrap_edge() {
0 => (self.a, self.b, FeatureId::Vertex(0), FeatureId::Vertex(1)),
1 => (self.b, self.c, FeatureId::Vertex(1), FeatureId::Vertex(2)),
2 => (self.c, self.a, FeatureId::Vertex(2), FeatureId::Vertex(0)),
_ => panic!("Triangle edge index out of bounds."),
}
}
fn face(&self, id: FeatureId, face: &mut ConvexPolygonalFeature) {
face.clear();
if let Some(normal) = self.normal() {
face.set_feature_id(id);
match id.unwrap_face() {
0 => {
face.push(self.a, FeatureId::Vertex(0));
face.push(self.b, FeatureId::Vertex(1));
face.push(self.c, FeatureId::Vertex(2));
face.push_edge_feature_id(FeatureId::Edge(0));
face.push_edge_feature_id(FeatureId::Edge(1));
face.push_edge_feature_id(FeatureId::Edge(2));
face.set_normal(normal);
}
1 => {
face.push(self.a, FeatureId::Vertex(0));
face.push(self.c, FeatureId::Vertex(2));
face.push(self.b, FeatureId::Vertex(1));
face.push_edge_feature_id(FeatureId::Edge(2));
face.push_edge_feature_id(FeatureId::Edge(1));
face.push_edge_feature_id(FeatureId::Edge(0));
face.set_normal(-normal);
}
_ => unreachable!(),
}
face.recompute_edge_normals();
} else {
face.push(self.a, FeatureId::Vertex(0));
face.set_feature_id(FeatureId::Vertex(0));
}
}
fn support_face_toward(
&self,
m: &Isometry<Real>,
dir: &Unit<Vector<Real>>,
face: &mut ConvexPolygonalFeature,
) {
let normal = self.scaled_normal();
if normal.dot(&*dir) >= 0.0 {
ConvexPolyhedron::face(self, FeatureId::Face(0), face);
} else {
ConvexPolyhedron::face(self, FeatureId::Face(1), face);
}
face.transform_by(m)
}
fn support_feature_toward(
&self,
transform: &Isometry<Real>,
dir: &Unit<Vector<Real>>,
eps: Real,
out: &mut ConvexPolygonalFeature,
) {
out.clear();
let tri = self.transformed(transform);
let feature = tri.support_feature_id_toward(dir, eps);
match feature {
FeatureId::Vertex(_) => {
let v = tri.vertex(feature);
out.push(v, feature);
out.set_feature_id(feature);
}
FeatureId::Edge(_) => {
let (a, b, fa, fb) = tri.edge(feature);
out.push(a, fa);
out.push(b, fb);
out.push_edge_feature_id(feature);
out.set_feature_id(feature);
}
FeatureId::Face(_) => tri.face(feature, out),
_ => unreachable!(),
}
}
fn support_feature_id_toward(&self, local_dir: &Unit<Vector<Real>>) -> FeatureId {
self.support_feature_id_toward(local_dir, na::convert::<f64, Real>(f64::consts::PI / 180.0))
}
}
*/
#[cfg(feature = "dim2")]
#[cfg(test)]
mod test {
use crate::shape::Triangle;
use na::Point2;
#[test]
fn test_triangle_area() {
let pa = Point2::new(5.0, 0.0);
let pb = Point2::new(0.0, 0.0);
let pc = Point2::new(0.0, 4.0);
assert!(relative_eq!(Triangle::new(pa, pb, pc).area(), 10.0));
}
#[test]
fn test_triangle_contains_point() {
let tri = Triangle::new(
Point2::new(5.0, 0.0),
Point2::new(0.0, 0.0),
Point2::new(0.0, 4.0),
);
assert!(tri.contains_point(&Point2::new(1.0, 1.0)));
assert!(!tri.contains_point(&Point2::new(-1.0, 1.0)));
}
#[test]
fn test_obtuse_triangle_contains_point() {
let tri = Triangle::new(
Point2::new(-10.0, 10.0),
Point2::new(0.0, 0.0),
Point2::new(20.0, 0.0),
);
assert!(tri.contains_point(&Point2::new(-3.0, 5.0)));
assert!(tri.contains_point(&Point2::new(5.0, 1.0)));
assert!(!tri.contains_point(&Point2::new(0.0, -1.0)));
}
}
#[cfg(feature = "dim3")]
#[cfg(test)]
mod test {
use crate::math::Real;
use crate::shape::Triangle;
use na::Point3;
#[test]
fn test_triangle_area() {
let pa = Point3::new(0.0, 5.0, 0.0);
let pb = Point3::new(0.0, 0.0, 0.0);
let pc = Point3::new(0.0, 0.0, 4.0);
assert!(relative_eq!(Triangle::new(pa, pb, pc).area(), 10.0));
}
#[test]
fn test_triangle_contains_point() {
let tri = Triangle::new(
Point3::new(0.0, 5.0, 0.0),
Point3::new(0.0, 0.0, 0.0),
Point3::new(0.0, 0.0, 4.0),
);
assert!(tri.contains_point(&Point3::new(0.0, 1.0, 1.0)));
assert!(!tri.contains_point(&Point3::new(0.0, -1.0, 1.0)));
}
#[test]
fn test_obtuse_triangle_contains_point() {
let tri = Triangle::new(
Point3::new(-10.0, 10.0, 0.0),
Point3::new(0.0, 0.0, 0.0),
Point3::new(20.0, 0.0, 0.0),
);
assert!(tri.contains_point(&Point3::new(-3.0, 5.0, 0.0)));
assert!(tri.contains_point(&Point3::new(5.0, 1.0, 0.0)));
assert!(!tri.contains_point(&Point3::new(0.0, -1.0, 0.0)));
}
#[test]
fn test_3dtriangle_contains_point() {
let o = Point3::new(0.0, 0.0, 0.0);
let pa = Point3::new(1.2, 1.4, 5.6);
let pb = Point3::new(1.5, 6.7, 1.9);
let pc = Point3::new(5.0, 2.1, 1.3);
let tri = Triangle::new(pa, pb, pc);
let va = pa - o;
let vb = pb - o;
let vc = pc - o;
let n = (pa - pb).cross(&(pb - pc));
// This is a simple algorithm for generating points that are inside the
// triangle: o + (va * alpha + vb * beta + vc * gamma) is always inside the
// triangle if:
// * each of alpha, beta, gamma is in (0, 1)
// * alpha + beta + gamma = 1
let contained_p = o + (va * 0.2 + vb * 0.3 + vc * 0.5);
let not_contained_coplanar_p = o + (va * -0.5 + vb * 0.8 + vc * 0.7);
let not_coplanar_p = o + (va * 0.2 + vb * 0.3 + vc * 0.5) + n * 0.1;
let not_coplanar_p2 = o + (va * -0.5 + vb * 0.8 + vc * 0.7) + n * 0.1;
assert!(tri.contains_point(&contained_p));
assert!(!tri.contains_point(¬_contained_coplanar_p));
assert!(!tri.contains_point(¬_coplanar_p));
assert!(!tri.contains_point(¬_coplanar_p2));
// Test that points that are clearly within the triangle as seen as such, by testing
// a number of points along a line intersecting the triangle.
for i in -50i16..150 {
let a = 0.15;
let b = 0.01 * Real::from(i); // b ranges from -0.5 to 1.5
let c = 1.0 - a - b;
let p = o + (va * a + vb * b + vc * c);
match i {
ii if ii < 0 || ii > 85 => assert!(
!tri.contains_point(&p),
"Should not contain: i = {}, b = {}",
i,
b
),
ii if ii > 0 && ii < 85 => assert!(
tri.contains_point(&p),
"Should contain: i = {}, b = {}",
i,
b
),
_ => (), // Points at the edge may be seen as inside or outside
}
}
}
}