parry3d/shape/
triangle.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
//! Definition of the triangle shape.

use crate::math::{Isometry, Point, Real, Vector};
use crate::shape::SupportMap;
use crate::shape::{PolygonalFeature, Segment};
use crate::utils;

use na::{self, ComplexField, Unit};
use num::Zero;
use std::mem;

#[cfg(feature = "dim3")]
use {crate::shape::FeatureId, std::f64};

#[cfg(feature = "dim2")]
use crate::shape::PackedFeatureId;

#[cfg(feature = "rkyv")]
use rkyv::{bytecheck, CheckBytes};

/// A triangle shape.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "bytemuck", derive(bytemuck::Pod, bytemuck::Zeroable))]
#[cfg_attr(
    feature = "rkyv",
    derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize, CheckBytes),
    archive(as = "Self")
)]
#[derive(PartialEq, Debug, Copy, Clone, Default)]
#[repr(C)]
pub struct Triangle {
    /// The triangle first point.
    pub a: Point<Real>,
    /// The triangle second point.
    pub b: Point<Real>,
    /// The triangle third point.
    pub c: Point<Real>,
}

/// Description of the location of a point on a triangle.
#[derive(Copy, Clone, Debug)]
pub enum TrianglePointLocation {
    /// The point lies on a vertex.
    OnVertex(u32),
    /// The point lies on an edge.
    ///
    /// The 0-st edge is the segment AB.
    /// The 1-st edge is the segment BC.
    /// The 2-nd edge is the segment AC.
    // XXX: it appears the conversion of edge indexing here does not match the
    // convention of edge indexing for the `fn edge` method (from the ConvexPolyhedron impl).
    OnEdge(u32, [Real; 2]),
    /// The point lies on the triangle interior.
    ///
    /// The integer indicates on which side of the face the point is. 0 indicates the point
    /// is on the half-space toward the CW normal of the triangle. 1 indicates the point is on the other
    /// half-space. This is always set to 0 in 2D.
    OnFace(u32, [Real; 3]),
    /// The point lies on the triangle interior (for "solid" point queries).
    OnSolid,
}

impl TrianglePointLocation {
    /// The barycentric coordinates corresponding to this point location.
    ///
    /// Returns `None` if the location is `TrianglePointLocation::OnSolid`.
    pub fn barycentric_coordinates(&self) -> Option<[Real; 3]> {
        let mut bcoords = [0.0; 3];

        match self {
            TrianglePointLocation::OnVertex(i) => bcoords[*i as usize] = 1.0,
            TrianglePointLocation::OnEdge(i, uv) => {
                let idx = match i {
                    0 => (0, 1),
                    1 => (1, 2),
                    2 => (0, 2),
                    _ => unreachable!(),
                };

                bcoords[idx.0] = uv[0];
                bcoords[idx.1] = uv[1];
            }
            TrianglePointLocation::OnFace(_, uvw) => {
                bcoords[0] = uvw[0];
                bcoords[1] = uvw[1];
                bcoords[2] = uvw[2];
            }
            TrianglePointLocation::OnSolid => {
                return None;
            }
        }

        Some(bcoords)
    }

    /// Returns `true` if the point is located on the relative interior of the triangle.
    pub fn is_on_face(&self) -> bool {
        matches!(*self, TrianglePointLocation::OnFace(..))
    }
}

/// Orientation of a triangle.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum TriangleOrientation {
    /// Orientation with a clockwise orientation, i.e., with a positive signed area.
    Clockwise,
    /// Orientation with a clockwise orientation, i.e., with a negative signed area.
    CounterClockwise,
    /// Degenerate triangle.
    Degenerate,
}

impl From<[Point<Real>; 3]> for Triangle {
    fn from(arr: [Point<Real>; 3]) -> Self {
        *Self::from_array(&arr)
    }
}

impl Triangle {
    /// Creates a triangle from three points.
    #[inline]
    pub fn new(a: Point<Real>, b: Point<Real>, c: Point<Real>) -> Triangle {
        Triangle { a, b, c }
    }

    /// Creates the reference to a triangle from the reference to an array of three points.
    pub fn from_array(arr: &[Point<Real>; 3]) -> &Triangle {
        unsafe { mem::transmute(arr) }
    }

    /// Reference to an array containing the three vertices of this triangle.
    #[inline]
    pub fn vertices(&self) -> &[Point<Real>; 3] {
        unsafe { mem::transmute(self) }
    }

    /// The normal of this triangle assuming it is oriented ccw.
    ///
    /// The normal points such that it is collinear to `AB × AC` (where `×` denotes the cross
    /// product).
    #[inline]
    #[cfg(feature = "dim3")]
    pub fn normal(&self) -> Option<Unit<Vector<Real>>> {
        Unit::try_new(self.scaled_normal(), crate::math::DEFAULT_EPSILON)
    }

    /// The three edges of this triangle: [AB, BC, CA].
    #[inline]
    pub fn edges(&self) -> [Segment; 3] {
        [
            Segment::new(self.a, self.b),
            Segment::new(self.b, self.c),
            Segment::new(self.c, self.a),
        ]
    }

    /// Computes a scaled version of this triangle.
    pub fn scaled(self, scale: &Vector<Real>) -> Self {
        Self::new(
            na::Scale::from(*scale) * self.a,
            na::Scale::from(*scale) * self.b,
            na::Scale::from(*scale) * self.c,
        )
    }

    /// Returns a new triangle with vertices transformed by `m`.
    #[inline]
    pub fn transformed(&self, m: &Isometry<Real>) -> Self {
        Triangle::new(m * self.a, m * self.b, m * self.c)
    }

    /// The three edges scaled directions of this triangle: [B - A, C - B, A - C].
    #[inline]
    pub fn edges_scaled_directions(&self) -> [Vector<Real>; 3] {
        [self.b - self.a, self.c - self.b, self.a - self.c]
    }

    /// Return the edge segment of this cuboid with a normal cone containing
    /// a direction that that maximizes the dot product with `local_dir`.
    pub fn local_support_edge_segment(&self, dir: Vector<Real>) -> Segment {
        let dots = na::Vector3::new(
            dir.dot(&self.a.coords),
            dir.dot(&self.b.coords),
            dir.dot(&self.c.coords),
        );

        match dots.imin() {
            0 => Segment::new(self.b, self.c),
            1 => Segment::new(self.c, self.a),
            _ => Segment::new(self.a, self.b),
        }
    }

    /// Return the face of this triangle with a normal that maximizes
    /// the dot product with `dir`.
    #[cfg(feature = "dim3")]
    pub fn support_face(&self, _dir: Vector<Real>) -> PolygonalFeature {
        PolygonalFeature::from(*self)
    }

    /// Return the face of this triangle with a normal that maximizes
    /// the dot product with `dir`.
    #[cfg(feature = "dim2")]
    pub fn support_face(&self, dir: Vector<Real>) -> PolygonalFeature {
        let mut best = 0;
        let mut best_dot = -Real::MAX;

        for (i, tangent) in self.edges_scaled_directions().iter().enumerate() {
            let normal = Vector::new(tangent.y, -tangent.x);
            if let Some(normal) = Unit::try_new(normal, 0.0) {
                let dot = normal.dot(&dir);
                if normal.dot(&dir) > best_dot {
                    best = i;
                    best_dot = dot;
                }
            }
        }

        let pts = self.vertices();
        let i1 = best;
        let i2 = (best + 1) % 3;

        PolygonalFeature {
            vertices: [pts[i1], pts[i2]],
            vids: PackedFeatureId::vertices([i1 as u32, i2 as u32]),
            fid: PackedFeatureId::face(i1 as u32),
            num_vertices: 2,
        }
    }

    /// A vector normal of this triangle.
    ///
    /// The vector points such that it is collinear to `AB × AC` (where `×` denotes the cross
    /// product).
    ///
    /// Note that on thin triangles the calculated normals can suffer from numerical issues.
    /// For a more robust (but more computationally expensive) normal calculation, see
    /// [`Triangle::robust_scaled_normal`].
    #[inline]
    #[cfg(feature = "dim3")]
    pub fn scaled_normal(&self) -> Vector<Real> {
        let ab = self.b - self.a;
        let ac = self.c - self.a;
        ab.cross(&ac)
    }

    /// Find a triangle normal more robustly than with [`Triangle::scaled_normal`].
    ///
    /// Thin triangles can cause numerical issues when computing its normal. This method accounts
    /// for these numerical issues more robustly than [`Triangle::scaled_normal`], but is more
    /// computationally expensive.
    #[inline]
    #[cfg(feature = "dim3")]
    pub fn robust_scaled_normal(&self) -> na::Vector3<Real> {
        let pts = self.vertices();
        let best_vertex = self.angle_closest_to_90();
        let d1 = pts[(best_vertex + 2) % 3] - pts[(best_vertex + 1) % 3];
        let d2 = pts[best_vertex] - pts[(best_vertex + 1) % 3];

        d1.cross(&d2)
    }

    /// Similar to [`Triangle::robust_scaled_normal`], but returns the unit length normal.
    #[inline]
    #[cfg(feature = "dim3")]
    pub fn robust_normal(&self) -> na::Vector3<Real> {
        self.robust_scaled_normal().normalize()
    }

    /// Computes the extents of this triangle on the given direction.
    ///
    /// This computes the min and max values of the dot products between each
    /// vertex of this triangle and `dir`.
    #[inline]
    pub fn extents_on_dir(&self, dir: &Unit<Vector<Real>>) -> (Real, Real) {
        let a = self.a.coords.dot(dir);
        let b = self.b.coords.dot(dir);
        let c = self.c.coords.dot(dir);

        if a > b {
            if b > c {
                (c, a)
            } else if a > c {
                (b, a)
            } else {
                (b, c)
            }
        } else {
            // b >= a
            if a > c {
                (c, b)
            } else if b > c {
                (a, b)
            } else {
                (a, c)
            }
        }
    }
    //
    // #[cfg(feature = "dim3")]
    // fn support_feature_id_toward(&self, local_dir: &Unit<Vector<Real>>, eps: Real) -> FeatureId {
    //     if let Some(normal) = self.normal() {
    //         let (seps, ceps) = ComplexField::sin_cos(eps);
    //
    //         let normal_dot = local_dir.dot(&*normal);
    //         if normal_dot >= ceps {
    //             FeatureId::Face(0)
    //         } else if normal_dot <= -ceps {
    //             FeatureId::Face(1)
    //         } else {
    //             let edges = self.edges();
    //             let mut dots = [0.0; 3];
    //
    //             let dir1 = edges[0].direction();
    //             if let Some(dir1) = dir1 {
    //                 dots[0] = dir1.dot(local_dir);
    //
    //                 if dots[0].abs() < seps {
    //                     return FeatureId::Edge(0);
    //                 }
    //             }
    //
    //             let dir2 = edges[1].direction();
    //             if let Some(dir2) = dir2 {
    //                 dots[1] = dir2.dot(local_dir);
    //
    //                 if dots[1].abs() < seps {
    //                     return FeatureId::Edge(1);
    //                 }
    //             }
    //
    //             let dir3 = edges[2].direction();
    //             if let Some(dir3) = dir3 {
    //                 dots[2] = dir3.dot(local_dir);
    //
    //                 if dots[2].abs() < seps {
    //                     return FeatureId::Edge(2);
    //                 }
    //             }
    //
    //             if dots[0] > 0.0 && dots[1] < 0.0 {
    //                 FeatureId::Vertex(1)
    //             } else if dots[1] > 0.0 && dots[2] < 0.0 {
    //                 FeatureId::Vertex(2)
    //             } else {
    //                 FeatureId::Vertex(0)
    //             }
    //         }
    //     } else {
    //         FeatureId::Vertex(0)
    //     }
    // }

    /// The area of this triangle.
    #[inline]
    pub fn area(&self) -> Real {
        // Kahan's formula.
        let a = na::distance(&self.a, &self.b);
        let b = na::distance(&self.b, &self.c);
        let c = na::distance(&self.c, &self.a);

        let (c, b, a) = utils::sort3(&a, &b, &c);
        let a = *a;
        let b = *b;
        let c = *c;

        let sqr = (a + (b + c)) * (c - (a - b)) * (c + (a - b)) * (a + (b - c));

        // We take the max(0.0) because it can be slightly negative
        // because of numerical errors due to almost-degenerate triangles.
        ComplexField::sqrt(sqr.max(0.0)) * 0.25
    }

    /// Computes the unit angular inertia of this triangle.
    #[cfg(feature = "dim2")]
    pub fn unit_angular_inertia(&self) -> Real {
        let factor = 1.0 / 6.0;

        // Algorithm adapted from Box2D
        let e1 = self.b - self.a;
        let e2 = self.c - self.a;

        let intx2 = e1.x * e1.x + e2.x * e1.x + e2.x * e2.x;
        let inty2 = e1.y * e1.y + e2.y * e1.y + e2.y * e2.y;
        factor * (intx2 + inty2)
    }

    /// The geometric center of this triangle.
    #[inline]
    pub fn center(&self) -> Point<Real> {
        utils::center(&[self.a, self.b, self.c])
    }

    /// The perimeter of this triangle.
    #[inline]
    pub fn perimeter(&self) -> Real {
        na::distance(&self.a, &self.b)
            + na::distance(&self.b, &self.c)
            + na::distance(&self.c, &self.a)
    }

    /// The circumcircle of this triangle.
    pub fn circumcircle(&self) -> (Point<Real>, Real) {
        let a = self.a - self.c;
        let b = self.b - self.c;

        let na = a.norm_squared();
        let nb = b.norm_squared();

        let dab = a.dot(&b);

        let denom = 2.0 * (na * nb - dab * dab);

        if denom.is_zero() {
            // The triangle is degenerate (the three points are colinear).
            // So we find the longest segment and take its center.
            let c = self.a - self.b;
            let nc = c.norm_squared();

            if nc >= na && nc >= nb {
                // Longest segment: [&self.a, &self.b]
                (
                    na::center(&self.a, &self.b),
                    ComplexField::sqrt(nc) / na::convert::<f64, Real>(2.0f64),
                )
            } else if na >= nb && na >= nc {
                // Longest segment: [&self.a, pc]
                (
                    na::center(&self.a, &self.c),
                    ComplexField::sqrt(na) / na::convert::<f64, Real>(2.0f64),
                )
            } else {
                // Longest segment: [&self.b, &self.c]
                (
                    na::center(&self.b, &self.c),
                    ComplexField::sqrt(nb) / na::convert::<f64, Real>(2.0f64),
                )
            }
        } else {
            let k = b * na - a * nb;

            let center = self.c + (a * k.dot(&b) - b * k.dot(&a)) / denom;
            let radius = na::distance(&self.a, &center);

            (center, radius)
        }
    }

    /// Tests if this triangle is affinely dependent, i.e., its points are almost aligned.
    #[cfg(feature = "dim3")]
    pub fn is_affinely_dependent(&self) -> bool {
        const EPS: Real = crate::math::DEFAULT_EPSILON * 100.0;

        let p1p2 = self.b - self.a;
        let p1p3 = self.c - self.a;
        relative_eq!(p1p2.cross(&p1p3).norm_squared(), 0.0, epsilon = EPS * EPS)

        // relative_eq!(
        //     self.area(),
        //     0.0,
        //     epsilon = EPS * self.perimeter()
        // )
    }

    /// Is this triangle degenerate or almost degenerate?
    #[cfg(feature = "dim3")]
    pub fn is_affinely_dependent_eps(&self, eps: Real) -> bool {
        let p1p2 = self.b - self.a;
        let p1p3 = self.c - self.a;
        relative_eq!(
            p1p2.cross(&p1p3).norm(),
            0.0,
            epsilon = eps * p1p2.norm().max(p1p3.norm())
        )

        // relative_eq!(
        //     self.area(),
        //     0.0,
        //     epsilon = EPS * self.perimeter()
        // )
    }

    /// Tests if a point is inside of this triangle.
    #[cfg(feature = "dim2")]
    pub fn contains_point(&self, p: &Point<Real>) -> bool {
        let ab = self.b - self.a;
        let bc = self.c - self.b;
        let ca = self.a - self.c;
        let sgn1 = ab.perp(&(p - self.a));
        let sgn2 = bc.perp(&(p - self.b));
        let sgn3 = ca.perp(&(p - self.c));
        sgn1.signum() * sgn2.signum() >= 0.0
            && sgn1.signum() * sgn3.signum() >= 0.0
            && sgn2.signum() * sgn3.signum() >= 0.0
    }

    /// Tests if a point is inside of this triangle.
    #[cfg(feature = "dim3")]
    pub fn contains_point(&self, p: &Point<Real>) -> bool {
        const EPS: Real = crate::math::DEFAULT_EPSILON;

        let vb = self.b - self.a;
        let vc = self.c - self.a;
        let vp = p - self.a;

        let n = vc.cross(&vb);
        let n_norm = n.norm_squared();
        if n_norm < EPS || vp.dot(&n).abs() > EPS * n_norm {
            // the triangle is degenerate or the
            // point does not lie on the same plane as the triangle.
            return false;
        }

        // We are seeking B, C such that vp = vb * B + vc * C .
        // If B and C are both in [0, 1] and B + C <= 1 then p is in the triangle.
        //
        // We can project this equation along a vector nb coplanar to the triangle
        // and perpendicular to vb:
        // vp.dot(nb) = vb.dot(nb) * B + vc.dot(nb) * C
        //     => C = vp.dot(nb) / vc.dot(nb)
        // and similarly for B.
        //
        // In order to avoid divisions and sqrts we scale both B and C - so
        // b = vb.dot(nc) * B and c = vc.dot(nb) * C - this results in harder-to-follow math but
        // hopefully fast code.

        let nb = vb.cross(&n);
        let nc = vc.cross(&n);

        let signed_blim = vb.dot(&nc);
        let b = vp.dot(&nc) * signed_blim.signum();
        let blim = signed_blim.abs();

        let signed_clim = vc.dot(&nb);
        let c = vp.dot(&nb) * signed_clim.signum();
        let clim = signed_clim.abs();

        c >= 0.0 && c <= clim && b >= 0.0 && b <= blim && c * blim + b * clim <= blim * clim
    }

    /// The normal of the given feature of this shape.
    #[cfg(feature = "dim3")]
    pub fn feature_normal(&self, _: FeatureId) -> Option<Unit<Vector<Real>>> {
        self.normal()
    }

    /// The orientation of the triangle, based on its signed area.
    ///
    /// Returns `TriangleOrientation::Degenerate` if the triangle’s area is
    /// smaller than `epsilon`.
    #[cfg(feature = "dim2")]
    pub fn orientation(&self, epsilon: Real) -> TriangleOrientation {
        let area2 = (self.b - self.a).perp(&(self.c - self.a));
        // println!("area2: {}", area2);
        if area2 > epsilon {
            TriangleOrientation::CounterClockwise
        } else if area2 < -epsilon {
            TriangleOrientation::Clockwise
        } else {
            TriangleOrientation::Degenerate
        }
    }

    /// The orientation of the 2D triangle, based on its signed area.
    ///
    /// Returns `TriangleOrientation::Degenerate` if the triangle’s area is
    /// smaller than `epsilon`.
    pub fn orientation2d(
        a: &na::Point2<Real>,
        b: &na::Point2<Real>,
        c: &na::Point2<Real>,
        epsilon: Real,
    ) -> TriangleOrientation {
        let area2 = (b - a).perp(&(c - a));
        // println!("area2: {}", area2);
        if area2 > epsilon {
            TriangleOrientation::CounterClockwise
        } else if area2 < -epsilon {
            TriangleOrientation::Clockwise
        } else {
            TriangleOrientation::Degenerate
        }
    }

    /// Find the index of a vertex in this triangle, such that the two
    /// edges incident in that vertex form the angle closest to 90
    /// degrees in the triangle.
    pub fn angle_closest_to_90(&self) -> usize {
        let points = self.vertices();
        let mut best_cos = 2.0;
        let mut selected_i = 0;

        for i in 0..3 {
            let d1 = (points[i] - points[(i + 1) % 3]).normalize();
            let d2 = (points[(i + 2) % 3] - points[(i + 1) % 3]).normalize();

            let cos_abs = d1.dot(&d2).abs();

            if cos_abs < best_cos {
                best_cos = cos_abs;
                selected_i = i;
            }
        }

        selected_i
    }

    /// Reverse the orientation of this triangle by swapping b and c.
    pub fn reverse(&mut self) {
        mem::swap(&mut self.b, &mut self.c);
    }
}

impl SupportMap for Triangle {
    #[inline]
    fn local_support_point(&self, dir: &Vector<Real>) -> Point<Real> {
        let d1 = self.a.coords.dot(dir);
        let d2 = self.b.coords.dot(dir);
        let d3 = self.c.coords.dot(dir);

        if d1 > d2 {
            if d1 > d3 {
                self.a
            } else {
                self.c
            }
        } else if d2 > d3 {
            self.b
        } else {
            self.c
        }
    }
}

/*
#[cfg(feature = "dim3")]
impl ConvexPolyhedron for Triangle {
    fn vertex(&self, id: FeatureId) -> Point<Real> {
        match id.unwrap_vertex() {
            0 => self.a,
            1 => self.b,
            2 => self.c,
            _ => panic!("Triangle vertex index out of bounds."),
        }
    }
    fn edge(&self, id: FeatureId) -> (Point<Real>, Point<Real>, FeatureId, FeatureId) {
        match id.unwrap_edge() {
            0 => (self.a, self.b, FeatureId::Vertex(0), FeatureId::Vertex(1)),
            1 => (self.b, self.c, FeatureId::Vertex(1), FeatureId::Vertex(2)),
            2 => (self.c, self.a, FeatureId::Vertex(2), FeatureId::Vertex(0)),
            _ => panic!("Triangle edge index out of bounds."),
        }
    }

    fn face(&self, id: FeatureId, face: &mut ConvexPolygonalFeature) {
        face.clear();

        if let Some(normal) = self.normal() {
            face.set_feature_id(id);

            match id.unwrap_face() {
                0 => {
                    face.push(self.a, FeatureId::Vertex(0));
                    face.push(self.b, FeatureId::Vertex(1));
                    face.push(self.c, FeatureId::Vertex(2));
                    face.push_edge_feature_id(FeatureId::Edge(0));
                    face.push_edge_feature_id(FeatureId::Edge(1));
                    face.push_edge_feature_id(FeatureId::Edge(2));
                    face.set_normal(normal);
                }
                1 => {
                    face.push(self.a, FeatureId::Vertex(0));
                    face.push(self.c, FeatureId::Vertex(2));
                    face.push(self.b, FeatureId::Vertex(1));
                    face.push_edge_feature_id(FeatureId::Edge(2));
                    face.push_edge_feature_id(FeatureId::Edge(1));
                    face.push_edge_feature_id(FeatureId::Edge(0));
                    face.set_normal(-normal);
                }
                _ => unreachable!(),
            }

            face.recompute_edge_normals();
        } else {
            face.push(self.a, FeatureId::Vertex(0));
            face.set_feature_id(FeatureId::Vertex(0));
        }
    }

    fn support_face_toward(
        &self,
        m: &Isometry<Real>,
        dir: &Unit<Vector<Real>>,
        face: &mut ConvexPolygonalFeature,
    ) {
        let normal = self.scaled_normal();

        if normal.dot(&*dir) >= 0.0 {
            ConvexPolyhedron::face(self, FeatureId::Face(0), face);
        } else {
            ConvexPolyhedron::face(self, FeatureId::Face(1), face);
        }
        face.transform_by(m)
    }

    fn support_feature_toward(
        &self,
        transform: &Isometry<Real>,
        dir: &Unit<Vector<Real>>,
        eps: Real,
        out: &mut ConvexPolygonalFeature,
    ) {
        out.clear();
        let tri = self.transformed(transform);
        let feature = tri.support_feature_id_toward(dir, eps);

        match feature {
            FeatureId::Vertex(_) => {
                let v = tri.vertex(feature);
                out.push(v, feature);
                out.set_feature_id(feature);
            }
            FeatureId::Edge(_) => {
                let (a, b, fa, fb) = tri.edge(feature);
                out.push(a, fa);
                out.push(b, fb);
                out.push_edge_feature_id(feature);
                out.set_feature_id(feature);
            }
            FeatureId::Face(_) => tri.face(feature, out),
            _ => unreachable!(),
        }
    }

    fn support_feature_id_toward(&self, local_dir: &Unit<Vector<Real>>) -> FeatureId {
        self.support_feature_id_toward(local_dir, na::convert::<f64, Real>(f64::consts::PI / 180.0))
    }
}
*/

#[cfg(feature = "dim2")]
#[cfg(test)]
mod test {
    use crate::shape::Triangle;
    use na::Point2;

    #[test]
    fn test_triangle_area() {
        let pa = Point2::new(5.0, 0.0);
        let pb = Point2::new(0.0, 0.0);
        let pc = Point2::new(0.0, 4.0);

        assert!(relative_eq!(Triangle::new(pa, pb, pc).area(), 10.0));
    }

    #[test]
    fn test_triangle_contains_point() {
        let tri = Triangle::new(
            Point2::new(5.0, 0.0),
            Point2::new(0.0, 0.0),
            Point2::new(0.0, 4.0),
        );

        assert!(tri.contains_point(&Point2::new(1.0, 1.0)));
        assert!(!tri.contains_point(&Point2::new(-1.0, 1.0)));
    }

    #[test]
    fn test_obtuse_triangle_contains_point() {
        let tri = Triangle::new(
            Point2::new(-10.0, 10.0),
            Point2::new(0.0, 0.0),
            Point2::new(20.0, 0.0),
        );

        assert!(tri.contains_point(&Point2::new(-3.0, 5.0)));
        assert!(tri.contains_point(&Point2::new(5.0, 1.0)));
        assert!(!tri.contains_point(&Point2::new(0.0, -1.0)));
    }
}

#[cfg(feature = "dim3")]
#[cfg(test)]
mod test {
    use crate::math::Real;
    use crate::shape::Triangle;
    use na::Point3;

    #[test]
    fn test_triangle_area() {
        let pa = Point3::new(0.0, 5.0, 0.0);
        let pb = Point3::new(0.0, 0.0, 0.0);
        let pc = Point3::new(0.0, 0.0, 4.0);

        assert!(relative_eq!(Triangle::new(pa, pb, pc).area(), 10.0));
    }

    #[test]
    fn test_triangle_contains_point() {
        let tri = Triangle::new(
            Point3::new(0.0, 5.0, 0.0),
            Point3::new(0.0, 0.0, 0.0),
            Point3::new(0.0, 0.0, 4.0),
        );

        assert!(tri.contains_point(&Point3::new(0.0, 1.0, 1.0)));
        assert!(!tri.contains_point(&Point3::new(0.0, -1.0, 1.0)));
    }

    #[test]
    fn test_obtuse_triangle_contains_point() {
        let tri = Triangle::new(
            Point3::new(-10.0, 10.0, 0.0),
            Point3::new(0.0, 0.0, 0.0),
            Point3::new(20.0, 0.0, 0.0),
        );

        assert!(tri.contains_point(&Point3::new(-3.0, 5.0, 0.0)));
        assert!(tri.contains_point(&Point3::new(5.0, 1.0, 0.0)));
        assert!(!tri.contains_point(&Point3::new(0.0, -1.0, 0.0)));
    }

    #[test]
    fn test_3dtriangle_contains_point() {
        let o = Point3::new(0.0, 0.0, 0.0);
        let pa = Point3::new(1.2, 1.4, 5.6);
        let pb = Point3::new(1.5, 6.7, 1.9);
        let pc = Point3::new(5.0, 2.1, 1.3);

        let tri = Triangle::new(pa, pb, pc);

        let va = pa - o;
        let vb = pb - o;
        let vc = pc - o;

        let n = (pa - pb).cross(&(pb - pc));

        // This is a simple algorithm for generating points that are inside the
        // triangle: o + (va * alpha + vb * beta + vc * gamma) is always inside the
        // triangle if:
        // * each of alpha, beta, gamma is in (0, 1)
        // * alpha + beta + gamma = 1
        let contained_p = o + (va * 0.2 + vb * 0.3 + vc * 0.5);
        let not_contained_coplanar_p = o + (va * -0.5 + vb * 0.8 + vc * 0.7);
        let not_coplanar_p = o + (va * 0.2 + vb * 0.3 + vc * 0.5) + n * 0.1;
        let not_coplanar_p2 = o + (va * -0.5 + vb * 0.8 + vc * 0.7) + n * 0.1;
        assert!(tri.contains_point(&contained_p));
        assert!(!tri.contains_point(&not_contained_coplanar_p));
        assert!(!tri.contains_point(&not_coplanar_p));
        assert!(!tri.contains_point(&not_coplanar_p2));

        // Test that points that are clearly within the triangle as seen as such, by testing
        // a number of points along a line intersecting the triangle.
        for i in -50i16..150 {
            let a = 0.15;
            let b = 0.01 * Real::from(i); // b ranges from -0.5 to 1.5
            let c = 1.0 - a - b;
            let p = o + (va * a + vb * b + vc * c);

            match i {
                ii if ii < 0 || ii > 85 => assert!(
                    !tri.contains_point(&p),
                    "Should not contain: i = {}, b = {}",
                    i,
                    b
                ),
                ii if ii > 0 && ii < 85 => assert!(
                    tri.contains_point(&p),
                    "Should contain: i = {}, b = {}",
                    i,
                    b
                ),
                _ => (), // Points at the edge may be seen as inside or outside
            }
        }
    }
}