1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
use crate::bounding_volume::Aabb;
use crate::math::{Isometry, Point, Real, Vector};
use crate::partitioning::Qbvh;
use crate::shape::{FeatureId, Shape, Triangle, TrianglePseudoNormals, TypedSimdCompositeShape};
use std::fmt;

use crate::utils::HashablePartialEq;
#[cfg(feature = "dim3")]
use {crate::shape::Cuboid, crate::utils::SortedPair, na::Unit};

use {
    crate::shape::composite_shape::SimdCompositeShape,
    crate::utils::hashmap::{Entry, HashMap},
    std::collections::HashSet,
};

#[cfg(feature = "dim2")]
use crate::transformation::ear_clipping::triangulate_ear_clipping;

use crate::query::details::NormalConstraints;
#[cfg(feature = "rkyv")]
use rkyv::{bytecheck, CheckBytes};

/// Indicated an inconsistency in the topology of a triangle mesh.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum TopologyError {
    /// Found a triangle with two or three identical vertices.
    BadTriangle(u32),
    /// At least two adjacent triangles have opposite orientations.
    BadAdjacentTrianglesOrientation {
        /// The first triangle, with an orientation opposite to the second triangle.
        triangle1: u32,
        /// The second triangle, with an orientation opposite to the first triangle.
        triangle2: u32,
        /// The edge shared between the two triangles.
        edge: (u32, u32),
    },
}

impl fmt::Display for TopologyError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::BadTriangle(fid) => {
                f.pad(&format!("the triangle {fid} has at least two identical vertices."))
            }
            Self::BadAdjacentTrianglesOrientation {
                triangle1,
                triangle2,
                edge,
            } => f.pad(&format!("the triangles {triangle1} and {triangle2} sharing the edge {:?} have opposite orientations.", edge)),
        }
    }
}

impl std::error::Error for TopologyError {}

/// The set of pseudo-normals of a triangle mesh.
///
/// These pseudo-normals are used for the inside-outside test of a
/// point on the triangle, as described in the paper:
/// "Signed distance computation using the angle weighted pseudonormal", Baerentzen, et al.
/// DOI: 10.1109/TVCG.2005.49
#[derive(Default, Clone)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "rkyv",
    derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize),
    archive(check_bytes)
)]
#[repr(C)]
#[cfg(feature = "dim3")]
pub struct TriMeshPseudoNormals {
    /// The pseudo-normals of the vertices.
    pub vertices_pseudo_normal: Vec<Vector<Real>>,
    /// The pseudo-normals of the edges.
    pub edges_pseudo_normal: Vec<[Vector<Real>; 3]>,
}

/// The connected-components of a triangle mesh.
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "rkyv",
    derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize),
    archive(check_bytes)
)]
#[repr(C)]
pub struct TriMeshConnectedComponents {
    /// The `face_colors[i]` gives the connected-component index
    /// of the i-th face.
    pub face_colors: Vec<u32>,
    /// The set of faces grouped by connected components.
    pub grouped_faces: Vec<u32>,
    /// The range of connected components. `self.grouped_faces[self.ranges[i]..self.ranges[i + 1]]`
    /// contains the indices of all the faces part of the i-th connected component.
    pub ranges: Vec<usize>,
}

impl TriMeshConnectedComponents {
    /// The total number of connected components.
    pub fn num_connected_components(&self) -> usize {
        self.ranges.len() - 1
    }
}

/// A vertex of a triangle-mesh’s half-edge topology.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "rkyv",
    derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize, CheckBytes),
    archive(as = "Self")
)]
#[repr(C)]
pub struct TopoVertex {
    /// One of the half-edge with this vertex as endpoint.
    pub half_edge: u32,
}

/// A face of a triangle-mesh’s half-edge topology.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "rkyv",
    derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize, CheckBytes),
    archive(as = "Self")
)]
#[repr(C)]
pub struct TopoFace {
    /// The half-edge adjacent to this face, with a starting point equal
    /// to the first point of this face.
    pub half_edge: u32,
}

/// A half-edge of a triangle-mesh’s half-edge topology.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "rkyv",
    derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize, CheckBytes),
    archive(as = "Self")
)]
#[repr(C)]
pub struct TopoHalfEdge {
    /// The next half-edge.
    pub next: u32,
    /// This half-edge twin on the adjacent triangle.
    ///
    /// This is `u32::MAX` if there is no twin.
    pub twin: u32,
    /// The first vertex of this edge.
    pub vertex: u32,
    /// The face associated to this half-edge.
    pub face: u32,
}

/// The half-edge topology information of a triangle mesh.
#[derive(Default, Clone)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "rkyv",
    derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize),
    archive(check_bytes)
)]
#[repr(C)]
pub struct TriMeshTopology {
    /// The vertices of this half-edge representation.
    pub vertices: Vec<TopoVertex>,
    /// The faces of this half-edge representation.
    pub faces: Vec<TopoFace>,
    /// The half-edges of this half-edge representation.
    pub half_edges: Vec<TopoHalfEdge>,
}

impl TriMeshTopology {
    #[cfg(feature = "dim3")]
    pub(crate) fn face_half_edges_ids(&self, fid: u32) -> [u32; 3] {
        let first_half_edge = self.faces[fid as usize].half_edge;

        let mut result = [first_half_edge; 3];
        for k in 1..3 {
            let half_edge = self.half_edges[result[k - 1] as usize];
            result[k] = half_edge.next;
        }

        result
    }
}

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "rkyv",
    derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize),
    archive(as = "Self")
)]
#[repr(C)]
#[derive(Clone, Copy, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
/// The status of the cell of an heightfield.
pub struct TriMeshFlags(u16);

bitflags::bitflags! {
    impl TriMeshFlags: u16 {
        /// If set, the half-edge topology of the trimesh will be computed if possible.
        const HALF_EDGE_TOPOLOGY = 1;
        /// If set, the half-edge topology and connected components of the trimesh will be computed if possible.
        ///
        /// Because of the way it is currently implemented, connected components can only be computed on
        /// a mesh where the half-edge topology computation succeeds. It will no longer be the case in the
        /// future once we decouple the computations.
        const CONNECTED_COMPONENTS = 1 << 1;
        /// If set, any triangle that results in a failing half-hedge topology computation will be deleted.
        const DELETE_BAD_TOPOLOGY_TRIANGLES = 1 << 2;
        /// If set, the trimesh will be assumed to be oriented (with outward normals).
        ///
        /// The pseudo-normals of its vertices and edges will be computed.
        const ORIENTED = 1 << 3;
        /// If set, the duplicate vertices of the trimesh will be merged.
        ///
        /// Two vertices with the exact same coordinates will share the same entry on the
        /// vertex buffer and the index buffer is adjusted accordingly.
        const MERGE_DUPLICATE_VERTICES = 1 << 4;
        /// If set, the triangles sharing two vertices with identical index values will be removed.
        ///
        /// Because of the way it is currently implemented, this methods implies that duplicate
        /// vertices will be merged. It will no longer be the case in the future once we decouple
        /// the computations.
        const DELETE_DEGENERATE_TRIANGLES = 1 << 5;
        /// If set, two triangles sharing three vertices with identical index values (in any order)
        /// will be removed.
        ///
        /// Because of the way it is currently implemented, this methods implies that duplicate
        /// vertices will be merged. It will no longer be the case in the future once we decouple
        /// the computations.
        const DELETE_DUPLICATE_TRIANGLES = 1 << 6;
        /// If set, a special treatment will be applied to contact manifold calculation to eliminate
        /// or fix contacts normals that could lead to incorrect bumps in physics simulation
        /// (especially on flat surfaces).
        ///
        /// This is achieved by taking into account adjacent triangle normals when computing contact
        /// points for a given triangle.
        const FIX_INTERNAL_EDGES = 1 << 7 | Self::ORIENTED.bits() | Self::MERGE_DUPLICATE_VERTICES.bits();
    }
}

#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "rkyv",
    derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize),
    archive(check_bytes)
)]
#[repr(C)]
#[derive(Clone)]
/// A triangle mesh.
pub struct TriMesh {
    qbvh: Qbvh<u32>,
    vertices: Vec<Point<Real>>,
    indices: Vec<[u32; 3]>,
    #[cfg(feature = "dim3")]
    pub(crate) pseudo_normals: Option<TriMeshPseudoNormals>,
    topology: Option<TriMeshTopology>,
    connected_components: Option<TriMeshConnectedComponents>,
    flags: TriMeshFlags,
}

impl fmt::Debug for TriMesh {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "GenericTriMesh")
    }
}

impl TriMesh {
    /// Creates a new triangle mesh from a vertex buffer and an index buffer.
    pub fn new(vertices: Vec<Point<Real>>, indices: Vec<[u32; 3]>) -> Self {
        Self::with_flags(vertices, indices, TriMeshFlags::empty())
    }

    /// Creates a new triangle mesh from a vertex buffer and an index buffer, and flags controlling optional properties.
    pub fn with_flags(
        vertices: Vec<Point<Real>>,
        indices: Vec<[u32; 3]>,
        flags: TriMeshFlags,
    ) -> Self {
        assert!(
            !indices.is_empty(),
            "A triangle mesh must contain at least one triangle."
        );

        let mut result = Self {
            qbvh: Qbvh::new(),
            vertices,
            indices,
            #[cfg(feature = "dim3")]
            pseudo_normals: None,
            topology: None,
            connected_components: None,
            flags: TriMeshFlags::empty(),
        };

        let _ = result.set_flags(flags);

        if result.qbvh.raw_nodes().is_empty() {
            // The Qbvh hasn’t been computed by `.set_flags`.
            result.rebuild_qbvh();
        }

        result
    }

    /// Sets the flags of this triangle mesh, controlling its optional associated data.
    pub fn set_flags(&mut self, flags: TriMeshFlags) -> Result<(), TopologyError> {
        let mut result = Ok(());
        let prev_indices_len = self.indices.len();

        if !flags.contains(TriMeshFlags::HALF_EDGE_TOPOLOGY) {
            self.topology = None;
        }

        #[cfg(feature = "dim3")]
        if !flags.contains(TriMeshFlags::ORIENTED) {
            self.pseudo_normals = None;
        }

        if !flags.contains(TriMeshFlags::CONNECTED_COMPONENTS) {
            self.connected_components = None;
        }

        let difference = flags & !self.flags;

        if difference.intersects(
            TriMeshFlags::MERGE_DUPLICATE_VERTICES
                | TriMeshFlags::DELETE_DEGENERATE_TRIANGLES
                | TriMeshFlags::DELETE_DUPLICATE_TRIANGLES,
        ) {
            self.merge_duplicate_vertices(
                flags.contains(TriMeshFlags::DELETE_DEGENERATE_TRIANGLES),
                flags.contains(TriMeshFlags::DELETE_DUPLICATE_TRIANGLES),
            )
        }

        if difference.intersects(
            TriMeshFlags::HALF_EDGE_TOPOLOGY
                | TriMeshFlags::CONNECTED_COMPONENTS
                | TriMeshFlags::DELETE_BAD_TOPOLOGY_TRIANGLES,
        ) {
            result = self.compute_topology(
                flags.contains(TriMeshFlags::CONNECTED_COMPONENTS),
                flags.contains(TriMeshFlags::DELETE_BAD_TOPOLOGY_TRIANGLES),
            );
        }

        #[cfg(feature = "dim3")]
        if difference.contains(TriMeshFlags::ORIENTED) {
            self.compute_pseudo_normals();
        }

        if prev_indices_len != self.indices.len() {
            self.rebuild_qbvh();
        }

        self.flags = flags;
        result
    }

    /// Transforms in-place the vertices of this triangle mesh.
    pub fn transform_vertices(&mut self, transform: &Isometry<Real>) {
        self.vertices
            .iter_mut()
            .for_each(|pt| *pt = transform * *pt);
        self.rebuild_qbvh();

        // The pseudo-normals must be rotated too.
        #[cfg(feature = "dim3")]
        if let Some(pseudo_normals) = &mut self.pseudo_normals {
            pseudo_normals
                .vertices_pseudo_normal
                .iter_mut()
                .for_each(|n| *n = transform * *n);
            pseudo_normals.edges_pseudo_normal.iter_mut().for_each(|n| {
                n[0] = transform * n[0];
                n[1] = transform * n[1];
                n[2] = transform * n[2];
            });
        }
    }

    /// Returns a scaled version of this triangle mesh.
    pub fn scaled(mut self, scale: &Vector<Real>) -> Self {
        self.vertices
            .iter_mut()
            .for_each(|pt| pt.coords.component_mul_assign(scale));

        #[cfg(feature = "dim3")]
        if let Some(pn) = &mut self.pseudo_normals {
            pn.vertices_pseudo_normal.iter_mut().for_each(|n| {
                n.component_mul_assign(scale);
                let _ = n.try_normalize_mut(0.0);
            });
            pn.edges_pseudo_normal.iter_mut().for_each(|n| {
                n[0].component_mul_assign(scale);
                n[1].component_mul_assign(scale);
                n[2].component_mul_assign(scale);

                let _ = n[0].try_normalize_mut(0.0);
                let _ = n[1].try_normalize_mut(0.0);
                let _ = n[2].try_normalize_mut(0.0);
            });
        }

        Self {
            qbvh: self.qbvh.scaled(scale),
            vertices: self.vertices,
            indices: self.indices,
            #[cfg(feature = "dim3")]
            pseudo_normals: self.pseudo_normals,
            topology: self.topology,
            connected_components: self.connected_components,
            flags: self.flags,
        }
    }

    /// Appends a second triangle mesh to this triangle mesh.
    pub fn append(&mut self, rhs: &TriMesh) {
        let base_id = self.vertices.len() as u32;
        self.vertices.extend_from_slice(rhs.vertices());
        self.indices.extend(
            rhs.indices()
                .iter()
                .map(|idx| [idx[0] + base_id, idx[1] + base_id, idx[2] + base_id]),
        );

        let vertices = std::mem::take(&mut self.vertices);
        let indices = std::mem::take(&mut self.indices);
        *self = TriMesh::with_flags(vertices, indices, self.flags);
    }

    /// Create a `TriMesh` from a set of points assumed to describe a counter-clockwise non-convex polygon.
    ///
    /// This operation may fail if the input polygon is invalid, e.g. it is non-simple or has zero surface area.
    #[cfg(feature = "dim2")]
    pub fn from_polygon(vertices: Vec<Point<Real>>) -> Option<Self> {
        triangulate_ear_clipping(&vertices).map(|indices| Self::new(vertices, indices))
    }

    /// A flat view of the index buffer of this mesh.
    pub fn flat_indices(&self) -> &[u32] {
        unsafe {
            let len = self.indices.len() * 3;
            let data = self.indices.as_ptr() as *const u32;
            std::slice::from_raw_parts(data, len)
        }
    }

    fn rebuild_qbvh(&mut self) {
        let data = self.indices.iter().enumerate().map(|(i, idx)| {
            let aabb = Triangle::new(
                self.vertices[idx[0] as usize],
                self.vertices[idx[1] as usize],
                self.vertices[idx[2] as usize],
            )
            .local_aabb();
            (i as u32, aabb)
        });

        // NOTE: we apply no dilation factor because we won't
        // update this tree dynamically.
        self.qbvh.clear_and_rebuild(data, 0.0);
    }

    /// Reverse the orientation of the triangle mesh.
    pub fn reverse(&mut self) {
        self.indices.iter_mut().for_each(|idx| idx.swap(0, 1));

        // NOTE: the Qbvh, and connected components are not changed by this operation.
        //       The pseudo-normals just have to be flipped.
        //       The topology must be recomputed.

        #[cfg(feature = "dim3")]
        if let Some(pseudo_normals) = &mut self.pseudo_normals {
            for n in &mut pseudo_normals.vertices_pseudo_normal {
                *n = -*n;
            }

            for n in pseudo_normals.edges_pseudo_normal.iter_mut() {
                n[0] = -n[0];
                n[1] = -n[1];
                n[2] = -n[2];
            }
        }

        if self.flags.contains(TriMeshFlags::HALF_EDGE_TOPOLOGY) {
            // TODO: this could be done more efficiently.
            let _ = self.compute_topology(false, false);
        }
    }

    /// Merge all duplicate vertices and adjust the index buffer accordingly.
    ///
    /// If `delete_degenerate_triangles` is set to true, any triangle with two
    /// identical vertices will be removed.
    ///
    /// This is typically used to recover a vertex buffer from which we can deduce
    /// adjacency information. between triangles by observing how the vertices are
    /// shared by triangles based on the index buffer.
    fn merge_duplicate_vertices(
        &mut self,
        delete_degenerate_triangles: bool,
        delete_duplicate_triangles: bool,
    ) {
        let mut vtx_to_id = HashMap::default();
        let mut new_vertices = Vec::with_capacity(self.vertices.len());
        let mut new_indices = Vec::with_capacity(self.indices.len());
        let mut triangle_set = HashSet::new();

        fn resolve_coord_id(
            coord: &Point<Real>,
            vtx_to_id: &mut HashMap<HashablePartialEq<Point<Real>>, u32>,
            new_vertices: &mut Vec<Point<Real>>,
        ) -> u32 {
            let key = HashablePartialEq::new(*coord);
            let id = match vtx_to_id.entry(key) {
                Entry::Occupied(entry) => entry.into_mut(),
                Entry::Vacant(entry) => entry.insert(new_vertices.len() as u32),
            };

            if *id == new_vertices.len() as u32 {
                new_vertices.push(*coord);
            }

            *id
        }

        for t in self.indices.iter() {
            let va = resolve_coord_id(
                &self.vertices[t[0] as usize],
                &mut vtx_to_id,
                &mut new_vertices,
            );

            let vb = resolve_coord_id(
                &self.vertices[t[1] as usize],
                &mut vtx_to_id,
                &mut new_vertices,
            );

            let vc = resolve_coord_id(
                &self.vertices[t[2] as usize],
                &mut vtx_to_id,
                &mut new_vertices,
            );

            let is_degenerate = va == vb || va == vc || vb == vc;

            if !is_degenerate || !delete_degenerate_triangles {
                if delete_duplicate_triangles {
                    let (c, b, a) = crate::utils::sort3(&va, &vb, &vc);
                    if triangle_set.insert((*a, *b, *c)) {
                        new_indices.push([va, vb, vc])
                    }
                } else {
                    new_indices.push([va, vb, vc]);
                }
            }
        }

        new_vertices.shrink_to_fit();

        self.vertices = new_vertices;
        self.indices = new_indices;

        // Vertices and indices changed: the pseudo-normals are no longer valid.
        #[cfg(feature = "dim3")]
        if self.pseudo_normals.is_some() {
            self.compute_pseudo_normals();
        }

        // Vertices and indices changed: the topology no longer valid.
        #[cfg(feature = "dim3")]
        if self.topology.is_some() {
            let _ = self.compute_topology(self.connected_components.is_some(), false);
        }
    }

    #[cfg(feature = "dim3")]
    /// Computes the pseudo-normals used for solid point-projection.
    ///
    /// This computes the pseudo-normals needed by the point containment test described in
    /// "Signed distance computation using the angle weighted pseudonormal", Baerentzen, et al.
    /// DOI: 10.1109/TVCG.2005.49
    ///
    /// For the point-containment test to properly detect the inside of the trimesh (i.e. to return
    /// `proj.is_inside = true`), the trimesh must:
    /// - Be manifold (closed, no t-junctions, etc.)
    /// - Be oriented with outward normals.
    ///
    /// If the the trimesh is correctly oriented, but is manifold everywhere except at its boundaries,
    /// then the computed pseudo-normals will provide correct point-containment test results except
    /// for points closest to the boundary of the mesh.
    ///
    /// It may be useful to call `self.remove_duplicate_vertices()` before this method, in order to fix the
    /// index buffer if some of the vertices of this trimesh are duplicated.
    fn compute_pseudo_normals(&mut self) {
        let mut vertices_pseudo_normal = vec![Vector::zeros(); self.vertices().len()];
        let mut edges_pseudo_normal = HashMap::default();
        let mut edges_multiplicity = HashMap::default();

        for idx in self.indices() {
            let vtx = self.vertices();
            let tri = Triangle::new(
                vtx[idx[0] as usize],
                vtx[idx[1] as usize],
                vtx[idx[2] as usize],
            );

            if let Some(n) = tri.normal() {
                let ang1 = (tri.b - tri.a).angle(&(tri.c - tri.a));
                let ang2 = (tri.a - tri.b).angle(&(tri.c - tri.b));
                let ang3 = (tri.b - tri.c).angle(&(tri.a - tri.c));

                vertices_pseudo_normal[idx[0] as usize] += *n * ang1;
                vertices_pseudo_normal[idx[1] as usize] += *n * ang2;
                vertices_pseudo_normal[idx[2] as usize] += *n * ang3;

                let edges = [
                    SortedPair::new(idx[0], idx[1]),
                    SortedPair::new(idx[0], idx[2]),
                    SortedPair::new(idx[1], idx[2]),
                ];

                for edge in &edges {
                    let edge_n = edges_pseudo_normal
                        .entry(*edge)
                        .or_insert_with(Vector::zeros);
                    *edge_n += *n; // NOTE: there is no need to multiply by the incident angle since it is always equal to PI for all the edges.
                    let edge_mult = edges_multiplicity.entry(*edge).or_insert(0);
                    *edge_mult += 1;
                }
            }
        }

        let edges_pseudo_normal = self
            .indices()
            .iter()
            .map(|idx| {
                let e0 = SortedPair::new(idx[0], idx[1]);
                let e1 = SortedPair::new(idx[1], idx[2]);
                let e2 = SortedPair::new(idx[2], idx[0]);
                let default = Vector::zeros();
                [
                    edges_pseudo_normal.get(&e0).copied().unwrap_or(default),
                    edges_pseudo_normal.get(&e1).copied().unwrap_or(default),
                    edges_pseudo_normal.get(&e2).copied().unwrap_or(default),
                ]
            })
            .collect();

        self.pseudo_normals = Some(TriMeshPseudoNormals {
            vertices_pseudo_normal,
            edges_pseudo_normal,
        })
    }

    fn delete_bad_topology_triangles(&mut self) {
        let mut half_edge_set = HashSet::new();
        let mut deleted_any = false;

        // First, create three half-edges for each face.
        self.indices.retain(|idx| {
            if idx[0] == idx[1] || idx[0] == idx[2] || idx[1] == idx[2] {
                deleted_any = true;
                return false;
            }

            for k in 0..3 {
                let edge_key = (idx[k as usize], idx[(k as usize + 1) % 3]);
                if half_edge_set.contains(&edge_key) {
                    deleted_any = true;
                    return false;
                }
            }

            for k in 0..3 {
                let edge_key = (idx[k as usize], idx[(k as usize + 1) % 3]);
                let _ = half_edge_set.insert(edge_key);
            }

            true
        });
    }

    /// Computes half-edge topological information for this triangle mesh, based on its index buffer only.
    ///
    /// This computes the half-edge representation of this triangle mesh’s topology. This is useful for advanced
    /// geometric operations like trimesh-trimesh intersection geometry computation.
    ///
    /// It may be useful to call `self.merge_duplicate_vertices(true, true)` before this method, in order to fix the
    /// index buffer if some of the vertices of this trimesh are duplicated.
    ///
    /// # Return
    /// Returns `true` if the computation succeeded. Returns `false` if this mesh can’t have an half-edge representation
    /// because at least three faces share the same edge.
    fn compute_topology(
        &mut self,
        compute_connected_components: bool,
        delete_bad_triangles: bool,
    ) -> Result<(), TopologyError> {
        if delete_bad_triangles {
            self.delete_bad_topology_triangles();
        }

        let mut topology = TriMeshTopology::default();
        let mut half_edge_map = HashMap::default();

        topology.vertices.resize(
            self.vertices.len(),
            TopoVertex {
                half_edge: u32::MAX,
            },
        );

        // First, create three half-edges for each face.
        for (fid, idx) in self.indices.iter().enumerate() {
            let half_edge_base_id = topology.half_edges.len() as u32;

            if idx[0] == idx[1] || idx[0] == idx[2] || idx[1] == idx[2] {
                return Err(TopologyError::BadTriangle(fid as u32));
            }

            for k in 0u32..3 {
                let half_edge = TopoHalfEdge {
                    next: half_edge_base_id + (k + 1) % 3,
                    // We don’t know which one it is yet.
                    // If the twin doesn’t exist, we use `u32::MAX` as
                    // it’s (invalid) index. This value can be relied on
                    // by other algorithms.
                    twin: u32::MAX,
                    vertex: idx[k as usize],
                    face: fid as u32,
                };
                topology.half_edges.push(half_edge);

                let edge_key = (idx[k as usize], idx[(k as usize + 1) % 3]);

                if let Some(existing) = half_edge_map.insert(edge_key, half_edge_base_id + k) {
                    // If the same edge already exists (with the same vertex order) then
                    // we have two triangles sharing the same but with opposite incompatible orientations.
                    return Err(TopologyError::BadAdjacentTrianglesOrientation {
                        edge: edge_key,
                        triangle1: topology.half_edges[existing as usize].face,
                        triangle2: fid as u32,
                    });
                }

                topology.vertices[idx[k as usize] as usize].half_edge = half_edge_base_id + k;
            }

            topology.faces.push(TopoFace {
                half_edge: half_edge_base_id,
            })
        }

        // Second, identify twins.
        for (key, he1) in &half_edge_map {
            if key.0 < key.1 {
                // Test, to avoid checking the same pair twice.
                if let Some(he2) = half_edge_map.get(&(key.1, key.0)) {
                    topology.half_edges[*he1 as usize].twin = *he2;
                    topology.half_edges[*he2 as usize].twin = *he1;
                }
            }
        }

        self.topology = Some(topology);

        if compute_connected_components {
            self.compute_connected_components();
        }

        Ok(())
    }

    // NOTE: we can only compute connected components if the topology
    //       has been computed too. So instead of making this method
    //       public, the `.compute_topology` method has a boolean to
    //       compute the connected components too.
    fn compute_connected_components(&mut self) {
        let topo = self.topology.as_ref().unwrap();
        let mut face_colors = vec![u32::MAX; topo.faces.len()];
        let mut grouped_faces = Vec::new();
        let mut ranges = vec![0];
        let mut stack = vec![];

        for i in 0..topo.faces.len() {
            if face_colors[i] == u32::MAX {
                let color = ranges.len() as u32 - 1;
                face_colors[i] = color;
                grouped_faces.push(i as u32);
                stack.push(i as u32);

                while let Some(tri_id) = stack.pop() {
                    let eid = topo.faces[tri_id as usize].half_edge;
                    let edge_a = &topo.half_edges[eid as usize];
                    let edge_b = &topo.half_edges[edge_a.next as usize];
                    let edge_c = &topo.half_edges[edge_b.next as usize];
                    let edges = [edge_a, edge_b, edge_c];

                    for edge in edges {
                        if let Some(twin) = topo.half_edges.get(edge.twin as usize) {
                            if face_colors[twin.face as usize] == u32::MAX {
                                face_colors[twin.face as usize] = color;
                                grouped_faces.push(twin.face);
                                stack.push(twin.face);
                            }
                        }
                    }
                }

                ranges.push(grouped_faces.len());
            }
        }

        self.connected_components = Some(TriMeshConnectedComponents {
            face_colors,
            grouped_faces,
            ranges,
        });
    }

    #[allow(dead_code)] // Useful for testing.
    pub(crate) fn assert_half_edge_topology_is_valid(&self) {
        let topo = self
            .topology
            .as_ref()
            .expect("No topology information found.");
        assert_eq!(self.vertices.len(), topo.vertices.len());
        assert_eq!(self.indices.len(), topo.faces.len());

        for (face_id, (face, idx)) in topo.faces.iter().zip(self.indices.iter()).enumerate() {
            let he0 = topo.half_edges[face.half_edge as usize];
            assert_eq!(he0.face, face_id as u32);
            assert_eq!(he0.vertex, idx[0]);
            let he1 = topo.half_edges[he0.next as usize];
            assert_eq!(he1.face, face_id as u32);
            assert_eq!(he1.vertex, idx[1]);
            let he2 = topo.half_edges[he1.next as usize];
            assert_eq!(he2.face, face_id as u32);
            assert_eq!(he2.vertex, idx[2]);
            assert_eq!(he2.next, face.half_edge);
        }

        for he in &topo.half_edges {
            let idx = &self.indices[he.face as usize];
            assert!(he.vertex == idx[0] || he.vertex == idx[1] || he.vertex == idx[2]);
        }
    }

    /// An iterator through all the triangles of this mesh.
    pub fn triangles(&self) -> impl ExactSizeIterator<Item = Triangle> + '_ {
        self.indices.iter().map(move |ids| {
            Triangle::new(
                self.vertices[ids[0] as usize],
                self.vertices[ids[1] as usize],
                self.vertices[ids[2] as usize],
            )
        })
    }
}

impl TriMesh {
    /// The flags of this triangle mesh.
    pub fn flags(&self) -> TriMeshFlags {
        self.flags
    }

    /// Compute the axis-aligned bounding box of this triangle mesh.
    pub fn aabb(&self, pos: &Isometry<Real>) -> Aabb {
        self.qbvh.root_aabb().transform_by(pos)
    }

    /// Gets the local axis-aligned bounding box of this triangle mesh.
    pub fn local_aabb(&self) -> &Aabb {
        self.qbvh.root_aabb()
    }

    /// The acceleration structure used by this triangle-mesh.
    pub fn qbvh(&self) -> &Qbvh<u32> {
        &self.qbvh
    }

    /// The number of triangles forming this mesh.
    pub fn num_triangles(&self) -> usize {
        self.indices.len()
    }

    /// Does the given feature ID identify a backface of this trimesh?
    pub fn is_backface(&self, feature: FeatureId) -> bool {
        if let FeatureId::Face(i) = feature {
            i >= self.indices.len() as u32
        } else {
            false
        }
    }

    /// Get the `i`-th triangle of this mesh.
    pub fn triangle(&self, i: u32) -> Triangle {
        let idx = self.indices[i as usize];
        Triangle::new(
            self.vertices[idx[0] as usize],
            self.vertices[idx[1] as usize],
            self.vertices[idx[2] as usize],
        )
    }

    /// Returns the pseudo-normals of one of this mesh’s triangles, if it was computed.
    ///
    /// This returns `None` if the pseudo-normals of this triangle were not computed.
    /// To have its pseudo-normals computed, be sure to set the [`TriMeshFlags`] so that
    /// they contain the [`TriMeshFlags::FIX_INTERNAL_EDGES`] flag.
    #[cfg(feature = "dim3")]
    pub fn triangle_normal_constraints(&self, i: u32) -> Option<TrianglePseudoNormals> {
        if self.flags.contains(TriMeshFlags::FIX_INTERNAL_EDGES) {
            let triangle = self.triangle(i);
            let pseudo_normals = self.pseudo_normals.as_ref()?;
            let edges_pseudo_normals = pseudo_normals.edges_pseudo_normal[i as usize];

            // TODO: could the pseudo-normal be pre-normalized instead of having to renormalize
            //       every time we need them?
            Some(TrianglePseudoNormals {
                face: triangle.normal()?,
                edges: [
                    Unit::try_new(edges_pseudo_normals[0], 1.0e-6)?,
                    Unit::try_new(edges_pseudo_normals[1], 1.0e-6)?,
                    Unit::try_new(edges_pseudo_normals[2], 1.0e-6)?,
                ],
            })
        } else {
            None
        }
    }

    #[cfg(feature = "dim2")]
    #[doc(hidden)]
    pub fn triangle_normal_constraints(&self, _i: u32) -> Option<TrianglePseudoNormals> {
        None
    }

    /// The vertex buffer of this mesh.
    pub fn vertices(&self) -> &[Point<Real>] {
        &self.vertices
    }

    /// The index buffer of this mesh.
    pub fn indices(&self) -> &[[u32; 3]] {
        &self.indices
    }

    /// Returns the topology information of this trimesh, if it has been computed.
    pub fn topology(&self) -> Option<&TriMeshTopology> {
        self.topology.as_ref()
    }

    /// Returns the connected-component information of this trimesh, if it has been computed.
    pub fn connected_components(&self) -> Option<&TriMeshConnectedComponents> {
        self.connected_components.as_ref()
    }

    /// The pseudo-normals of this triangle mesh, if they have been computed.
    #[cfg(feature = "dim3")]
    pub fn pseudo_normals(&self) -> Option<&TriMeshPseudoNormals> {
        self.pseudo_normals.as_ref()
    }
}

#[cfg(feature = "dim3")]
impl From<crate::shape::HeightField> for TriMesh {
    fn from(heightfield: crate::shape::HeightField) -> Self {
        let (vtx, idx) = heightfield.to_trimesh();
        TriMesh::new(vtx, idx)
    }
}

#[cfg(feature = "dim3")]
impl From<Cuboid> for TriMesh {
    fn from(cuboid: Cuboid) -> Self {
        let (vtx, idx) = cuboid.to_trimesh();
        TriMesh::new(vtx, idx)
    }
}

impl SimdCompositeShape for TriMesh {
    fn map_part_at(
        &self,
        i: u32,
        f: &mut dyn FnMut(Option<&Isometry<Real>>, &dyn Shape, Option<&dyn NormalConstraints>),
    ) {
        let tri = self.triangle(i);
        let normals = self.triangle_normal_constraints(i);
        f(
            None,
            &tri,
            normals.as_ref().map(|n| n as &dyn NormalConstraints),
        )
    }

    fn qbvh(&self) -> &Qbvh<u32> {
        &self.qbvh
    }
}

impl TypedSimdCompositeShape for TriMesh {
    type PartShape = Triangle;
    type PartNormalConstraints = TrianglePseudoNormals;
    type PartId = u32;

    #[inline(always)]
    fn map_typed_part_at(
        &self,
        i: u32,
        mut f: impl FnMut(
            Option<&Isometry<Real>>,
            &Self::PartShape,
            Option<&Self::PartNormalConstraints>,
        ),
    ) {
        let tri = self.triangle(i);
        let pseudo_normals = self.triangle_normal_constraints(i);
        f(None, &tri, pseudo_normals.as_ref())
    }

    #[inline(always)]
    fn map_untyped_part_at(
        &self,
        i: u32,
        mut f: impl FnMut(Option<&Isometry<Real>>, &dyn Shape, Option<&dyn NormalConstraints>),
    ) {
        let tri = self.triangle(i);
        let pseudo_normals = self.triangle_normal_constraints(i);
        f(
            None,
            &tri,
            pseudo_normals.as_ref().map(|n| n as &dyn NormalConstraints),
        )
    }

    fn typed_qbvh(&self) -> &Qbvh<u32> {
        &self.qbvh
    }
}