parry3d/shape/voxels.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
use crate::bounding_volume::Aabb;
use crate::math::{Point, Real, Vector, DIM};
use alloc::{vec, vec::Vec};
/// The primitive shape all voxels from a [`Voxels`] is given.
#[derive(Copy, Clone, Debug, PartialEq, Default)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub enum VoxelPrimitiveGeometry {
/// Each voxel is modeled as a pseudo-ball, i.e., in flat areas it will act like a planar
/// surface but corners and edges will be rounded like a sphere.
///
/// This is an approximation that is particularly relevant if the voxels are small and in large
/// number. This can significantly improve collision-detection performances (as well as solver
/// performances by generating less contacts points). However,this can introduce visual
/// artifacts around edges and corners where objects in contact with the voxel will appear to
/// slightly penetrate the corners/edges due to the spherical approximation.
PseudoBall,
/// Each voxel is modeled as a pseudo-cube, i.e., in flat areas it will act like a planar
/// surface but corner and edges will be sharp like a cube.
///
/// This is what you would expect for the collision to match the rendered voxels. Use
/// [`VoxelPrimitiveGeometry::PseudoBall`] instead if some approximation around corners are acceptable
/// in exchange for better performances.
#[default]
PseudoCube,
}
/// Categorization of a voxel based on its neighbors.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum VoxelType {
/// The voxel is empty.
Empty,
/// The voxel is a vertex if all three coordinate axis directions have at
/// least one empty neighbor.
Vertex,
/// The voxel is on an edge if it has non-empty neighbors in both directions of
/// a single coordinate axis.
#[cfg(feature = "dim3")]
Edge,
/// The voxel is on an edge if it has non-empty neighbors in both directions of
/// two coordinate axes.
Face,
/// The voxel is on an edge if it has non-empty neighbors in both directions of
/// all coordinate axes.
Interior,
}
#[derive(Clone, Copy, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
/// The status of the cell of an heightfield.
pub struct AxisMask(u8);
bitflags::bitflags! {
/// Flags for identifying signed directions along coordinate axes, or faces of a voxel.
impl AxisMask: u8 {
/// The direction or face along the `+x` coordinate axis.
const X_POS = 1 << 0;
/// The direction or face along the `-x` coordinate axis.
const X_NEG = 1 << 1;
/// The direction or face along the `+y` coordinate axis.
const Y_POS = 1 << 2;
/// The direction or face along the `-y` coordinate axis.
const Y_NEG = 1 << 3;
/// The direction or face along the `+z` coordinate axis.
#[cfg(feature= "dim3")]
const Z_POS = 1 << 4;
/// The direction or face along the `-z` coordinate axis.
#[cfg(feature= "dim3")]
const Z_NEG = 1 << 5;
}
}
/// Indicates the local shape of a voxel on each octant.
///
/// This provides geometric information of the shape’s exposed features on each octant.
// This is an alternative to `FACES_TO_FEATURE_MASKS` that can be more convenient for some
// collision-detection algorithms.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct OctantPattern;
// NOTE: it is important that the max value of any OctantPattern variant
// is 7 because we don’t allocate more than 3 bits to store it in
// `FACES_TO_OCTANT_MASKS`.
/// Indicates the local shape of a voxel on each octant.
///
/// This provides geometric information of the shape’s exposed features on each octant.
// This is an alternative to `FACES_TO_FEATURE_MASKS` that can be more convenient for some
// collision-detection algorithms.
#[cfg(feature = "dim3")]
impl OctantPattern {
/// The voxel doesn't have any exposed feature on the octant with this mask.
pub const INTERIOR: u32 = 0;
/// The voxel has an exposed vertex on the octant with this mask.
pub const VERTEX: u32 = 1;
/// The voxel has an exposed edges with direction X on the octant with this mask.
pub const EDGE_X: u32 = 2;
/// The voxel has an exposed edges with direction Y on the octant with this mask.
pub const EDGE_Y: u32 = 3;
/// The voxel has an exposed edges with direction Z on the octant with this mask.
pub const EDGE_Z: u32 = 4;
/// The voxel has an exposed face with normal X on the octant with this mask.
pub const FACE_X: u32 = 5;
/// The voxel has an exposed face with normal Y on the octant with this mask.
pub const FACE_Y: u32 = 6;
/// The voxel has an exposed face with normal Z on the octant with this mask.
pub const FACE_Z: u32 = 7;
}
// NOTE: it is important that the max value of any OctantPattern variant
// is 7 because we don’t allocate more than 3 bits to store it in
// `FACES_TO_OCTANT_MASKS`.
/// Indicates the local shape of a voxel on each octant.
///
/// This provides geometric information of the shape’s exposed features on each octant.
/// This is an alternative to `FACES_TO_FEATURE_MASKS` that can be more convenient for some
/// collision-detection algorithms.
#[cfg(feature = "dim2")]
impl OctantPattern {
/// The voxel doesn't have any exposed feature on the octant with this mask.
pub const INTERIOR: u32 = 0;
/// The voxel has an exposed vertex on the octant with this mask.
pub const VERTEX: u32 = 1;
/// The voxel has an exposed face with normal X on the octant with this mask.
pub const FACE_X: u32 = 2;
/// The voxel has an exposed face with normal Y on the octant with this mask.
pub const FACE_Y: u32 = 3;
}
// The local neighborhood information is encoded in a 8-bits number in groups of two bits
// per coordinate axis: `0bwwzzyyxx`. In each group of two bits, e.g. `xx`, the rightmost (resp.
// leftmost) bit set to 1 means that the neighbor voxel with coordinate `+1` (resp `-1`) relative
// to the current voxel along the `x` axis is filled. If the bit is 0, then the corresponding
// neighbor is empty. See the `AxisMask` bitflags.
// For example, in 2D, the mask `0b00_00_10_01` matches the following configuration (assuming +y goes
// up, and +x goes right):
//
// ```txt
// 0 0 0
// 0 x 1
// 0 1 0
// ```
//
// The special value `0b01000000` indicates that the voxel is empty.
// And the value `0b00111111` (`0b00001111` in 2D) indicates that the voxel is an interior voxel (its whole neighborhood
// is filled).
/// A description of the local neighborhood of a voxel.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct VoxelState(u8);
impl VoxelState {
/// The value of empty voxels.
pub const EMPTY: VoxelState = VoxelState(EMPTY_FACE_MASK);
/// The value of a voxel with non-empty neighbors in all directions.
pub const INTERIOR: VoxelState = VoxelState(INTERIOR_FACE_MASK);
/// Is this voxel empty?
pub const fn is_empty(self) -> bool {
self.0 == EMPTY_FACE_MASK
}
/// A bit mask indicating which faces of the voxel don’t have any
/// adjacent non-empty voxel.
pub const fn free_faces(self) -> AxisMask {
if self.0 == INTERIOR_FACE_MASK || self.0 == EMPTY_FACE_MASK {
AxisMask::empty()
} else {
AxisMask::from_bits_truncate((!self.0) & INTERIOR_FACE_MASK)
}
}
/// The [`VoxelType`] of this voxel.
pub const fn voxel_type(self) -> VoxelType {
FACES_TO_VOXEL_TYPES[self.0 as usize]
}
// Bitmask indicating what vertices, edges, or faces of the voxel are "free".
pub(crate) const fn feature_mask(self) -> u16 {
FACES_TO_FEATURE_MASKS[self.0 as usize]
}
pub(crate) const fn octant_mask(self) -> u32 {
FACES_TO_OCTANT_MASKS[self.0 as usize]
}
}
/// Information associated to a voxel.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct VoxelData {
/// The temporary index in the internal voxels’ storage.
///
/// This index can be invalidated after a call to [`Voxels::set_voxel`], or
/// [`Voxels::resize_domain`].
pub linear_id: u32,
/// The voxel’s integer grid coordinates.
pub grid_coords: Point<i32>,
/// The voxel’s center position in the local-space of the [`Voxels`] shape it is part of.
pub center: Point<Real>,
/// The voxel’s state, indicating if it’s empty or full.
pub state: VoxelState,
}
/// A shape made of axis-aligned, uniformly sized, cubes (aka. voxels).
///
/// This shape is specialized to handle voxel worlds and voxelized obojects efficiently why ensuring
/// that collision-detection isn’t affected by the so-called "internal edges problem" that can create
/// artifacts when another objects rolls or slides against a flat voxelized surface.
///
/// The internal storage is compact (but not sparse at the moment), storing only one byte per voxel
/// in the allowed domain. This has a generally smaller memory footprint than a mesh representation
/// of the voxels.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct Voxels {
domain_mins: Point<i32>,
domain_maxs: Point<i32>,
states: Vec<VoxelState>, // Somehow switch to a sparse representation?
primitive_geometry: VoxelPrimitiveGeometry,
voxel_size: Vector<Real>,
}
impl Voxels {
/// Initializes a voxel shapes from the voxels grid coordinates.
///
/// Each voxel will have its bottom-left-back corner located at
/// `grid_coordinates * voxel_size`; and its center at `(grid_coordinates + 0.5) * voxel_size`.
pub fn new(
primitive_geometry: VoxelPrimitiveGeometry,
voxel_size: Vector<Real>,
grid_coordinates: &[Point<i32>],
) -> Self {
// Ensure pseudo-balls always use uniform voxel sizes.
let voxel_size = match primitive_geometry {
VoxelPrimitiveGeometry::PseudoBall => Vector::repeat(voxel_size.x),
VoxelPrimitiveGeometry::PseudoCube => voxel_size,
};
let mut domain_mins = grid_coordinates[0];
let mut domain_maxs = grid_coordinates[0];
for vox in grid_coordinates {
domain_mins = domain_mins.inf(vox);
domain_maxs = domain_maxs.sup(vox);
}
domain_maxs += Vector::repeat(1);
let dimensions = domain_maxs - domain_mins;
let voxels_count = dimensions.product();
let mut result = Self {
domain_mins,
domain_maxs,
states: vec![VoxelState::EMPTY; voxels_count as usize],
primitive_geometry,
voxel_size,
};
for vox in grid_coordinates {
let index = result.linear_index(*vox);
result.states[index as usize] = VoxelState::INTERIOR;
}
result.recompute_voxels_data();
result
}
/// Computes a voxels shape from the set of `points`.
///
/// The points are mapped to a regular grid centered at the provided point with smallest
/// coordinates, and with grid cell size equal to `scale`. It is OK if multiple points
/// fall into the same grid cell.
pub fn from_points(
primitive_geometry: VoxelPrimitiveGeometry,
voxel_size: Vector<Real>,
points: &[Point<Real>],
) -> Self {
// Ensure pseudo-balls always use uniform voxel sizes.
let voxel_size = match primitive_geometry {
VoxelPrimitiveGeometry::PseudoBall => Vector::repeat(voxel_size.x),
VoxelPrimitiveGeometry::PseudoCube => voxel_size,
};
let voxels: Vec<_> = points
.iter()
.map(|pt| {
Point::from(
pt.coords
.component_div(&voxel_size)
.map(|x| x.floor() as i32),
)
})
.collect();
Self::new(primitive_geometry, voxel_size, &voxels)
}
// TODO: support a crate like get_size2 (will require support on nalgebra too)?
/// An approximation of the memory usage (in bytes) for this struct plus
/// the memory it allocates dynamically.
pub fn total_memory_size(&self) -> usize {
size_of::<Self>() + self.heap_memory_size()
}
/// An approximation of the memory dynamically-allocated by this struct.
pub fn heap_memory_size(&self) -> usize {
// NOTE: if a new field is added to `Self`, adjust this function result.
let Self {
domain_mins: _,
domain_maxs: _,
states: data,
primitive_geometry: _,
voxel_size: _,
} = self;
data.capacity() * size_of::<VoxelState>()
}
/// The extents of the total axis-aligned volume covered by this [`Voxels`] shape.
///
/// This accounts for all the voxels reserved in the internal buffer of `self`, including empty
/// ones.
pub fn extents(&self) -> Vector<Real> {
self.dimensions()
.cast::<Real>()
.component_mul(&self.voxel_size)
}
/// The center of this shape’s domain (accounting for both empty and filled voxels).
pub fn domain_center(&self) -> Point<Real> {
(self
.domain_mins
.coords
.cast::<Real>()
.component_mul(&self.voxel_size)
+ self.extents() / 2.0)
.into()
}
/// Sets the size of each voxel along each local coordinate axis.
///
/// If [`Self::primitive_geometry`] is [`VoxelPrimitiveGeometry::PseudoBall`], then all voxels
/// must be square, and only `size.x` is taken into account for setting the size.
pub fn set_voxel_size(&mut self, size: Vector<Real>) {
match self.primitive_geometry {
VoxelPrimitiveGeometry::PseudoBall => {
self.voxel_size = Vector::repeat(size.x);
}
VoxelPrimitiveGeometry::PseudoCube => {
self.voxel_size = size;
}
}
}
/// The valid semi-open range of voxel grid indices.
///
/// With `let [mins, maxs] = voxels.domain();` the valid indices along the dimension `i` are
/// all the indices in the range `mins[i]..maxs[i]` (i.e. `maxs[i]` is excluded).
pub fn domain(&self) -> [&Point<i32>; 2] {
[&self.domain_mins, &self.domain_maxs]
}
/// The number of voxels along each coordinate axis.
pub fn dimensions(&self) -> Vector<u32> {
(self.domain_maxs - self.domain_mins).map(|e| e as u32)
}
/// The size of each voxel part this [`Voxels`] shape.
pub fn voxel_size(&self) -> Vector<Real> {
self.voxel_size
}
/// The shape each voxel is assumed to have.
pub fn primitive_geometry(&self) -> VoxelPrimitiveGeometry {
self.primitive_geometry
}
fn recompute_voxels_data(&mut self) {
for i in 0..self.states.len() {
let key = self.voxel_at_id(i as u32);
self.states[i] = self.compute_voxel_state(key);
}
}
/// Scale this shape.
pub fn scaled(mut self, scale: &Vector<Real>) -> Option<Self> {
self.voxel_size.component_mul_assign(scale);
Some(self)
}
/// Sets the voxel at the given grid coordinates, returning `None` if it lies outside [`Self::domain`].
///
/// See [`Self::set_voxel`] for a method that automatically resizes the internal
/// storage of `self` if the key is out of the valid bounds.
pub fn try_set_voxel(&mut self, key: Point<i32>, is_filled: bool) -> Option<VoxelState> {
if key[0] < self.domain_mins[0]
|| key[0] >= self.domain_maxs[0]
|| key[1] < self.domain_mins[1]
|| key[1] >= self.domain_maxs[1]
{
return None;
}
#[cfg(feature = "dim3")]
if key[2] < self.domain_mins[2] || key[2] >= self.domain_maxs[2] {
return None;
}
let id = self.linear_index(key);
let prev = self.states[id as usize];
let new = if is_filled {
VoxelState::INTERIOR
} else {
VoxelState::EMPTY
};
if prev.is_empty() ^ new.is_empty() {
self.states[id as usize] = new;
self.update_voxel_and_neighbors_state(key);
}
Some(prev)
}
/// Inserts a voxel at the given key, even if it is out of the bounds of this shape.
///
/// If `is_filed` is `true` and the key lies out of the bounds on this shape, the internal
/// voxels storage will be resized automatically. If a resize happens, the cost of the insertion
/// is `O(n)` where `n` is the capacity of `self`. If no resize happens, then the cost of
/// insertion is `O(1)`.
///
/// Use [`Self::try_set_voxel`] instead for a version that will be a no-op if the provided
/// coordinates are outside the [`Self::domain`], avoiding potential internal reallocations.
pub fn set_voxel(&mut self, key: Point<i32>, is_filled: bool) -> Option<VoxelState> {
if !self.is_voxel_in_bounds(key) && is_filled {
let dims = self.dimensions();
// Add 10% extra padding.
let extra = dims.map(|k| k * 10 / 100);
let mut new_domain_mins = self.domain_mins;
let mut new_domain_maxs = self.domain_maxs;
for k in 0..DIM {
if key[k] < self.domain_mins[k] {
new_domain_mins[k] = key[k] - extra[k] as i32;
}
if key[k] >= self.domain_maxs[k] {
new_domain_maxs[k] = key[k] + extra[k] as i32 + 1;
}
}
self.resize_domain(new_domain_mins, new_domain_maxs);
self.try_set_voxel(key, is_filled)
} else {
self.try_set_voxel(key, is_filled)
}
}
/// Set the model domain.
///
/// The domain can be smaller or larger than the current one. Voxels in any overlap between
/// the current and new domain will be preserved.
///
/// If for any index `i`, `domain_maxs[i] <= domain_mins[i]`, then the new domain is invalid
/// and this operation will result in a no-op.
pub fn resize_domain(&mut self, domain_mins: Point<i32>, domain_maxs: Point<i32>) {
if self.domain_mins == domain_mins && self.domain_maxs == domain_maxs {
// Nothing to change.
return;
}
if let Some(new_shape) = self.with_resized_domain(domain_mins, domain_maxs) {
*self = new_shape;
}
}
/// Clone this voxels shape with a new size.
///
/// The domain can be smaller or larger than the current one. Voxels in any overlap between
/// the current and new domain will be preserved.
///
/// If for any index `i`, `domain_maxs[i] <= domain_mins[i]`, then the new domain is invalid
/// and this operation returns `None`.
#[must_use]
pub fn with_resized_domain(
&self,
domain_mins: Point<i32>,
domain_maxs: Point<i32>,
) -> Option<Self> {
if self.domain_mins == domain_mins && self.domain_maxs == domain_maxs {
// Nothing to change, just clone as-is.
return Some(self.clone());
}
let new_dim = domain_maxs - domain_mins;
if new_dim.iter().any(|d| *d <= 0) {
log::error!("Invalid domain provided for resizing a voxels shape. New domain: {:?} - {:?}; new domain size: {:?}", domain_mins, domain_maxs, new_dim);
return None;
}
let new_len = new_dim.iter().map(|x| *x as usize).product();
let mut new_shape = Self {
domain_mins,
domain_maxs,
states: vec![VoxelState::EMPTY; new_len],
primitive_geometry: self.primitive_geometry,
voxel_size: self.voxel_size,
};
for i in 0..self.states.len() {
let key = self.voxel_at_id(i as u32);
let new_i = new_shape.linear_index(key);
new_shape.states[new_i as usize] = self.states[i];
}
Some(new_shape)
}
/// Checks if the given key is within [`Self::domain`].
#[cfg(feature = "dim2")]
pub fn is_voxel_in_bounds(&self, key: Point<i32>) -> bool {
key[0] >= self.domain_mins[1]
&& key[0] < self.domain_maxs[0]
&& key[1] >= self.domain_mins[1]
&& key[1] < self.domain_maxs[1]
}
/// Checks if the given key is within [`Self::domain`].
#[cfg(feature = "dim3")]
pub fn is_voxel_in_bounds(&self, key: Point<i32>) -> bool {
key[0] >= self.domain_mins[0]
&& key[0] < self.domain_maxs[0]
&& key[1] >= self.domain_mins[1]
&& key[1] < self.domain_maxs[1]
&& key[2] >= self.domain_mins[2]
&& key[2] < self.domain_maxs[2]
}
fn update_voxel_and_neighbors_state(&mut self, key: Point<i32>) {
let key_id = self.linear_index(key) as usize;
let mut key_data = 0;
let center_is_empty = self.states[key_id].is_empty();
for k in 0..DIM {
if key[k] > self.domain_mins[k] {
let mut left = key;
left[k] -= 1;
let left_id = self.linear_index(left) as usize;
if !self.states[left_id].is_empty() {
if center_is_empty {
self.states[left_id].0 &= !(1 << (k * 2));
} else {
self.states[left_id].0 |= 1 << (k * 2);
key_data |= 1 << (k * 2 + 1);
}
}
}
if key[k] + 1 < self.domain_maxs[k] {
let mut right = key;
right[k] += 1;
let right_id = self.linear_index(right) as usize;
if !self.states[right_id].is_empty() {
if center_is_empty {
self.states[right_id].0 &= !(1 << (k * 2 + 1));
} else {
self.states[right_id].0 |= 1 << (k * 2 + 1);
key_data |= 1 << (k * 2);
}
}
}
}
if !center_is_empty {
self.states[key_id] = VoxelState(key_data);
}
}
/// The AABB of the voxel with the given quantized `key`.
pub fn voxel_aabb(&self, key: Point<i32>) -> Aabb {
let center = self.voxel_center(key);
let hext = self.voxel_size / 2.0;
Aabb::from_half_extents(center, hext)
}
/// Returns the state of a given voxel.
///
/// Panics if the key is out of the bounds defined by [`Self::domain`].
pub fn voxel_state(&self, key: Point<i32>) -> VoxelState {
self.states[self.linear_index(key) as usize]
}
/// Calculates the grid coordinates of the voxel containing the given `point`, regardless
/// of [`Self::domain`].
pub fn voxel_at_point_unchecked(&self, point: Point<Real>) -> Point<i32> {
point
.coords
.component_div(&self.voxel_size)
.map(|x| x.floor() as i32)
.into()
}
/// Gets the key of the voxel containing the given `pt`.
///
/// Note that the returned key might address a voxel that is empty.
/// `None` is returned if the point is out of the domain of `self`.
pub fn voxel_at_point(&self, pt: Point<Real>) -> Option<Point<i32>> {
let quant = self.voxel_at_point_unchecked(pt);
if quant[0] < self.domain_mins[0]
|| quant[1] < self.domain_mins[1]
|| quant[0] >= self.domain_maxs[0]
|| quant[1] >= self.domain_maxs[1]
{
return None;
}
#[cfg(feature = "dim3")]
if quant[2] < self.domain_mins[2] || quant[2] >= self.domain_maxs[2] {
return None;
}
Some(quant)
}
/// Clamps an arbitrary voxel into the valid domain of `self`.
pub fn clamp_voxel(&self, key: Point<i32>) -> Point<i32> {
key.coords
.zip_zip_map(
&self.domain_mins.coords,
&self.domain_maxs.coords,
|k, min, max| k.clamp(min, max - 1),
)
.into()
}
/// The range of grid coordinates of voxels intersecting the given AABB.
///
/// The returned range covers both empty and non-empty voxels, and is not limited to the
/// bounds defined by [`Self::domain`].
/// The range is semi, open, i.e., the range along each dimension `i` is understood as
/// the semi-open interval: `range[0][i]..range[1][i]`.
pub fn voxel_range_intersecting_local_aabb(&self, aabb: &Aabb) -> [Point<i32>; 2] {
let mins = aabb
.mins
.coords
.component_div(&self.voxel_size)
.map(|x| x.floor() as i32);
let maxs = aabb
.maxs
.coords
.component_div(&self.voxel_size)
.map(|x| x.ceil() as i32);
[mins.into(), maxs.into()]
}
/// The AABB of a given range of voxels.
///
/// The AABB is computed independently of [`Self::domain`] and independently of whether
/// the voxels contained within are empty or not.
pub fn voxel_range_aabb(&self, mins: Point<i32>, maxs: Point<i32>) -> Aabb {
Aabb {
mins: mins
.cast::<Real>()
.coords
.component_mul(&self.voxel_size)
.into(),
maxs: maxs
.cast::<Real>()
.coords
.component_mul(&self.voxel_size)
.into(),
}
}
/// Aligns the given AABB with the voxelized grid.
///
/// The aligned is calculated such that the returned AABB has corners lying at the grid
/// intersections (i.e. matches voxel corners) and fully contains the input `aabb`.
pub fn align_aabb_to_grid(&self, aabb: &Aabb) -> Aabb {
let mins = aabb
.mins
.coords
.zip_map(&self.voxel_size, |m, sz| (m / sz).floor() * m)
.into();
let maxs = aabb
.maxs
.coords
.zip_map(&self.voxel_size, |m, sz| (m / sz).ceil() * m)
.into();
Aabb { mins, maxs }
}
/// Iterates through every voxel intersecting the given aabb.
///
/// Returns the voxel’s linearized id, center, and state.
pub fn voxels_intersecting_local_aabb(
&self,
aabb: &Aabb,
) -> impl Iterator<Item = VoxelData> + '_ {
let [mins, maxs] = self.voxel_range_intersecting_local_aabb(aabb);
self.voxels_in_range(mins, maxs)
}
/// The center point of all the voxels in this shape (including empty ones).
///
/// The voxel data associated to each center is provided to determine what kind of voxel
/// it is (and, in particular, if it is empty or full).
pub fn voxels(&self) -> impl Iterator<Item = VoxelData> + '_ {
self.voxels_in_range(self.domain_mins, self.domain_maxs)
}
/// Splits this voxels shape into two subshapes.
///
/// The first subshape contains all the voxels which centers are inside the `aabb`.
/// The second subshape contains all the remaining voxels.
pub fn split_with_box(&self, aabb: &Aabb) -> (Option<Self>, Option<Self>) {
// TODO: optimize this?
let mut in_box = vec![];
let mut rest = vec![];
for vox in self.voxels() {
if !vox.state.is_empty() {
if aabb.contains_local_point(&vox.center) {
in_box.push(vox.center);
} else {
rest.push(vox.center);
}
}
}
let in_box = if !in_box.is_empty() {
Some(Voxels::from_points(
self.primitive_geometry,
self.voxel_size,
&in_box,
))
} else {
None
};
let rest = if !rest.is_empty() {
Some(Voxels::from_points(
self.primitive_geometry,
self.voxel_size,
&rest,
))
} else {
None
};
(in_box, rest)
}
/// Iterate through the data of all the voxels within the given (semi-open) voxel grid indices.
///
/// Note that this yields both empty and non-empty voxels within the range. This does not
/// include any voxel that falls outside [`Self::domain`].
#[cfg(feature = "dim2")]
pub fn voxels_in_range(
&self,
mins: Point<i32>,
maxs: Point<i32>,
) -> impl Iterator<Item = VoxelData> + '_ {
let mins = mins.coords.sup(&self.domain_mins.coords);
let maxs = maxs.coords.inf(&self.domain_maxs.coords);
(mins[0]..maxs[0]).flat_map(move |ix| {
(mins[1]..maxs[1]).map(move |iy| {
let grid_coords = Point::new(ix, iy);
let vid = self.linear_index(grid_coords);
let center =
Vector::new(ix as Real + 0.5, iy as Real + 0.5).component_mul(&self.voxel_size);
VoxelData {
linear_id: vid,
grid_coords,
center: center.into(),
state: self.states[vid as usize],
}
})
})
}
/// Iterate through the data of all the voxels within the given (semi-open) voxel grid indices.
///
/// Note that this yields both empty and non-empty voxels within the range. This does not
/// include any voxel that falls outside [`Self::domain`].
#[cfg(feature = "dim3")]
pub fn voxels_in_range(
&self,
mins: Point<i32>,
maxs: Point<i32>,
) -> impl Iterator<Item = VoxelData> + '_ {
let mins = mins.coords.sup(&self.domain_mins.coords);
let maxs = maxs.coords.inf(&self.domain_maxs.coords);
(mins[0]..maxs[0]).flat_map(move |ix| {
(mins[1]..maxs[1]).flat_map(move |iy| {
(mins[2]..maxs[2]).map(move |iz| {
let grid_coords = Point::new(ix, iy, iz);
let vid = self.linear_index(grid_coords);
let center = Vector::new(ix as Real + 0.5, iy as Real + 0.5, iz as Real + 0.5)
.component_mul(&self.voxel_size)
.into();
VoxelData {
linear_id: vid,
grid_coords,
center,
state: self.states[vid as usize],
}
})
})
})
}
/// The linearized index associated to the given voxel key.
#[cfg(feature = "dim2")]
pub fn linear_index(&self, voxel_key: Point<i32>) -> u32 {
let dims = self.dimensions();
let rel_key = voxel_key - self.domain_mins;
(rel_key.x + rel_key.y * dims[0] as i32) as u32
}
/// The linearized index associated to the given voxel key.
#[cfg(feature = "dim3")]
pub fn linear_index(&self, voxel_key: Point<i32>) -> u32 {
let dims = self.dimensions();
let rel_key = voxel_key - self.domain_mins;
rel_key.x as u32 + rel_key.y as u32 * dims[0] + rel_key.z as u32 * dims[0] * dims[1]
}
/// The key of the voxel at the given linearized index.
#[cfg(feature = "dim2")]
pub fn voxel_at_id(&self, linear_index: u32) -> Point<i32> {
let dim0 = self.domain_maxs[0] - self.domain_mins[0];
let y = linear_index as i32 / dim0;
let x = linear_index as i32 % dim0;
self.domain_mins + Vector::new(x, y)
}
/// The key of the voxel at the given linearized index.
#[cfg(feature = "dim3")]
pub fn voxel_at_id(&self, linear_index: u32) -> Point<i32> {
let dims = self.dimensions();
let d0d1 = dims[0] * dims[1];
let z = linear_index / d0d1;
let y = (linear_index - z * d0d1) / dims[0];
let x = linear_index % dims[0];
self.domain_mins + Vector::new(x as i32, y as i32, z as i32)
}
/// The center of the voxel with the given key.
pub fn voxel_center(&self, key: Point<i32>) -> Point<Real> {
(key.cast::<Real>() + Vector::repeat(0.5))
.coords
.component_mul(&self.voxel_size)
.into()
}
fn compute_voxel_state(&self, key: Point<i32>) -> VoxelState {
if self.states[self.linear_index(key) as usize].is_empty() {
return VoxelState::EMPTY;
}
let mut occupied_faces = 0;
for k in 0..DIM {
let (mut prev, mut next) = (key, key);
prev[k] -= 1;
next[k] += 1;
if key[k] + 1 < self.domain_maxs[k]
&& !self.states[self.linear_index(next) as usize].is_empty()
{
occupied_faces |= 1 << (k * 2);
}
if key[k] > self.domain_mins[k]
&& !self.states[self.linear_index(prev) as usize].is_empty()
{
occupied_faces |= 1 << (k * 2 + 1);
}
}
VoxelState(occupied_faces)
}
}
// NOTE: this code is used to generate the constant tables
// FACES_TO_VOXEL_TYPES, FACES_TO_FEATURE_MASKS, FACES_TO_OCTANT_MASKS.
#[allow(dead_code)]
#[cfg(feature = "dim2")]
#[cfg(test)]
fn gen_const_tables() {
// The `j-th` bit of `faces_adj_to_vtx[i]` is set to 1, if the j-th face of the AABB (based on
// the face order depicted in `AABB::FACES_VERTEX_IDS`) is adjacent to the `i` vertex of the AABB
// (vertices are indexed as per the diagram depicted in the `FACES_VERTEX_IDS` doc.
// Each entry of this will always have exactly 3 bits set.
let mut faces_adj_to_vtx = [0usize; 4];
for fid in 0..4 {
let vids = Aabb::FACES_VERTEX_IDS[fid];
let key = 1 << fid;
faces_adj_to_vtx[vids.0] |= key;
faces_adj_to_vtx[vids.1] |= key;
}
/*
* FACES_TO_VOXEL_TYPES
*/
std::println!("const FACES_TO_VOXEL_TYPES: [VoxelType; 17] = [");
'outer: for i in 0usize..16 {
// If any vertex of the voxel has three faces with no adjacent voxels,
// then the voxel type is Vertex.
for adjs in faces_adj_to_vtx.iter() {
if (*adjs & i) == 0 {
std::println!("VoxelType::Vertex,");
continue 'outer;
}
}
// If one face doesn’t have any adjacent voxel,
// then the voxel type is Face.
for fid in 0..4 {
if ((1 << fid) & i) == 0 {
std::println!("VoxelType::Face,");
continue 'outer;
}
}
}
// Add final entries for special values.
std::println!("VoxelType::Interior,");
std::println!("VoxelType::Empty,");
std::println!("];");
/*
* FACES_TO_FEATURE_MASKS
*/
std::println!("const FACES_TO_FEATURE_MASKS: [u16; 17] = [");
for i in 0usize..16 {
// Each bit set indicates a convex vertex that can lead to collisions.
// The result will be nonzero only for `VoxelType::Vertex` voxels.
let mut vtx_key = 0;
for (vid, adjs) in faces_adj_to_vtx.iter().enumerate() {
if (*adjs & i) == 0 {
vtx_key |= 1 << vid;
}
}
if vtx_key != 0 {
std::println!("0b{:b},", vtx_key as u16);
continue;
}
// Each bit set indicates an exposed face that can lead to collisions.
// The result will be nonzero only for `VoxelType::Face` voxels.
let mut face_key = 0;
for fid in 0..4 {
if ((1 << fid) & i) == 0 {
face_key |= 1 << fid;
}
}
if face_key != 0 {
std::println!("0b{:b},", face_key as u16);
continue;
}
}
std::println!("0b{:b},", u16::MAX);
std::println!("0,");
std::println!("];");
/*
* Faces to octant masks.
*/
std::println!("const FACES_TO_OCTANT_MASKS: [u32; 17] = [");
for i in 0usize..16 {
// First test if we have vertices.
let mut octant_mask = 0;
let mut set_mask = |mask, octant| {
// NOTE: we don’t overwrite any mask already set for the octant.
if (octant_mask >> (octant * 3)) & 0b0111 == 0 {
octant_mask |= mask << (octant * 3);
}
};
for (vid, adjs) in faces_adj_to_vtx.iter().enumerate() {
if (*adjs & i) == 0 {
set_mask(1, vid);
}
}
// This is the index of the normal of the faces given by
// Aabb::FACES_VERTEX_IDS.
const FX: u32 = OctantPattern::FACE_X;
const FY: u32 = OctantPattern::FACE_Y;
const FACE_NORMALS: [u32; 4] = [FX, FX, FY, FY];
#[allow(clippy::needless_range_loop)]
for fid in 0..4 {
if ((1 << fid) & i) == 0 {
let vid = Aabb::FACES_VERTEX_IDS[fid];
let mask = FACE_NORMALS[fid];
set_mask(mask, vid.0);
set_mask(mask, vid.1);
}
}
std::println!("0b{:b},", octant_mask);
}
std::println!("0,");
std::println!("];");
}
// NOTE: this code is used to generate the constant tables
// FACES_TO_VOXEL_TYPES, FACES_TO_FEATURE_MASKS, FACES_TO_OCTANT_MASKS.
#[allow(dead_code)]
#[cfg(feature = "dim3")]
#[cfg(test)]
fn gen_const_tables() {
// The `j-th` bit of `faces_adj_to_vtx[i]` is set to 1, if the j-th face of the AABB (based on
// the face order depicted in `AABB::FACES_VERTEX_IDS`) is adjacent to the `i` vertex of the AABB
// (vertices are indexed as per the diagram depicted in the `FACES_VERTEX_IDS` doc.
// Each entry of this will always have exactly 3 bits set.
let mut faces_adj_to_vtx = [0usize; 8];
// The `j-th` bit of `faces_adj_to_vtx[i]` is set to 1, if the j-th edge of the AABB (based on
// the edge order depicted in `AABB::EDGES_VERTEX_IDS`) is adjacent to the `i` vertex of the AABB
// (vertices are indexed as per the diagram depicted in the `FACES_VERTEX_IDS` doc.
// Each entry of this will always have exactly 2 bits set.
let mut faces_adj_to_edge = [0usize; 12];
for fid in 0..6 {
let vids = Aabb::FACES_VERTEX_IDS[fid];
let key = 1 << fid;
faces_adj_to_vtx[vids.0] |= key;
faces_adj_to_vtx[vids.1] |= key;
faces_adj_to_vtx[vids.2] |= key;
faces_adj_to_vtx[vids.3] |= key;
}
#[allow(clippy::needless_range_loop)]
for eid in 0..12 {
let evids = Aabb::EDGES_VERTEX_IDS[eid];
for fid in 0..6 {
let fvids = Aabb::FACES_VERTEX_IDS[fid];
if (fvids.0 == evids.0
|| fvids.1 == evids.0
|| fvids.2 == evids.0
|| fvids.3 == evids.0)
&& (fvids.0 == evids.1
|| fvids.1 == evids.1
|| fvids.2 == evids.1
|| fvids.3 == evids.1)
{
let key = 1 << fid;
faces_adj_to_edge[eid] |= key;
}
}
}
/*
* FACES_TO_VOXEL_TYPES
*/
std::println!("const FACES_TO_VOXEL_TYPES: [VoxelType; 65] = [");
'outer: for i in 0usize..64 {
// If any vertex of the voxel has three faces with no adjacent voxels,
// then the voxel type is Vertex.
for adjs in faces_adj_to_vtx.iter() {
if (*adjs & i) == 0 {
std::println!("VoxelType::Vertex,");
continue 'outer;
}
}
// If any vertex of the voxel has three faces with no adjacent voxels,
// then the voxel type is Edge.
for adjs in faces_adj_to_edge.iter() {
if (*adjs & i) == 0 {
std::println!("VoxelType::Edge,");
continue 'outer;
}
}
// If one face doesn’t have any adjacent voxel,
// then the voxel type is Face.
for fid in 0..6 {
if ((1 << fid) & i) == 0 {
std::println!("VoxelType::Face,");
continue 'outer;
}
}
}
// Add final entries for special values.
std::println!("VoxelType::Interior,");
std::println!("VoxelType::Empty,");
std::println!("];");
/*
* FACES_TO_FEATURE_MASKS
*/
std::println!("const FACES_TO_FEATURE_MASKS: [u16; 65] = [");
for i in 0usize..64 {
// Each bit set indicates a convex vertex that can lead to collisions.
// The result will be nonzero only for `VoxelType::Vertex` voxels.
let mut vtx_key = 0;
for (vid, adjs) in faces_adj_to_vtx.iter().enumerate() {
if (*adjs & i) == 0 {
vtx_key |= 1 << vid;
}
}
if vtx_key != 0 {
std::println!("0b{:b},", vtx_key as u16);
continue;
}
// Each bit set indicates a convex edge that can lead to collisions.
// The result will be nonzero only for `VoxelType::Edge` voxels.
let mut edge_key = 0;
for (eid, adjs) in faces_adj_to_edge.iter().enumerate() {
if (*adjs & i) == 0 {
edge_key |= 1 << eid;
}
}
if edge_key != 0 {
std::println!("0b{:b},", edge_key as u16);
continue;
}
// Each bit set indicates an exposed face that can lead to collisions.
// The result will be nonzero only for `VoxelType::Face` voxels.
let mut face_key = 0;
for fid in 0..6 {
if ((1 << fid) & i) == 0 {
face_key |= 1 << fid;
}
}
if face_key != 0 {
std::println!("0b{:b},", face_key as u16);
continue;
}
}
std::println!("0b{:b},", u16::MAX);
std::println!("0,");
std::println!("];");
/*
* Faces to octant masks.
*/
std::println!("const FACES_TO_OCTANT_MASKS: [u32; 65] = [");
for i in 0usize..64 {
// First test if we have vertices.
let mut octant_mask = 0;
let mut set_mask = |mask, octant| {
// NOTE: we don’t overwrite any mask already set for the octant.
if (octant_mask >> (octant * 3)) & 0b0111 == 0 {
octant_mask |= mask << (octant * 3);
}
};
for (vid, adjs) in faces_adj_to_vtx.iter().enumerate() {
if (*adjs & i) == 0 {
set_mask(1, vid);
}
}
// This is the index of the axis porting the edges given by
// Aabb::EDGES_VERTEX_IDS.
const EX: u32 = OctantPattern::EDGE_X;
const EY: u32 = OctantPattern::EDGE_Y;
const EZ: u32 = OctantPattern::EDGE_Z;
const EDGE_AXIS: [u32; 12] = [EX, EY, EX, EY, EX, EY, EX, EY, EZ, EZ, EZ, EZ];
for (eid, adjs) in faces_adj_to_edge.iter().enumerate() {
if (*adjs & i) == 0 {
let vid = Aabb::EDGES_VERTEX_IDS[eid];
let mask = EDGE_AXIS[eid];
set_mask(mask, vid.0);
set_mask(mask, vid.1);
}
}
// This is the index of the normal of the faces given by
// Aabb::FACES_VERTEX_IDS.
const FX: u32 = OctantPattern::FACE_X;
const FY: u32 = OctantPattern::FACE_Y;
const FZ: u32 = OctantPattern::FACE_Z;
const FACE_NORMALS: [u32; 6] = [FX, FX, FY, FY, FZ, FZ];
#[allow(clippy::needless_range_loop)]
for fid in 0..6 {
if ((1 << fid) & i) == 0 {
let vid = Aabb::FACES_VERTEX_IDS[fid];
let mask = FACE_NORMALS[fid];
set_mask(mask, vid.0);
set_mask(mask, vid.1);
set_mask(mask, vid.2);
set_mask(mask, vid.3);
}
}
std::println!("0b{:b},", octant_mask);
}
std::println!("0,");
std::println!("];");
}
// Index to the item of FACES_TO_VOXEL_TYPES which identifies interior voxels.
#[cfg(feature = "dim2")]
const INTERIOR_FACE_MASK: u8 = 0b0000_1111;
#[cfg(feature = "dim3")]
const INTERIOR_FACE_MASK: u8 = 0b0011_1111;
// Index to the item of FACES_TO_VOXEL_TYPES which identifies empty voxels.
#[cfg(feature = "dim2")]
const EMPTY_FACE_MASK: u8 = 0b0001_0000;
#[cfg(feature = "dim3")]
const EMPTY_FACE_MASK: u8 = 0b0100_0000;
/// The voxel type deduced from adjacency information.
///
/// See the documentation of [`VoxelType`] for additional information on what each enum variant
/// means.
///
/// In 3D there are 6 neighbor faces => 64 cases + 1 empty case.
#[cfg(feature = "dim3")]
const FACES_TO_VOXEL_TYPES: [VoxelType; 65] = [
VoxelType::Vertex,
VoxelType::Vertex,
VoxelType::Vertex,
VoxelType::Edge,
VoxelType::Vertex,
VoxelType::Vertex,
VoxelType::Vertex,
VoxelType::Edge,
VoxelType::Vertex,
VoxelType::Vertex,
VoxelType::Vertex,
VoxelType::Edge,
VoxelType::Edge,
VoxelType::Edge,
VoxelType::Edge,
VoxelType::Face,
VoxelType::Vertex,
VoxelType::Vertex,
VoxelType::Vertex,
VoxelType::Edge,
VoxelType::Vertex,
VoxelType::Vertex,
VoxelType::Vertex,
VoxelType::Edge,
VoxelType::Vertex,
VoxelType::Vertex,
VoxelType::Vertex,
VoxelType::Edge,
VoxelType::Edge,
VoxelType::Edge,
VoxelType::Edge,
VoxelType::Face,
VoxelType::Vertex,
VoxelType::Vertex,
VoxelType::Vertex,
VoxelType::Edge,
VoxelType::Vertex,
VoxelType::Vertex,
VoxelType::Vertex,
VoxelType::Edge,
VoxelType::Vertex,
VoxelType::Vertex,
VoxelType::Vertex,
VoxelType::Edge,
VoxelType::Edge,
VoxelType::Edge,
VoxelType::Edge,
VoxelType::Face,
VoxelType::Edge,
VoxelType::Edge,
VoxelType::Edge,
VoxelType::Face,
VoxelType::Edge,
VoxelType::Edge,
VoxelType::Edge,
VoxelType::Face,
VoxelType::Edge,
VoxelType::Edge,
VoxelType::Edge,
VoxelType::Face,
VoxelType::Face,
VoxelType::Face,
VoxelType::Face,
VoxelType::Interior,
VoxelType::Empty,
];
/// Indicates the convex features of each voxel that can lead to collisions.
///
/// The interpretation of each bit differs depending on the corresponding voxel type in
/// `FACES_TO_VOXEL_TYPES`:
/// - For `VoxelType::Vertex`: the i-th bit set to `1` indicates that the i-th AABB vertex is convex
/// and might lead to collisions.
/// - For `VoxelType::Edge`: the i-th bit set to `1` indicates that the i-th edge from `Aabb::EDGES_VERTEX_IDS`
/// is convex and might lead to collisions.
/// - For `VoxelType::Face`: the i-th bit set to `1` indicates that the i-th face from `Aabb::FACES_VERTEX_IDS`
/// is exposed and might lead to collisions.
#[cfg(feature = "dim3")]
const FACES_TO_FEATURE_MASKS: [u16; 65] = [
0b11111111,
0b10011001,
0b1100110,
0b1010101,
0b110011,
0b10001,
0b100010,
0b10001,
0b11001100,
0b10001000,
0b1000100,
0b1000100,
0b10101010,
0b10001000,
0b100010,
0b110000,
0b1111,
0b1001,
0b110,
0b101,
0b11,
0b1,
0b10,
0b1,
0b1100,
0b1000,
0b100,
0b100,
0b1010,
0b1000,
0b10,
0b100000,
0b11110000,
0b10010000,
0b1100000,
0b1010000,
0b110000,
0b10000,
0b100000,
0b10000,
0b11000000,
0b10000000,
0b1000000,
0b1000000,
0b10100000,
0b10000000,
0b100000,
0b10000,
0b111100000000,
0b100100000000,
0b11000000000,
0b1100,
0b1100000000,
0b100000000,
0b1000000000,
0b1000,
0b110000000000,
0b100000000000,
0b10000000000,
0b100,
0b11,
0b10,
0b1,
0b1111111111111111,
0,
];
/// Each octant is assigned three contiguous bits.
#[cfg(feature = "dim3")]
const FACES_TO_OCTANT_MASKS: [u32; 65] = [
0b1001001001001001001001,
0b1010010001001010010001,
0b10001001010010001001010,
0b10010010010010010010010,
0b11011001001011011001001,
0b11111010001011111010001,
0b111011001010111011001010,
0b111111010010111111010010,
0b1001011011001001011011,
0b1010111011001010111011,
0b10001011111010001011111,
0b10010111111010010111111,
0b11011011011011011011011,
0b11111111011011111111011,
0b111011011111111011011111,
0b111111111111111111111111,
0b100100100100001001001001,
0b100110110100001010010001,
0b110100100110010001001010,
0b110110110110010010010010,
0b101101100100011011001001,
0b101000110100011111010001,
0b101100110111011001010,
0b110110111111010010,
0b100100101101001001011011,
0b100110000101001010111011,
0b110100101000010001011111,
0b110110000000010010111111,
0b101101101101011011011011,
0b101000000101011111111011,
0b101101000111011011111,
0b111111111111,
0b1001001001100100100100,
0b1010010001100110110100,
0b10001001010110100100110,
0b10010010010110110110110,
0b11011001001101101100100,
0b11111010001101000110100,
0b111011001010000101100110,
0b111111010010000000110110,
0b1001011011100100101101,
0b1010111011100110000101,
0b10001011111110100101000,
0b10010111111110110000000,
0b11011011011101101101101,
0b11111111011101000000101,
0b111011011111000101101000,
0b111111111111000000000000,
0b100100100100100100100100,
0b100110110100100110110100,
0b110100100110110100100110,
0b110110110110110110110110,
0b101101100100101101100100,
0b101000110100101000110100,
0b101100110000101100110,
0b110110000000110110,
0b100100101101100100101101,
0b100110000101100110000101,
0b110100101000110100101000,
0b110110000000110110000000,
0b101101101101101101101101,
0b101000000101101000000101,
0b101101000000101101000,
0b0,
0,
];
#[cfg(feature = "dim2")]
const FACES_TO_VOXEL_TYPES: [VoxelType; 17] = [
VoxelType::Vertex,
VoxelType::Vertex,
VoxelType::Vertex,
VoxelType::Face,
VoxelType::Vertex,
VoxelType::Vertex,
VoxelType::Vertex,
VoxelType::Face,
VoxelType::Vertex,
VoxelType::Vertex,
VoxelType::Vertex,
VoxelType::Face,
VoxelType::Face,
VoxelType::Face,
VoxelType::Face,
VoxelType::Interior,
VoxelType::Empty,
];
#[cfg(feature = "dim2")]
const FACES_TO_FEATURE_MASKS: [u16; 17] = [
0b1111,
0b1001,
0b110,
0b1100,
0b11,
0b1,
0b10,
0b1000,
0b1100,
0b1000,
0b100,
0b100,
0b11,
0b10,
0b1,
0b1111111111111111,
0,
];
// NOTE: in 2D we are also using 3 bits per octant even though we technically only need two.
// This keeps some collision-detection easier by avoiding some special-casing.
#[cfg(feature = "dim2")]
const FACES_TO_OCTANT_MASKS: [u32; 17] = [
0b1001001001,
0b1011011001,
0b11001001011,
0b11011011011,
0b10010001001,
0b10000011001,
0b10001011,
0b11011,
0b1001010010,
0b1011000010,
0b11001010000,
0b11011000000,
0b10010010010,
0b10000000010,
0b10010000,
0b0,
0,
];
#[cfg(test)]
mod test {
#[test]
fn gen_const_tables() {
super::gen_const_tables();
}
}