parry3d/transformation/mesh_intersection/
triangle_triangle_intersection.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
use super::EPS;
use crate::math::{Point, Real, Vector};
use crate::query;
use crate::query::PointQuery;
use crate::shape::{FeatureId, Segment, Triangle};
use crate::transformation::polygon_intersection::{
    PolygonIntersectionTolerances, PolylinePointLocation,
};
use crate::utils::WBasis;
use na::Point2;

#[derive(Copy, Clone, Debug, Default)]
pub struct TriangleTriangleIntersectionPoint {
    pub p1: Point<Real>,
}

#[derive(Clone, Debug)]
pub enum TriangleTriangleIntersection {
    Segment {
        a: TriangleTriangleIntersectionPoint,
        b: TriangleTriangleIntersectionPoint,
    },
    Polygon(Vec<TriangleTriangleIntersectionPoint>),
}

impl Default for TriangleTriangleIntersection {
    fn default() -> Self {
        Self::Segment {
            a: Default::default(),
            b: Default::default(),
        }
    }
}

pub(crate) fn triangle_triangle_intersection(
    tri1: &Triangle,
    tri2: &Triangle,
    collinearity_epsilon: Real,
) -> Option<TriangleTriangleIntersection> {
    let normal1 = tri1.robust_normal();
    let normal2 = tri2.robust_normal();

    if let Some(intersection_dir) = normal1.cross(&normal2).try_normalize(1.0e-6) {
        let mut range1 = [
            (Real::MAX, Point::origin(), FeatureId::Unknown),
            (-Real::MAX, Point::origin(), FeatureId::Unknown),
        ];
        let mut range2 = [
            (Real::MAX, Point::origin(), FeatureId::Unknown),
            (-Real::MAX, Point::origin(), FeatureId::Unknown),
        ];

        let hits1 = [
            segment_plane_intersection(&tri2.a, &normal2, &Segment::new(tri1.a, tri1.b), 0, (0, 1))
                .map(|(p, feat)| (intersection_dir.dot(&p.coords), p, feat)),
            segment_plane_intersection(&tri2.a, &normal2, &Segment::new(tri1.b, tri1.c), 1, (1, 2))
                .map(|(p, feat)| (intersection_dir.dot(&p.coords), p, feat)),
            segment_plane_intersection(&tri2.a, &normal2, &Segment::new(tri1.c, tri1.a), 2, (2, 0))
                .map(|(p, feat)| (intersection_dir.dot(&p.coords), p, feat)),
        ];

        for hit1 in hits1.into_iter().flatten() {
            if hit1.0 < range1[0].0 {
                range1[0] = hit1;
            }
            if hit1.0 > range1[1].0 {
                range1[1] = hit1;
            }
        }

        if range1[0].0 >= range1[1].0 {
            // The first triangle doesn’t intersect the second plane.
            return None;
        }

        let hits2 = [
            segment_plane_intersection(&tri1.a, &normal1, &Segment::new(tri2.a, tri2.b), 0, (0, 1))
                .map(|(p, feat)| (intersection_dir.dot(&p.coords), p, feat)),
            segment_plane_intersection(&tri1.a, &normal1, &Segment::new(tri2.b, tri2.c), 1, (1, 2))
                .map(|(p, feat)| (intersection_dir.dot(&p.coords), p, feat)),
            segment_plane_intersection(&tri1.a, &normal1, &Segment::new(tri2.c, tri2.a), 2, (2, 0))
                .map(|(p, feat)| (intersection_dir.dot(&p.coords), p, feat)),
        ];

        for hit2 in hits2.into_iter().flatten() {
            if hit2.0 < range2[0].0 {
                range2[0] = hit2;
            }
            if hit2.0 > range2[1].0 {
                range2[1] = hit2;
            }
        }

        if range2[0].0 >= range2[1].0 {
            // The second triangle doesn’t intersect the first plane.
            return None;
        }

        if range1[1].0 <= range2[0].0 + EPS || range2[1].0 <= range1[0].0 + EPS {
            // The two triangles intersect each others’ plane, but these intersections are disjoint.
            return None;
        }

        let a = if range2[0].0 > range1[0].0 + EPS {
            TriangleTriangleIntersectionPoint { p1: range2[0].1 }
        } else {
            TriangleTriangleIntersectionPoint { p1: range1[0].1 }
        };

        let b = if range2[1].0 < range1[1].0 - EPS {
            TriangleTriangleIntersectionPoint { p1: range2[1].1 }
        } else {
            TriangleTriangleIntersectionPoint { p1: range1[1].1 }
        };

        Some(TriangleTriangleIntersection::Segment { a, b })
    } else {
        let unit_normal2 = normal2.normalize();
        if (tri1.a - tri2.a).dot(&unit_normal2) < EPS {
            let basis = unit_normal2.orthonormal_basis();
            let proj = |vect: Vector<Real>| Point2::new(vect.dot(&basis[0]), vect.dot(&basis[1]));

            let mut intersections = vec![];

            let pts1 = tri1.vertices();
            let pts2 = tri2.vertices();
            let poly1 = [
                proj(tri1.a - tri2.a),
                proj(tri1.b - tri2.a),
                proj(tri1.c - tri2.a),
            ];
            let poly2 = [
                proj(Vector::zeros()), // = proj(tri2.a - tri2.a)
                proj(tri2.b - tri2.a),
                proj(tri2.c - tri2.a),
            ];

            let convert_loc = |loc, pts: &[Point<Real>; 3]| match loc {
                PolylinePointLocation::OnVertex(vid) => (FeatureId::Vertex(vid as u32), pts[vid]),
                PolylinePointLocation::OnEdge(vid1, vid2, bcoords) => (
                    match (vid1, vid2) {
                        (0, 1) | (1, 0) => FeatureId::Edge(0),
                        (1, 2) | (2, 1) => FeatureId::Edge(1),
                        (2, 0) | (0, 2) => FeatureId::Edge(2),
                        _ => unreachable!(),
                    },
                    pts[vid1] * bcoords[0] + pts[vid2].coords * bcoords[1],
                ),
            };

            crate::transformation::convex_polygons_intersection_with_tolerances(
                &poly1,
                &poly2,
                PolygonIntersectionTolerances {
                    collinearity_epsilon,
                },
                |pt1, pt2| {
                    let intersection = match (pt1, pt2) {
                        (Some(loc1), Some(loc2)) => {
                            let (_f1, p1) = convert_loc(loc1, pts1);
                            let (_f2, _p2) = convert_loc(loc2, pts2);
                            TriangleTriangleIntersectionPoint { p1 }
                        }
                        (Some(loc1), None) => {
                            let (_f1, p1) = convert_loc(loc1, pts1);
                            TriangleTriangleIntersectionPoint { p1 }
                        }
                        (None, Some(loc2)) => {
                            let (_f2, p2) = convert_loc(loc2, pts2);
                            TriangleTriangleIntersectionPoint { p1: p2 }
                        }
                        (None, None) => unreachable!(),
                    };
                    intersections.push(intersection);
                },
            );

            // NOTE: set this to `true` to automatically check if the computed intersection is
            //       valid, and print debug infos if it is not.
            const DEBUG_INTERSECTIONS: bool = false;
            if DEBUG_INTERSECTIONS {
                debug_check_intersections(tri1, tri2, &basis, &poly1, &poly2, &intersections);
            }

            Some(TriangleTriangleIntersection::Polygon(intersections))
        } else {
            None
        }
    }
}

fn segment_plane_intersection(
    plane_center: &Point<Real>,
    plane_normal: &Vector<Real>,
    segment: &Segment,
    eid: u32,
    vids: (u32, u32),
) -> Option<(Point<Real>, FeatureId)> {
    let dir = segment.b - segment.a;
    let dir_norm = dir.norm();

    let time_of_impact =
        query::details::line_toi_with_halfspace(plane_center, plane_normal, &segment.a, &dir)?;
    let scaled_toi = time_of_impact * dir_norm;

    if scaled_toi < -EPS || scaled_toi > dir_norm + EPS {
        None
    } else if scaled_toi <= EPS {
        Some((segment.a, FeatureId::Vertex(vids.0)))
    } else if scaled_toi >= dir_norm - EPS {
        Some((segment.b, FeatureId::Vertex(vids.1)))
    } else {
        Some((segment.a + dir * time_of_impact, FeatureId::Edge(eid)))
    }
}

/// Prints debug information if the calulated intersection of two triangles is detected to be
/// invalid.
///
/// If the intersection is valid, this prints nothing. If it isn’t valid, this will print a few
/// lines to copy/paste into the Desmos online graphing tool (for visual debugging), as well as
/// some rust code to add to the `tris` array in the `intersect_triangle_common_vertex` test for
/// regression checking.
fn debug_check_intersections(
    tri1: &Triangle,
    tri2: &Triangle,
    basis: &[na::Vector3<Real>; 2],
    poly1: &[Point2<Real>], // Projection of tri1 on the basis `basis1` with the origin at tri2.a.
    poly2: &[Point2<Real>], // Projection of tri2 on the basis `basis2` with the origin at tri2.a.
    intersections: &[TriangleTriangleIntersectionPoint],
) {
    let proj = |vect: Vector<Real>| Point2::new(vect.dot(&basis[0]), vect.dot(&basis[1]));
    let mut incorrect = false;
    for pt in intersections {
        if !tri1
            .project_local_point(&pt.p1, false)
            .is_inside_eps(&pt.p1, 1.0e-5)
        {
            incorrect = true;
            break;
        }

        if !tri2
            .project_local_point(&pt.p1, false)
            .is_inside_eps(&pt.p1, 1.0e-5)
        {
            incorrect = true;
            break;
        }
    }

    if incorrect {
        let proj_inter: Vec<_> = intersections.iter().map(|p| proj(p.p1 - tri2.a)).collect();
        println!("-------- (copy/paste the following on Desmos graphing)");
        println!("A=({:.2},{:.2})", poly1[0].x, poly1[0].y);
        println!("B=({:.2},{:.2})", poly1[1].x, poly1[1].y);
        println!("C=({:.2},{:.2})", poly1[2].x, poly1[2].y);
        println!("D=({:.2},{:.2})", poly2[0].x, poly2[0].y);
        println!("E=({:.2},{:.2})", poly2[1].x, poly2[1].y);
        println!("F=({:.2},{:.2})", poly2[2].x, poly2[2].y);

        let lbls = ["G", "H", "I", "J", "K", "L", "M", "N", "O"];
        for (i, inter) in proj_inter.iter().enumerate() {
            println!("{}=({:.2},{:.2})", lbls[i], inter.x, inter.y);
        }

        // polygons
        println!("X=polygon(A,B,C)");
        println!("Y=polygon(D,E,F)");
        print!("Z=polygon({}", lbls[0]);
        for lbl in lbls.iter().skip(1) {
            print!(",{}", lbl);
        }
        println!(")");

        println!("~~~~~~~ (copy/paste the folliwing input in the `intersect_triangle_common_vertex` test)");
        println!("(Triangle::new(");
        for pt1 in poly1 {
            println!("    Point2::new({},{}),", pt1.x, pt1.y);
        }
        println!("),");
        println!("Triangle::new(");
        for pt2 in poly2 {
            println!("    Point2::new({},{}),", pt2.x, pt2.y);
        }
        println!("),),");
    }
}