parry3d/transformation/
polygon_intersection.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
use log::error;
use na::Point2;
use ordered_float::OrderedFloat;

use crate::math::Real;
use crate::shape::{SegmentPointLocation, Triangle, TriangleOrientation};
use crate::utils::hashmap::HashMap;
use crate::utils::{self, SegmentsIntersection};

#[derive(Copy, Clone, PartialEq, Debug)]
pub struct PolygonIntersectionTolerances {
    /// The epsilon given to [`Triangle::orientation2d`] for detecting if three points are collinear.
    ///
    /// Three points forming a triangle with an area smaller than this value are considered collinear.
    pub collinearity_epsilon: Real,
}

impl Default for PolygonIntersectionTolerances {
    fn default() -> Self {
        Self {
            collinearity_epsilon: Real::EPSILON * 100.0,
        }
    }
}

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum InFlag {
    // The current neighborhood of the traversed point on poly1 is inside poly2.
    Poly1IsInside,
    // The current neighborhood of the traversed point on poly2 is inside poly1.
    Poly2IsInside,
    Unknown,
}

/// Location of a point on a polyline.
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum PolylinePointLocation {
    /// Point on a vertex.
    OnVertex(usize),
    /// Point on an edge.
    OnEdge(usize, usize, [Real; 2]),
}

impl PolylinePointLocation {
    /// The barycentric coordinates such that the point in the intersected segment `[a, b]` is
    /// equal to `a + (b - a) * centered_bcoords`.
    fn centered_bcoords(&self, edge: [usize; 2]) -> Real {
        match self {
            Self::OnVertex(vid) => {
                if *vid == edge[0] {
                    0.0
                } else {
                    1.0
                }
            }
            Self::OnEdge(ia, ib, bcoords) => {
                assert_eq!([*ia, *ib], edge);
                bcoords[1]
            }
        }
    }

    /// Computes the point corresponding to this location.
    pub fn to_point(&self, pts: &[Point2<Real>]) -> Point2<Real> {
        match self {
            PolylinePointLocation::OnVertex(i) => pts[*i],
            PolylinePointLocation::OnEdge(i1, i2, bcoords) => {
                pts[*i1] * bcoords[0] + pts[*i2].coords * bcoords[1]
            }
        }
    }

    fn from_segment_point_location(a: usize, b: usize, loc: SegmentPointLocation) -> Self {
        match loc {
            SegmentPointLocation::OnVertex(0) => PolylinePointLocation::OnVertex(a),
            SegmentPointLocation::OnVertex(1) => PolylinePointLocation::OnVertex(b),
            SegmentPointLocation::OnVertex(_) => unreachable!(),
            SegmentPointLocation::OnEdge(bcoords) => PolylinePointLocation::OnEdge(a, b, bcoords),
        }
    }
}

/// Computes the intersection points of two convex polygons.
///
/// The resulting polygon is output vertex-by-vertex to the `out` vector.
/// This is the same as [`convex_polygons_intersection_points_with_tolerances`] with the tolerances
/// set to their default values.
pub fn convex_polygons_intersection_points(
    poly1: &[Point2<Real>],
    poly2: &[Point2<Real>],
    out: &mut Vec<Point2<Real>>,
) {
    convex_polygons_intersection_points_with_tolerances(poly1, poly2, Default::default(), out);
}

/// Computes the intersection points of two convex polygons.
///
/// The resulting polygon is output vertex-by-vertex to the `out` vector.
pub fn convex_polygons_intersection_points_with_tolerances(
    poly1: &[Point2<Real>],
    poly2: &[Point2<Real>],
    tolerances: PolygonIntersectionTolerances,
    out: &mut Vec<Point2<Real>>,
) {
    convex_polygons_intersection_with_tolerances(poly1, poly2, tolerances, |loc1, loc2| {
        if let Some(loc1) = loc1 {
            out.push(loc1.to_point(poly1))
        } else if let Some(loc2) = loc2 {
            out.push(loc2.to_point(poly2))
        }
    })
}

/// Computes the intersection of two convex polygons.
///
/// The resulting polygon is output vertex-by-vertex to the `out` closure.
/// This is the same as [`convex_polygons_intersection_with_tolerances`] with the tolerances
/// set to their default values.
pub fn convex_polygons_intersection(
    poly1: &[Point2<Real>],
    poly2: &[Point2<Real>],
    out: impl FnMut(Option<PolylinePointLocation>, Option<PolylinePointLocation>),
) {
    convex_polygons_intersection_with_tolerances(poly1, poly2, Default::default(), out)
}

/// Computes the intersection of two convex polygons.
///
/// The resulting polygon is output vertex-by-vertex to the `out` closure.
pub fn convex_polygons_intersection_with_tolerances(
    poly1: &[Point2<Real>],
    poly2: &[Point2<Real>],
    tolerances: PolygonIntersectionTolerances,
    mut out: impl FnMut(Option<PolylinePointLocation>, Option<PolylinePointLocation>),
) {
    // TODO: this does not handle correctly the case where the
    // first triangle of the polygon is degenerate.
    let rev1 = poly1.len() > 2
        && Triangle::orientation2d(
            &poly1[0],
            &poly1[1],
            &poly1[2],
            tolerances.collinearity_epsilon,
        ) == TriangleOrientation::Clockwise;
    let rev2 = poly2.len() > 2
        && Triangle::orientation2d(
            &poly2[0],
            &poly2[1],
            &poly2[2],
            tolerances.collinearity_epsilon,
        ) == TriangleOrientation::Clockwise;

    let len1 = poly1.len();
    let len2 = poly2.len();

    let mut i1 = 0; // Current index on the first polyline.
    let mut i2 = 0; // Current index on the second polyline.
    let mut nsteps1 = 0; // Number of times we advanced on the first polyline.
    let mut nsteps2 = 0; // Number of times we advanced on the second polyline.
    let mut inflag = InFlag::Unknown;
    let mut first_point_found = false;

    // Quit when both adv. indices have cycled, or one has cycled twice.
    while (nsteps1 < len1 || nsteps2 < len2) && nsteps1 < 2 * len1 && nsteps2 < 2 * len2 {
        let (a1, b1) = if rev1 {
            ((len1 - i1) % len1, len1 - i1 - 1)
        } else {
            // Point before `i1`, and point at `i1`.
            ((i1 + len1 - 1) % len1, i1)
        };

        let (a2, b2) = if rev2 {
            ((len2 - i2) % len2, len2 - i2 - 1)
        } else {
            // Point before `i2`, and point at `i2`.
            ((i2 + len2 - 1) % len2, i2)
        };

        let dir_edge1 = poly1[b1] - poly1[a1];
        let dir_edge2 = poly2[b2] - poly2[a2];

        // If there is an intersection, this will determine if the edge from poly2 is transitioning
        // Left -> Right (CounterClockwise) or Right -> Left (Clockwise) relative to the edge from
        // poly1.
        let cross = Triangle::orientation2d(
            &Point2::origin(),
            &Point2::from(dir_edge1),
            &Point2::from(dir_edge2),
            tolerances.collinearity_epsilon,
        );
        // Determines if b1 is left (CounterClockwise) or right (Clockwise) of [a2, b2].
        let a2_b2_b1 = Triangle::orientation2d(
            &poly2[a2],
            &poly2[b2],
            &poly1[b1],
            tolerances.collinearity_epsilon,
        );
        // Determines if b2 is left (CounterClockwise) or right (Clockwise) of [a1, b1].
        let a1_b1_b2 = Triangle::orientation2d(
            &poly1[a1],
            &poly1[b1],
            &poly2[b2],
            tolerances.collinearity_epsilon,
        );

        // If edge1 & edge2 intersect, update inflag.
        if let Some(inter) = utils::segments_intersection2d(
            &poly1[a1],
            &poly1[b1],
            &poly2[a2],
            &poly2[b2],
            tolerances.collinearity_epsilon,
        ) {
            match inter {
                SegmentsIntersection::Point { loc1, loc2 } => {
                    if a2_b2_b1 != TriangleOrientation::Degenerate
                        && a1_b1_b2 != TriangleOrientation::Degenerate
                    {
                        let loc1 = PolylinePointLocation::from_segment_point_location(a1, b1, loc1);
                        let loc2 = PolylinePointLocation::from_segment_point_location(a2, b2, loc2);
                        out(Some(loc1), Some(loc2));

                        if inflag == InFlag::Unknown && !first_point_found {
                            // This is the first point, reset the number of steps since we are
                            // effectively starting the actual traversal now.
                            nsteps1 = 0;
                            nsteps2 = 0;
                            first_point_found = true;
                        }

                        if a2_b2_b1 == TriangleOrientation::CounterClockwise {
                            // The point b1 is left of [a2, b2] so it is inside poly2 ???
                            inflag = InFlag::Poly1IsInside;
                        } else if a1_b1_b2 == TriangleOrientation::CounterClockwise {
                            // The point b2 is left of [a1, b1] so it is inside poly1 ???
                            inflag = InFlag::Poly2IsInside;
                        }
                    }
                }
                SegmentsIntersection::Segment {
                    first_loc1,
                    first_loc2,
                    second_loc1,
                    second_loc2,
                } => {
                    if dir_edge1.dot(&dir_edge2) < 0.0 {
                        // Special case: edge1 & edge2 overlap and oppositely oriented. The
                        //               intersection is degenerate (equals to a segment). Output
                        //               the segment and exit.
                        let loc1 =
                            PolylinePointLocation::from_segment_point_location(a1, b1, first_loc1);
                        let loc2 =
                            PolylinePointLocation::from_segment_point_location(a2, b2, first_loc2);
                        out(Some(loc1), Some(loc2));

                        let loc1 =
                            PolylinePointLocation::from_segment_point_location(a1, b1, second_loc1);
                        let loc2 =
                            PolylinePointLocation::from_segment_point_location(a2, b2, second_loc2);
                        out(Some(loc1), Some(loc2));
                        return;
                    }
                }
            }
        }

        // Special case: edge1 & edge2 parallel and separated.
        if cross == TriangleOrientation::Degenerate
            && a2_b2_b1 == TriangleOrientation::Clockwise
            && a1_b1_b2 == TriangleOrientation::Clockwise
        // TODO: should this also include any case where a2_b2_b1 and a1_b1_b2 are both different from Degenerate?
        {
            return;
        }
        // Special case: edge1 & edge2 collinear.
        else if cross == TriangleOrientation::Degenerate
            && a2_b2_b1 == TriangleOrientation::Degenerate
            && a1_b1_b2 == TriangleOrientation::Degenerate
        {
            // Advance but do not output point.
            if inflag == InFlag::Poly1IsInside {
                i2 = advance(i2, &mut nsteps2, len2);
            } else {
                i1 = advance(i1, &mut nsteps1, len1);
            }
        }
        // Generic cases.
        else if cross == TriangleOrientation::CounterClockwise {
            if a1_b1_b2 == TriangleOrientation::CounterClockwise {
                if inflag == InFlag::Poly1IsInside {
                    out(Some(PolylinePointLocation::OnVertex(b1)), None)
                }
                i1 = advance(i1, &mut nsteps1, len1);
            } else {
                if inflag == InFlag::Poly2IsInside {
                    out(None, Some(PolylinePointLocation::OnVertex(b2)))
                }
                i2 = advance(i2, &mut nsteps2, len2);
            }
        } else {
            // We have cross == TriangleOrientation::Clockwise.
            if a2_b2_b1 == TriangleOrientation::CounterClockwise {
                if inflag == InFlag::Poly2IsInside {
                    out(None, Some(PolylinePointLocation::OnVertex(b2)))
                }
                i2 = advance(i2, &mut nsteps2, len2);
            } else {
                if inflag == InFlag::Poly1IsInside {
                    out(Some(PolylinePointLocation::OnVertex(b1)), None)
                }
                i1 = advance(i1, &mut nsteps1, len1);
            }
        }
    }

    if !first_point_found {
        // No intersection: test if one polygon completely encloses the other.
        let mut orient = TriangleOrientation::Degenerate;
        let mut ok = true;

        // TODO: avoid the O(n²) complexity.
        for a in 0..len1 {
            for p2 in poly2 {
                let a_minus_1 = (a + len1 - 1) % len1; // a - 1
                let new_orient = Triangle::orientation2d(
                    &poly1[a_minus_1],
                    &poly1[a],
                    p2,
                    tolerances.collinearity_epsilon,
                );

                if orient == TriangleOrientation::Degenerate {
                    orient = new_orient
                } else if new_orient != orient && new_orient != TriangleOrientation::Degenerate {
                    ok = false;
                    break;
                }
            }
        }

        if ok {
            for mut b in 0..len2 {
                if rev2 {
                    b = len2 - b - 1;
                }
                out(None, Some(PolylinePointLocation::OnVertex(b)))
            }
        }

        let mut orient = TriangleOrientation::Degenerate;
        let mut ok = true;

        // TODO: avoid the O(n²) complexity.
        for b in 0..len2 {
            for p1 in poly1 {
                let b_minus_1 = (b + len2 - 1) % len2; // = b - 1
                let new_orient = Triangle::orientation2d(
                    &poly2[b_minus_1],
                    &poly2[b],
                    p1,
                    tolerances.collinearity_epsilon,
                );

                if orient == TriangleOrientation::Degenerate {
                    orient = new_orient
                } else if new_orient != orient && new_orient != TriangleOrientation::Degenerate {
                    ok = false;
                    break;
                }
            }
        }

        if ok {
            for mut a in 0..len1 {
                if rev1 {
                    a = len1 - a - 1;
                }
                out(Some(PolylinePointLocation::OnVertex(a)), None)
            }
        }
    }
}

#[inline]
fn advance(a: usize, aa: &mut usize, n: usize) -> usize {
    *aa += 1;
    (a + 1) % n
}

#[derive(thiserror::Error, Debug)]
pub enum PolygonsIntersectionError {
    #[error("Infinite loop detected; input polygons are ill-formed.")]
    InfiniteLoop,
}

/// Compute intersections between two polygons that may be non-convex but that must not self-intersect.
///
/// The input polygons are assumed to not self-intersect, and to be oriented counter-clockwise.
///
/// The resulting polygon is output vertex-by-vertex to the `out` closure.
/// If two `None` are given to the `out` closure, then one connected component of the intersection
/// polygon is complete.
///
/// If the polygons are known to be convex, use [`convex_polygons_intersection_points`] instead for better
/// performances.
pub fn polygons_intersection_points(
    poly1: &[Point2<Real>],
    poly2: &[Point2<Real>],
) -> Result<Vec<Vec<Point2<Real>>>, PolygonsIntersectionError> {
    let mut result = vec![];
    let mut curr_poly = vec![];
    polygons_intersection(poly1, poly2, |loc1, loc2| {
        if let Some(loc1) = loc1 {
            curr_poly.push(loc1.to_point(poly1))
        } else if let Some(loc2) = loc2 {
            curr_poly.push(loc2.to_point(poly2))
        } else if !curr_poly.is_empty() {
            result.push(std::mem::take(&mut curr_poly));
        }
    })?;

    Ok(result)
}

/// Compute intersections between two polygons that may be non-convex but that must not self-intersect.
///
/// The input polygons are assumed to not self-intersect, and to be oriented counter-clockwise.
///
/// The resulting polygon is output vertex-by-vertex to the `out` closure.
/// If two `None` are given to the `out` closure, then one connected component of the intersection
/// polygon is complete.
///
/// If the polygons are known to be convex, use [`convex_polygons_intersection`] instead for better
/// performances.
pub fn polygons_intersection(
    poly1: &[Point2<Real>],
    poly2: &[Point2<Real>],
    mut out: impl FnMut(Option<PolylinePointLocation>, Option<PolylinePointLocation>),
) -> Result<(), PolygonsIntersectionError> {
    let tolerances = PolygonIntersectionTolerances::default();

    #[derive(Debug)]
    struct ToTraverse {
        poly: usize,
        edge: EdgeId,
    }

    let (intersections, num_intersections) =
        compute_sorted_edge_intersections(poly1, poly2, tolerances.collinearity_epsilon);
    let mut visited = vec![false; num_intersections];
    let segment = |eid: EdgeId, poly: &[Point2<Real>]| [poly[eid], poly[(eid + 1) % poly.len()]];

    // Traverse all the intersections.
    for inters in intersections[0].values() {
        for inter in inters {
            if visited[inter.id] {
                continue;
            }

            // We found an intersection we haven’t visited yet, traverse the loop, alternating
            // between poly1 and poly2 when reaching an intersection.
            let [a1, b1] = segment(inter.edges[0], poly1);
            let [a2, b2] = segment(inter.edges[1], poly2);
            let poly_to_traverse =
                match Triangle::orientation2d(&a1, &b1, &a2, tolerances.collinearity_epsilon) {
                    TriangleOrientation::Clockwise => 1,
                    TriangleOrientation::CounterClockwise => 0,
                    TriangleOrientation::Degenerate => {
                        match Triangle::orientation2d(
                            &a1,
                            &b1,
                            &b2,
                            tolerances.collinearity_epsilon,
                        ) {
                            TriangleOrientation::Clockwise => 0,
                            TriangleOrientation::CounterClockwise => 1,
                            TriangleOrientation::Degenerate => {
                                log::debug!("Unhandled edge-edge overlap case.");
                                0
                            }
                        }
                    }
                };

            #[derive(Debug)]
            enum TraversalStatus {
                OnVertex,
                OnIntersection(usize),
            }

            let polys = [poly1, poly2];
            let mut to_traverse = ToTraverse {
                poly: poly_to_traverse,
                edge: inter.edges[poly_to_traverse],
            };

            let mut status = TraversalStatus::OnIntersection(inter.id);

            for loop_id in 0.. {
                if loop_id > poly1.len() * poly2.len() {
                    return Err(PolygonsIntersectionError::InfiniteLoop);
                }

                let empty = Vec::new();
                let edge_inters = intersections[to_traverse.poly]
                    .get(&to_traverse.edge)
                    .unwrap_or(&empty);

                match status {
                    TraversalStatus::OnIntersection(inter_id) => {
                        let (curr_inter_pos, curr_inter) = edge_inters
                            .iter()
                            .enumerate()
                            .find(|(_, inter)| inter.id == inter_id)
                            .unwrap_or_else(|| unreachable!());

                        if visited[curr_inter.id] {
                            // We already saw this intersection: we looped back to the start of
                            // the intersection polygon.
                            out(None, None);
                            break;
                        }

                        out(Some(curr_inter.locs[0]), Some(curr_inter.locs[1]));
                        visited[curr_inter.id] = true;

                        if curr_inter_pos + 1 < edge_inters.len() {
                            // There are other intersections after this one.
                            // Move forward to the next intersection point and move on to traversing
                            // the other polygon.
                            let next_inter = &edge_inters[curr_inter_pos + 1];
                            to_traverse.poly = (to_traverse.poly + 1) % 2;
                            to_traverse.edge = next_inter.edges[to_traverse.poly];
                            status = TraversalStatus::OnIntersection(next_inter.id);
                        } else {
                            // This was the last intersection, move to the next vertex on the
                            // same polygon.
                            to_traverse.edge =
                                (to_traverse.edge + 1) % polys[to_traverse.poly].len();
                            status = TraversalStatus::OnVertex;
                        }
                    }
                    TraversalStatus::OnVertex => {
                        let location = PolylinePointLocation::OnVertex(to_traverse.edge);

                        if to_traverse.poly == 0 {
                            out(Some(location), None);
                        } else {
                            out(None, Some(location))
                        };

                        if let Some(first_intersection) = edge_inters.first() {
                            // Jump on the first intersection and move on to the other polygon.
                            to_traverse.poly = (to_traverse.poly + 1) % 2;
                            to_traverse.edge = first_intersection.edges[to_traverse.poly];
                            status = TraversalStatus::OnIntersection(first_intersection.id);
                        } else {
                            // Move forward to the next vertex/edge on the same polygon.
                            to_traverse.edge =
                                (to_traverse.edge + 1) % polys[to_traverse.poly].len();
                        }
                    }
                }
            }
        }
    }

    // If there are no intersection, check if one polygon is inside the other.
    if intersections[0].is_empty() {
        if utils::point_in_poly2d(&poly1[0], poly2) {
            for pt_id in 0..poly1.len() {
                out(Some(PolylinePointLocation::OnVertex(pt_id)), None)
            }
            out(None, None);
        } else if utils::point_in_poly2d(&poly2[0], poly1) {
            for pt_id in 0..poly2.len() {
                out(None, Some(PolylinePointLocation::OnVertex(pt_id)))
            }
            out(None, None);
        }
    }

    Ok(())
}

type EdgeId = usize;
type IntersectionId = usize;

#[derive(Copy, Clone, Debug)]
struct IntersectionPoint {
    id: IntersectionId,
    edges: [EdgeId; 2],
    locs: [PolylinePointLocation; 2],
}

fn compute_sorted_edge_intersections(
    poly1: &[Point2<Real>],
    poly2: &[Point2<Real>],
    eps: Real,
) -> ([HashMap<EdgeId, Vec<IntersectionPoint>>; 2], usize) {
    let mut inter1: HashMap<EdgeId, Vec<IntersectionPoint>> = HashMap::default();
    let mut inter2: HashMap<EdgeId, Vec<IntersectionPoint>> = HashMap::default();
    let mut id = 0;

    // Find the intersections.
    // TODO: this is a naive O(n²) check. Could use an acceleration structure for large polygons.
    for i1 in 0..poly1.len() {
        let j1 = (i1 + 1) % poly1.len();

        for i2 in 0..poly2.len() {
            let j2 = (i2 + 1) % poly2.len();

            let Some(inter) =
                utils::segments_intersection2d(&poly1[i1], &poly1[j1], &poly2[i2], &poly2[j2], eps)
            else {
                continue;
            };

            match inter {
                SegmentsIntersection::Point { loc1, loc2 } => {
                    let loc1 = PolylinePointLocation::from_segment_point_location(i1, j1, loc1);
                    let loc2 = PolylinePointLocation::from_segment_point_location(i2, j2, loc2);
                    let intersection = IntersectionPoint {
                        id,
                        edges: [i1, i2],
                        locs: [loc1, loc2],
                    };
                    inter1.entry(i1).or_default().push(intersection);
                    inter2.entry(i2).or_default().push(intersection);
                    id += 1;
                }
                SegmentsIntersection::Segment { .. } => {
                    // TODO
                    log::debug!(
                        "Collinear segment-segment intersections not properly handled yet."
                    );
                }
            }
        }
    }

    // Sort the intersections.
    for inters in inter1.values_mut() {
        inters.sort_by_key(|a| {
            let edge = [a.edges[0], (a.edges[0] + 1) % poly1.len()];
            OrderedFloat(a.locs[0].centered_bcoords(edge))
        });
    }

    for inters in inter2.values_mut() {
        inters.sort_by_key(|a| {
            let edge = [a.edges[1], (a.edges[1] + 1) % poly2.len()];
            OrderedFloat(a.locs[1].centered_bcoords(edge))
        });
    }

    ([inter1, inter2], id)
}

#[cfg(all(test, feature = "dim2"))]
mod test {
    use crate::query::PointQuery;
    use crate::shape::Triangle;
    use crate::transformation::convex_polygons_intersection_points_with_tolerances;
    use crate::transformation::polygon_intersection::PolygonIntersectionTolerances;
    use na::Point2;

    #[test]
    fn intersect_triangle_common_vertex() {
        let tris = [
            (
                Triangle::new(
                    Point2::new(-0.0008759537858568062, -2.0103871966663305),
                    Point2::new(0.3903908709629763, -1.3421764825890266),
                    Point2::new(1.3380817875388151, -2.0098007857739013),
                ),
                Triangle::new(
                    Point2::new(0.0, -0.0),
                    Point2::new(-0.0008759537858568062, -2.0103871966663305),
                    Point2::new(1.9991979155226394, -2.009511242880474),
                ),
            ),
            (
                Triangle::new(
                    Point2::new(0.7319315811016305, -0.00004046981523721891),
                    Point2::new(2.0004914907008944, -0.00011061077714557787),
                    Point2::new(1.1848406021956144, -0.8155712451545468),
                ),
                Triangle::new(
                    Point2::new(0.0, 0.0),
                    Point2::new(0.00011061077714557787, -2.000024893134292),
                    Point2::new(2.0004914907008944, -0.00011061077714557787),
                ),
            ),
            (
                Triangle::new(
                    Point2::new(-0.000049995168258705205, -0.9898801451981707),
                    Point2::new(0.0, -0.0),
                    Point2::new(0.583013294019752, -1.4170136900568633),
                ),
                Triangle::new(
                    Point2::new(0.0, -0.0),
                    Point2::new(-0.00010101395240669591, -2.000027389553894),
                    Point2::new(2.000372544168497, 0.00010101395240669591),
                ),
            ),
            (
                Triangle::new(
                    Point2::new(-0.940565646581769, -0.939804943675256),
                    Point2::new(0.0, -0.0),
                    Point2::new(-0.001533592366792066, -0.9283586484736431),
                ),
                Triangle::new(
                    Point2::new(0.0, -0.0),
                    Point2::new(-2.00752629829582, -2.0059026672784825),
                    Point2::new(-0.0033081650580626698, -2.0025945022204197),
                ),
            ),
        ];

        for (tri1, tri2) in tris {
            let mut inter = Vec::new();
            let tolerances = PolygonIntersectionTolerances {
                collinearity_epsilon: 1.0e-5,
            };
            convex_polygons_intersection_points_with_tolerances(
                tri1.vertices(),
                tri2.vertices(),
                tolerances,
                &mut inter,
            );

            println!("----------");
            println!("inter: {:?}", inter);
            println!(
                "tri1 is in tri2: {}",
                tri1.vertices().iter().all(|pt| tri2
                    .project_local_point(pt, false)
                    .is_inside_eps(pt, 1.0e-5))
            );
            println!(
                "tri2 is in tri1: {}",
                tri2.vertices().iter().all(|pt| tri1
                    .project_local_point(pt, false)
                    .is_inside_eps(pt, 1.0e-5))
            );
            for pt in &inter {
                let proj1 = tri1.project_local_point(&pt, false);
                let proj2 = tri2.project_local_point(&pt, false);
                assert!(proj1.is_inside_eps(&pt, 1.0e-5));
                assert!(proj2.is_inside_eps(&pt, 1.0e-5));
            }
        }
    }
}