parry3d/transformation/polygon_intersection.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
use log::error;
use na::Point2;
use ordered_float::OrderedFloat;
use crate::math::Real;
use crate::shape::{SegmentPointLocation, Triangle, TriangleOrientation};
use crate::utils::hashmap::HashMap;
use crate::utils::{self, SegmentsIntersection};
#[derive(Copy, Clone, PartialEq, Debug)]
pub struct PolygonIntersectionTolerances {
/// The epsilon given to [`Triangle::orientation2d`] for detecting if three points are collinear.
///
/// Three points forming a triangle with an area smaller than this value are considered collinear.
pub collinearity_epsilon: Real,
}
impl Default for PolygonIntersectionTolerances {
fn default() -> Self {
Self {
collinearity_epsilon: Real::EPSILON * 100.0,
}
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum InFlag {
// The current neighborhood of the traversed point on poly1 is inside poly2.
Poly1IsInside,
// The current neighborhood of the traversed point on poly2 is inside poly1.
Poly2IsInside,
Unknown,
}
/// Location of a point on a polyline.
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum PolylinePointLocation {
/// Point on a vertex.
OnVertex(usize),
/// Point on an edge.
OnEdge(usize, usize, [Real; 2]),
}
impl PolylinePointLocation {
/// The barycentric coordinates such that the point in the intersected segment `[a, b]` is
/// equal to `a + (b - a) * centered_bcoords`.
fn centered_bcoords(&self, edge: [usize; 2]) -> Real {
match self {
Self::OnVertex(vid) => {
if *vid == edge[0] {
0.0
} else {
1.0
}
}
Self::OnEdge(ia, ib, bcoords) => {
assert_eq!([*ia, *ib], edge);
bcoords[1]
}
}
}
/// Computes the point corresponding to this location.
pub fn to_point(&self, pts: &[Point2<Real>]) -> Point2<Real> {
match self {
PolylinePointLocation::OnVertex(i) => pts[*i],
PolylinePointLocation::OnEdge(i1, i2, bcoords) => {
pts[*i1] * bcoords[0] + pts[*i2].coords * bcoords[1]
}
}
}
fn from_segment_point_location(a: usize, b: usize, loc: SegmentPointLocation) -> Self {
match loc {
SegmentPointLocation::OnVertex(0) => PolylinePointLocation::OnVertex(a),
SegmentPointLocation::OnVertex(1) => PolylinePointLocation::OnVertex(b),
SegmentPointLocation::OnVertex(_) => unreachable!(),
SegmentPointLocation::OnEdge(bcoords) => PolylinePointLocation::OnEdge(a, b, bcoords),
}
}
}
/// Computes the intersection points of two convex polygons.
///
/// The resulting polygon is output vertex-by-vertex to the `out` vector.
/// This is the same as [`convex_polygons_intersection_points_with_tolerances`] with the tolerances
/// set to their default values.
pub fn convex_polygons_intersection_points(
poly1: &[Point2<Real>],
poly2: &[Point2<Real>],
out: &mut Vec<Point2<Real>>,
) {
convex_polygons_intersection_points_with_tolerances(poly1, poly2, Default::default(), out);
}
/// Computes the intersection points of two convex polygons.
///
/// The resulting polygon is output vertex-by-vertex to the `out` vector.
pub fn convex_polygons_intersection_points_with_tolerances(
poly1: &[Point2<Real>],
poly2: &[Point2<Real>],
tolerances: PolygonIntersectionTolerances,
out: &mut Vec<Point2<Real>>,
) {
convex_polygons_intersection_with_tolerances(poly1, poly2, tolerances, |loc1, loc2| {
if let Some(loc1) = loc1 {
out.push(loc1.to_point(poly1))
} else if let Some(loc2) = loc2 {
out.push(loc2.to_point(poly2))
}
})
}
/// Computes the intersection of two convex polygons.
///
/// The resulting polygon is output vertex-by-vertex to the `out` closure.
/// This is the same as [`convex_polygons_intersection_with_tolerances`] with the tolerances
/// set to their default values.
pub fn convex_polygons_intersection(
poly1: &[Point2<Real>],
poly2: &[Point2<Real>],
out: impl FnMut(Option<PolylinePointLocation>, Option<PolylinePointLocation>),
) {
convex_polygons_intersection_with_tolerances(poly1, poly2, Default::default(), out)
}
/// Computes the intersection of two convex polygons.
///
/// The resulting polygon is output vertex-by-vertex to the `out` closure.
pub fn convex_polygons_intersection_with_tolerances(
poly1: &[Point2<Real>],
poly2: &[Point2<Real>],
tolerances: PolygonIntersectionTolerances,
mut out: impl FnMut(Option<PolylinePointLocation>, Option<PolylinePointLocation>),
) {
// TODO: this does not handle correctly the case where the
// first triangle of the polygon is degenerate.
let rev1 = poly1.len() > 2
&& Triangle::orientation2d(
&poly1[0],
&poly1[1],
&poly1[2],
tolerances.collinearity_epsilon,
) == TriangleOrientation::Clockwise;
let rev2 = poly2.len() > 2
&& Triangle::orientation2d(
&poly2[0],
&poly2[1],
&poly2[2],
tolerances.collinearity_epsilon,
) == TriangleOrientation::Clockwise;
let len1 = poly1.len();
let len2 = poly2.len();
let mut i1 = 0; // Current index on the first polyline.
let mut i2 = 0; // Current index on the second polyline.
let mut nsteps1 = 0; // Number of times we advanced on the first polyline.
let mut nsteps2 = 0; // Number of times we advanced on the second polyline.
let mut inflag = InFlag::Unknown;
let mut first_point_found = false;
// Quit when both adv. indices have cycled, or one has cycled twice.
while (nsteps1 < len1 || nsteps2 < len2) && nsteps1 < 2 * len1 && nsteps2 < 2 * len2 {
let (a1, b1) = if rev1 {
((len1 - i1) % len1, len1 - i1 - 1)
} else {
// Point before `i1`, and point at `i1`.
((i1 + len1 - 1) % len1, i1)
};
let (a2, b2) = if rev2 {
((len2 - i2) % len2, len2 - i2 - 1)
} else {
// Point before `i2`, and point at `i2`.
((i2 + len2 - 1) % len2, i2)
};
let dir_edge1 = poly1[b1] - poly1[a1];
let dir_edge2 = poly2[b2] - poly2[a2];
// If there is an intersection, this will determine if the edge from poly2 is transitioning
// Left -> Right (CounterClockwise) or Right -> Left (Clockwise) relative to the edge from
// poly1.
let cross = Triangle::orientation2d(
&Point2::origin(),
&Point2::from(dir_edge1),
&Point2::from(dir_edge2),
tolerances.collinearity_epsilon,
);
// Determines if b1 is left (CounterClockwise) or right (Clockwise) of [a2, b2].
let a2_b2_b1 = Triangle::orientation2d(
&poly2[a2],
&poly2[b2],
&poly1[b1],
tolerances.collinearity_epsilon,
);
// Determines if b2 is left (CounterClockwise) or right (Clockwise) of [a1, b1].
let a1_b1_b2 = Triangle::orientation2d(
&poly1[a1],
&poly1[b1],
&poly2[b2],
tolerances.collinearity_epsilon,
);
// If edge1 & edge2 intersect, update inflag.
if let Some(inter) = utils::segments_intersection2d(
&poly1[a1],
&poly1[b1],
&poly2[a2],
&poly2[b2],
tolerances.collinearity_epsilon,
) {
match inter {
SegmentsIntersection::Point { loc1, loc2 } => {
if a2_b2_b1 != TriangleOrientation::Degenerate
&& a1_b1_b2 != TriangleOrientation::Degenerate
{
let loc1 = PolylinePointLocation::from_segment_point_location(a1, b1, loc1);
let loc2 = PolylinePointLocation::from_segment_point_location(a2, b2, loc2);
out(Some(loc1), Some(loc2));
if inflag == InFlag::Unknown && !first_point_found {
// This is the first point, reset the number of steps since we are
// effectively starting the actual traversal now.
nsteps1 = 0;
nsteps2 = 0;
first_point_found = true;
}
if a2_b2_b1 == TriangleOrientation::CounterClockwise {
// The point b1 is left of [a2, b2] so it is inside poly2 ???
inflag = InFlag::Poly1IsInside;
} else if a1_b1_b2 == TriangleOrientation::CounterClockwise {
// The point b2 is left of [a1, b1] so it is inside poly1 ???
inflag = InFlag::Poly2IsInside;
}
}
}
SegmentsIntersection::Segment {
first_loc1,
first_loc2,
second_loc1,
second_loc2,
} => {
if dir_edge1.dot(&dir_edge2) < 0.0 {
// Special case: edge1 & edge2 overlap and oppositely oriented. The
// intersection is degenerate (equals to a segment). Output
// the segment and exit.
let loc1 =
PolylinePointLocation::from_segment_point_location(a1, b1, first_loc1);
let loc2 =
PolylinePointLocation::from_segment_point_location(a2, b2, first_loc2);
out(Some(loc1), Some(loc2));
let loc1 =
PolylinePointLocation::from_segment_point_location(a1, b1, second_loc1);
let loc2 =
PolylinePointLocation::from_segment_point_location(a2, b2, second_loc2);
out(Some(loc1), Some(loc2));
return;
}
}
}
}
// Special case: edge1 & edge2 parallel and separated.
if cross == TriangleOrientation::Degenerate
&& a2_b2_b1 == TriangleOrientation::Clockwise
&& a1_b1_b2 == TriangleOrientation::Clockwise
// TODO: should this also include any case where a2_b2_b1 and a1_b1_b2 are both different from Degenerate?
{
return;
}
// Special case: edge1 & edge2 collinear.
else if cross == TriangleOrientation::Degenerate
&& a2_b2_b1 == TriangleOrientation::Degenerate
&& a1_b1_b2 == TriangleOrientation::Degenerate
{
// Advance but do not output point.
if inflag == InFlag::Poly1IsInside {
i2 = advance(i2, &mut nsteps2, len2);
} else {
i1 = advance(i1, &mut nsteps1, len1);
}
}
// Generic cases.
else if cross == TriangleOrientation::CounterClockwise {
if a1_b1_b2 == TriangleOrientation::CounterClockwise {
if inflag == InFlag::Poly1IsInside {
out(Some(PolylinePointLocation::OnVertex(b1)), None)
}
i1 = advance(i1, &mut nsteps1, len1);
} else {
if inflag == InFlag::Poly2IsInside {
out(None, Some(PolylinePointLocation::OnVertex(b2)))
}
i2 = advance(i2, &mut nsteps2, len2);
}
} else {
// We have cross == TriangleOrientation::Clockwise.
if a2_b2_b1 == TriangleOrientation::CounterClockwise {
if inflag == InFlag::Poly2IsInside {
out(None, Some(PolylinePointLocation::OnVertex(b2)))
}
i2 = advance(i2, &mut nsteps2, len2);
} else {
if inflag == InFlag::Poly1IsInside {
out(Some(PolylinePointLocation::OnVertex(b1)), None)
}
i1 = advance(i1, &mut nsteps1, len1);
}
}
}
if !first_point_found {
// No intersection: test if one polygon completely encloses the other.
let mut orient = TriangleOrientation::Degenerate;
let mut ok = true;
// TODO: avoid the O(n²) complexity.
for a in 0..len1 {
for p2 in poly2 {
let a_minus_1 = (a + len1 - 1) % len1; // a - 1
let new_orient = Triangle::orientation2d(
&poly1[a_minus_1],
&poly1[a],
p2,
tolerances.collinearity_epsilon,
);
if orient == TriangleOrientation::Degenerate {
orient = new_orient
} else if new_orient != orient && new_orient != TriangleOrientation::Degenerate {
ok = false;
break;
}
}
}
if ok {
for mut b in 0..len2 {
if rev2 {
b = len2 - b - 1;
}
out(None, Some(PolylinePointLocation::OnVertex(b)))
}
}
let mut orient = TriangleOrientation::Degenerate;
let mut ok = true;
// TODO: avoid the O(n²) complexity.
for b in 0..len2 {
for p1 in poly1 {
let b_minus_1 = (b + len2 - 1) % len2; // = b - 1
let new_orient = Triangle::orientation2d(
&poly2[b_minus_1],
&poly2[b],
p1,
tolerances.collinearity_epsilon,
);
if orient == TriangleOrientation::Degenerate {
orient = new_orient
} else if new_orient != orient && new_orient != TriangleOrientation::Degenerate {
ok = false;
break;
}
}
}
if ok {
for mut a in 0..len1 {
if rev1 {
a = len1 - a - 1;
}
out(Some(PolylinePointLocation::OnVertex(a)), None)
}
}
}
}
#[inline]
fn advance(a: usize, aa: &mut usize, n: usize) -> usize {
*aa += 1;
(a + 1) % n
}
#[derive(thiserror::Error, Debug)]
pub enum PolygonsIntersectionError {
#[error("Infinite loop detected; input polygons are ill-formed.")]
InfiniteLoop,
}
/// Compute intersections between two polygons that may be non-convex but that must not self-intersect.
///
/// The input polygons are assumed to not self-intersect, and to be oriented counter-clockwise.
///
/// The resulting polygon is output vertex-by-vertex to the `out` closure.
/// If two `None` are given to the `out` closure, then one connected component of the intersection
/// polygon is complete.
///
/// If the polygons are known to be convex, use [`convex_polygons_intersection_points`] instead for better
/// performances.
pub fn polygons_intersection_points(
poly1: &[Point2<Real>],
poly2: &[Point2<Real>],
) -> Result<Vec<Vec<Point2<Real>>>, PolygonsIntersectionError> {
let mut result = vec![];
let mut curr_poly = vec![];
polygons_intersection(poly1, poly2, |loc1, loc2| {
if let Some(loc1) = loc1 {
curr_poly.push(loc1.to_point(poly1))
} else if let Some(loc2) = loc2 {
curr_poly.push(loc2.to_point(poly2))
} else if !curr_poly.is_empty() {
result.push(std::mem::take(&mut curr_poly));
}
})?;
Ok(result)
}
/// Compute intersections between two polygons that may be non-convex but that must not self-intersect.
///
/// The input polygons are assumed to not self-intersect, and to be oriented counter-clockwise.
///
/// The resulting polygon is output vertex-by-vertex to the `out` closure.
/// If two `None` are given to the `out` closure, then one connected component of the intersection
/// polygon is complete.
///
/// If the polygons are known to be convex, use [`convex_polygons_intersection`] instead for better
/// performances.
pub fn polygons_intersection(
poly1: &[Point2<Real>],
poly2: &[Point2<Real>],
mut out: impl FnMut(Option<PolylinePointLocation>, Option<PolylinePointLocation>),
) -> Result<(), PolygonsIntersectionError> {
let tolerances = PolygonIntersectionTolerances::default();
#[derive(Debug)]
struct ToTraverse {
poly: usize,
edge: EdgeId,
}
let (intersections, num_intersections) =
compute_sorted_edge_intersections(poly1, poly2, tolerances.collinearity_epsilon);
let mut visited = vec![false; num_intersections];
let segment = |eid: EdgeId, poly: &[Point2<Real>]| [poly[eid], poly[(eid + 1) % poly.len()]];
// Traverse all the intersections.
for inters in intersections[0].values() {
for inter in inters {
if visited[inter.id] {
continue;
}
// We found an intersection we haven’t visited yet, traverse the loop, alternating
// between poly1 and poly2 when reaching an intersection.
let [a1, b1] = segment(inter.edges[0], poly1);
let [a2, b2] = segment(inter.edges[1], poly2);
let poly_to_traverse =
match Triangle::orientation2d(&a1, &b1, &a2, tolerances.collinearity_epsilon) {
TriangleOrientation::Clockwise => 1,
TriangleOrientation::CounterClockwise => 0,
TriangleOrientation::Degenerate => {
match Triangle::orientation2d(
&a1,
&b1,
&b2,
tolerances.collinearity_epsilon,
) {
TriangleOrientation::Clockwise => 0,
TriangleOrientation::CounterClockwise => 1,
TriangleOrientation::Degenerate => {
log::debug!("Unhandled edge-edge overlap case.");
0
}
}
}
};
#[derive(Debug)]
enum TraversalStatus {
OnVertex,
OnIntersection(usize),
}
let polys = [poly1, poly2];
let mut to_traverse = ToTraverse {
poly: poly_to_traverse,
edge: inter.edges[poly_to_traverse],
};
let mut status = TraversalStatus::OnIntersection(inter.id);
for loop_id in 0.. {
if loop_id > poly1.len() * poly2.len() {
return Err(PolygonsIntersectionError::InfiniteLoop);
}
let empty = Vec::new();
let edge_inters = intersections[to_traverse.poly]
.get(&to_traverse.edge)
.unwrap_or(&empty);
match status {
TraversalStatus::OnIntersection(inter_id) => {
let (curr_inter_pos, curr_inter) = edge_inters
.iter()
.enumerate()
.find(|(_, inter)| inter.id == inter_id)
.unwrap_or_else(|| unreachable!());
if visited[curr_inter.id] {
// We already saw this intersection: we looped back to the start of
// the intersection polygon.
out(None, None);
break;
}
out(Some(curr_inter.locs[0]), Some(curr_inter.locs[1]));
visited[curr_inter.id] = true;
if curr_inter_pos + 1 < edge_inters.len() {
// There are other intersections after this one.
// Move forward to the next intersection point and move on to traversing
// the other polygon.
let next_inter = &edge_inters[curr_inter_pos + 1];
to_traverse.poly = (to_traverse.poly + 1) % 2;
to_traverse.edge = next_inter.edges[to_traverse.poly];
status = TraversalStatus::OnIntersection(next_inter.id);
} else {
// This was the last intersection, move to the next vertex on the
// same polygon.
to_traverse.edge =
(to_traverse.edge + 1) % polys[to_traverse.poly].len();
status = TraversalStatus::OnVertex;
}
}
TraversalStatus::OnVertex => {
let location = PolylinePointLocation::OnVertex(to_traverse.edge);
if to_traverse.poly == 0 {
out(Some(location), None);
} else {
out(None, Some(location))
};
if let Some(first_intersection) = edge_inters.first() {
// Jump on the first intersection and move on to the other polygon.
to_traverse.poly = (to_traverse.poly + 1) % 2;
to_traverse.edge = first_intersection.edges[to_traverse.poly];
status = TraversalStatus::OnIntersection(first_intersection.id);
} else {
// Move forward to the next vertex/edge on the same polygon.
to_traverse.edge =
(to_traverse.edge + 1) % polys[to_traverse.poly].len();
}
}
}
}
}
}
// If there are no intersection, check if one polygon is inside the other.
if intersections[0].is_empty() {
if utils::point_in_poly2d(&poly1[0], poly2) {
for pt_id in 0..poly1.len() {
out(Some(PolylinePointLocation::OnVertex(pt_id)), None)
}
out(None, None);
} else if utils::point_in_poly2d(&poly2[0], poly1) {
for pt_id in 0..poly2.len() {
out(None, Some(PolylinePointLocation::OnVertex(pt_id)))
}
out(None, None);
}
}
Ok(())
}
type EdgeId = usize;
type IntersectionId = usize;
#[derive(Copy, Clone, Debug)]
struct IntersectionPoint {
id: IntersectionId,
edges: [EdgeId; 2],
locs: [PolylinePointLocation; 2],
}
fn compute_sorted_edge_intersections(
poly1: &[Point2<Real>],
poly2: &[Point2<Real>],
eps: Real,
) -> ([HashMap<EdgeId, Vec<IntersectionPoint>>; 2], usize) {
let mut inter1: HashMap<EdgeId, Vec<IntersectionPoint>> = HashMap::default();
let mut inter2: HashMap<EdgeId, Vec<IntersectionPoint>> = HashMap::default();
let mut id = 0;
// Find the intersections.
// TODO: this is a naive O(n²) check. Could use an acceleration structure for large polygons.
for i1 in 0..poly1.len() {
let j1 = (i1 + 1) % poly1.len();
for i2 in 0..poly2.len() {
let j2 = (i2 + 1) % poly2.len();
let Some(inter) =
utils::segments_intersection2d(&poly1[i1], &poly1[j1], &poly2[i2], &poly2[j2], eps)
else {
continue;
};
match inter {
SegmentsIntersection::Point { loc1, loc2 } => {
let loc1 = PolylinePointLocation::from_segment_point_location(i1, j1, loc1);
let loc2 = PolylinePointLocation::from_segment_point_location(i2, j2, loc2);
let intersection = IntersectionPoint {
id,
edges: [i1, i2],
locs: [loc1, loc2],
};
inter1.entry(i1).or_default().push(intersection);
inter2.entry(i2).or_default().push(intersection);
id += 1;
}
SegmentsIntersection::Segment { .. } => {
// TODO
log::debug!(
"Collinear segment-segment intersections not properly handled yet."
);
}
}
}
}
// Sort the intersections.
for inters in inter1.values_mut() {
inters.sort_by_key(|a| {
let edge = [a.edges[0], (a.edges[0] + 1) % poly1.len()];
OrderedFloat(a.locs[0].centered_bcoords(edge))
});
}
for inters in inter2.values_mut() {
inters.sort_by_key(|a| {
let edge = [a.edges[1], (a.edges[1] + 1) % poly2.len()];
OrderedFloat(a.locs[1].centered_bcoords(edge))
});
}
([inter1, inter2], id)
}
#[cfg(all(test, feature = "dim2"))]
mod test {
use crate::query::PointQuery;
use crate::shape::Triangle;
use crate::transformation::convex_polygons_intersection_points_with_tolerances;
use crate::transformation::polygon_intersection::PolygonIntersectionTolerances;
use na::Point2;
#[test]
fn intersect_triangle_common_vertex() {
let tris = [
(
Triangle::new(
Point2::new(-0.0008759537858568062, -2.0103871966663305),
Point2::new(0.3903908709629763, -1.3421764825890266),
Point2::new(1.3380817875388151, -2.0098007857739013),
),
Triangle::new(
Point2::new(0.0, -0.0),
Point2::new(-0.0008759537858568062, -2.0103871966663305),
Point2::new(1.9991979155226394, -2.009511242880474),
),
),
(
Triangle::new(
Point2::new(0.7319315811016305, -0.00004046981523721891),
Point2::new(2.0004914907008944, -0.00011061077714557787),
Point2::new(1.1848406021956144, -0.8155712451545468),
),
Triangle::new(
Point2::new(0.0, 0.0),
Point2::new(0.00011061077714557787, -2.000024893134292),
Point2::new(2.0004914907008944, -0.00011061077714557787),
),
),
(
Triangle::new(
Point2::new(-0.000049995168258705205, -0.9898801451981707),
Point2::new(0.0, -0.0),
Point2::new(0.583013294019752, -1.4170136900568633),
),
Triangle::new(
Point2::new(0.0, -0.0),
Point2::new(-0.00010101395240669591, -2.000027389553894),
Point2::new(2.000372544168497, 0.00010101395240669591),
),
),
(
Triangle::new(
Point2::new(-0.940565646581769, -0.939804943675256),
Point2::new(0.0, -0.0),
Point2::new(-0.001533592366792066, -0.9283586484736431),
),
Triangle::new(
Point2::new(0.0, -0.0),
Point2::new(-2.00752629829582, -2.0059026672784825),
Point2::new(-0.0033081650580626698, -2.0025945022204197),
),
),
];
for (tri1, tri2) in tris {
let mut inter = Vec::new();
let tolerances = PolygonIntersectionTolerances {
collinearity_epsilon: 1.0e-5,
};
convex_polygons_intersection_points_with_tolerances(
tri1.vertices(),
tri2.vertices(),
tolerances,
&mut inter,
);
println!("----------");
println!("inter: {:?}", inter);
println!(
"tri1 is in tri2: {}",
tri1.vertices().iter().all(|pt| tri2
.project_local_point(pt, false)
.is_inside_eps(pt, 1.0e-5))
);
println!(
"tri2 is in tri1: {}",
tri2.vertices().iter().all(|pt| tri1
.project_local_point(pt, false)
.is_inside_eps(pt, 1.0e-5))
);
for pt in &inter {
let proj1 = tri1.project_local_point(&pt, false);
let proj2 = tri2.project_local_point(&pt, false);
assert!(proj1.is_inside_eps(&pt, 1.0e-5));
assert!(proj2.is_inside_eps(&pt, 1.0e-5));
}
}
}
}