parry3d/transformation/vhacd/vhacd.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
// Rust port, with modifications, of https://github.com/kmammou/v-hacd/blob/master/src/VHACD_Lib/src/VHACD.cpp
// By Khaled Mamou
//
// # License of the original C++ code:
// > Copyright (c) 2011 Khaled Mamou (kmamou at gmail dot com)
// > All rights reserved.
// >
// >
// > Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
// >
// > 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
// >
// > 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
// >
// > 3. The names of the contributors may not be used to endorse or promote products derived from this software without specific prior written permission.
// >
// > THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
use crate::math::{Point, Real, Vector, DIM};
use crate::transformation::vhacd::VHACDParameters;
use crate::transformation::voxelization::{VoxelSet, VoxelizedVolume};
use std::sync::Arc;
#[cfg(feature = "dim2")]
type ConvexHull = Vec<Point<Real>>;
#[cfg(feature = "dim3")]
type ConvexHull = (Vec<Point<Real>>, Vec<[u32; 3]>);
#[derive(Copy, Clone, Debug)]
pub(crate) struct CutPlane {
pub abc: Vector<Real>,
pub d: Real,
pub axis: u8,
pub index: u32,
}
/// Approximate convex decomposition using the VHACD algorithm.
pub struct VHACD {
// raycast_mesh: Option<RaycastMesh>,
voxel_parts: Vec<VoxelSet>,
volume_ch0: Real,
max_concavity: Real,
}
impl VHACD {
/// Decompose the given polyline (in 2D) or triangle mesh (in 3D).
///
/// # Parameters
/// * `params` - The parameters for the VHACD algorithm execution.
/// * `points` - The vertex buffer of the polyline (in 2D) or triangle mesh (in 3D).
/// * `indices` - The index buffer of the polyline (in 2D) or triangle mesh (in 3D).
/// * `keep_voxel_to_primitives_map` - If set to `true` then a map between the voxels
/// computed during the decomposition, and the primitives (triangle or segment) they
/// intersect will be computed. This is required in order to compute the convex-hulls
/// using the original polyline/trimesh primitives afterwards (otherwise the convex
/// hulls resulting from the convex decomposition will use the voxels vertices).
pub fn decompose(
params: &VHACDParameters,
points: &[Point<Real>],
indices: &[[u32; DIM]],
keep_voxel_to_primitives_map: bool,
) -> Self {
// if params.project_hull_vertices || params.fill_mode == FillMode::RAYCAST_FILL {
// self.raycast_mesh =
// RaycastMesh::create_raycast_mesh(num_points, points, num_triangles, triangles);
// }
let voxelized = VoxelizedVolume::voxelize(
points,
indices,
params.resolution,
params.fill_mode,
keep_voxel_to_primitives_map,
// &self.raycast_mesh,
);
let mut result = Self::from_voxels(params, voxelized.into());
let primitive_classes = Arc::new(result.classify_primitives(indices.len()));
for part in &mut result.voxel_parts {
part.primitive_classes = primitive_classes.clone();
}
result
}
/// Perform an approximate convex decomposition of a set of voxels.
pub fn from_voxels(params: &VHACDParameters, voxels: VoxelSet) -> Self {
let mut result = Self {
// raycast_mesh: None,
voxel_parts: Vec::new(),
volume_ch0: 0.0,
max_concavity: -Real::MAX,
};
result.do_compute_acd(params, voxels);
result
}
/// The almost-convex voxelized parts computed by the VHACD algorithm.
pub fn voxel_parts(&self) -> &[VoxelSet] {
&self.voxel_parts
}
#[cfg(feature = "dim2")]
fn compute_preferred_cutting_direction(eigenvalues: &Vector<Real>) -> (Vector<Real>, Real) {
let vx = eigenvalues.y * eigenvalues.y;
let vy = eigenvalues.x * eigenvalues.x;
if vx < vy {
let e = eigenvalues.y * eigenvalues.y;
let dir = Vector::x();
if e == 0.0 {
(dir, 0.0)
} else {
(dir, 1.0 - vx / e)
}
} else {
let e = eigenvalues.x * eigenvalues.x;
let dir = Vector::y();
if e == 0.0 {
(dir, 0.0)
} else {
(dir, 1.0 - vy / e)
}
}
}
#[cfg(feature = "dim3")]
fn compute_preferred_cutting_direction(eigenvalues: &Vector<Real>) -> (Vector<Real>, Real) {
let vx = (eigenvalues.y - eigenvalues.z) * (eigenvalues.y - eigenvalues.z);
let vy = (eigenvalues.x - eigenvalues.z) * (eigenvalues.x - eigenvalues.z);
let vz = (eigenvalues.x - eigenvalues.y) * (eigenvalues.x - eigenvalues.y);
if vx < vy && vx < vz {
let e = eigenvalues.y * eigenvalues.y + eigenvalues.z * eigenvalues.z;
let dir = Vector::x();
if e == 0.0 {
(dir, 0.0)
} else {
(dir, 1.0 - vx / e)
}
} else if vy < vx && vy < vz {
let e = eigenvalues.x * eigenvalues.x + eigenvalues.z * eigenvalues.z;
let dir = Vector::y();
if e == 0.0 {
(dir, 0.0)
} else {
(dir, 1.0 - vy / e)
}
} else {
let e = eigenvalues.x * eigenvalues.x + eigenvalues.y * eigenvalues.y;
let dir = Vector::z();
if e == 0.0 {
(dir, 0.0)
} else {
(dir, 1.0 - vz / e)
}
}
}
// TODO: this should be a method of VoxelSet.
fn compute_axes_aligned_clipping_planes(
vset: &VoxelSet,
downsampling: u32,
planes: &mut Vec<CutPlane>,
) {
let min_v = vset.min_bb_voxels();
let max_v = vset.max_bb_voxels();
for dim in 0..DIM {
let i0 = min_v[dim];
let i1 = max_v[dim];
for i in (i0..=i1).step_by(downsampling as usize) {
let plane = CutPlane {
abc: Vector::ith(dim, 1.0),
axis: dim as u8,
d: -(vset.origin[dim] + (i as Real + 0.5) * vset.scale),
index: i,
};
planes.push(plane);
}
}
}
fn refine_axes_aligned_clipping_planes(
vset: &VoxelSet,
best_plane: &CutPlane,
downsampling: u32,
planes: &mut Vec<CutPlane>,
) {
let min_v = vset.min_bb_voxels();
let max_v = vset.max_bb_voxels();
let best_id = best_plane.axis as usize;
let i0 = min_v[best_id].max(best_plane.index.saturating_sub(downsampling));
let i1 = max_v[best_id].min(best_plane.index + downsampling);
for i in i0..=i1 {
let plane = CutPlane {
abc: Vector::ith(best_id, 1.0),
axis: best_plane.axis,
d: -(vset.origin[best_id] + (i as Real + 0.5) * vset.scale),
index: i,
};
planes.push(plane);
}
}
// Returns the best plane, and the min concavity.
fn compute_best_clipping_plane(
&self,
input_voxels: &VoxelSet,
input_voxels_ch: &ConvexHull,
planes: &[CutPlane],
preferred_cutting_direction: &Vector<Real>,
w: Real,
alpha: Real,
beta: Real,
convex_hull_downsampling: u32,
params: &VHACDParameters,
) -> (CutPlane, Real) {
let mut best_plane = planes[0];
let mut min_concavity = Real::MAX;
let mut i_best = -1;
let mut min_total = Real::MAX;
let mut left_ch;
let mut right_ch;
let mut left_ch_pts = Vec::new();
let mut right_ch_pts = Vec::new();
let mut left_voxels = VoxelSet::new();
let mut right_voxels = VoxelSet::new();
let mut on_surface_voxels = VoxelSet::new();
input_voxels.select_on_surface(&mut on_surface_voxels);
for (x, plane) in planes.iter().enumerate() {
// Compute convex hulls.
if params.convex_hull_approximation {
right_ch_pts.clear();
left_ch_pts.clear();
on_surface_voxels.intersect(
plane,
&mut right_ch_pts,
&mut left_ch_pts,
convex_hull_downsampling * 32,
);
clip_mesh(
#[cfg(feature = "dim2")]
input_voxels_ch,
#[cfg(feature = "dim3")]
&input_voxels_ch.0,
plane,
&mut right_ch_pts,
&mut left_ch_pts,
);
right_ch = convex_hull(&right_ch_pts);
left_ch = convex_hull(&left_ch_pts);
} else {
on_surface_voxels.clip(plane, &mut right_voxels, &mut left_voxels);
right_ch = right_voxels.compute_convex_hull(convex_hull_downsampling);
left_ch = left_voxels.compute_convex_hull(convex_hull_downsampling);
}
let volume_left_ch = compute_volume(&left_ch);
let volume_right_ch = compute_volume(&right_ch);
// compute clipped volumes
let (volume_left, volume_right) = input_voxels.compute_clipped_volumes(plane);
let concavity_left = compute_concavity(volume_left, volume_left_ch, self.volume_ch0);
let concavity_right = compute_concavity(volume_right, volume_right_ch, self.volume_ch0);
let concavity = concavity_left + concavity_right;
// compute cost
let balance = alpha * (volume_left - volume_right).abs() / self.volume_ch0;
let d = w * plane.abc.dot(preferred_cutting_direction);
let symmetry = beta * d;
let total = concavity + balance + symmetry;
if total < min_total || (total == min_total && (x as i32) < i_best) {
min_concavity = concavity;
best_plane = *plane;
min_total = total;
i_best = x as i32;
}
}
(best_plane, min_concavity)
}
fn process_primitive_set(
&mut self,
params: &VHACDParameters,
first_iteration: bool,
parts: &mut Vec<VoxelSet>,
temp: &mut Vec<VoxelSet>,
mut voxels: VoxelSet,
) {
let volume = voxels.compute_volume(); // Compute the volume for this primitive set
voxels.compute_bb(); // Compute the bounding box for this primitive set.
let voxels_convex_hull = voxels.compute_convex_hull(params.convex_hull_downsampling); // Generate the convex hull for this primitive set.
// Compute the volume of the convex hull
let volume_ch = compute_volume(&voxels_convex_hull);
// If this is the first iteration, store the volume of the base
if first_iteration {
self.volume_ch0 = volume_ch;
}
// Compute the concavity of this volume
let concavity = compute_concavity(volume, volume_ch, self.volume_ch0);
// Compute the volume error.
if concavity > params.concavity {
let eigenvalues = voxels.compute_principal_axes();
let (preferred_cutting_direction, w) =
Self::compute_preferred_cutting_direction(&eigenvalues);
let mut planes = Vec::new();
Self::compute_axes_aligned_clipping_planes(
&voxels,
params.plane_downsampling,
&mut planes,
);
let (mut best_plane, mut min_concavity) = self.compute_best_clipping_plane(
&voxels,
&voxels_convex_hull,
&planes,
&preferred_cutting_direction,
w,
concavity * params.alpha,
concavity * params.beta,
params.convex_hull_downsampling,
params,
);
if params.plane_downsampling > 1 || params.convex_hull_downsampling > 1 {
let mut planes_ref = Vec::new();
Self::refine_axes_aligned_clipping_planes(
&voxels,
&best_plane,
params.plane_downsampling,
&mut planes_ref,
);
let best = self.compute_best_clipping_plane(
&voxels,
&voxels_convex_hull,
&planes_ref,
&preferred_cutting_direction,
w,
concavity * params.alpha,
concavity * params.beta,
1, // convex_hull_downsampling = 1
params,
);
best_plane = best.0;
min_concavity = best.1;
}
if min_concavity > self.max_concavity {
self.max_concavity = min_concavity;
}
let mut best_left = VoxelSet::new();
let mut best_right = VoxelSet::new();
voxels.clip(&best_plane, &mut best_right, &mut best_left);
temp.push(best_left);
temp.push(best_right);
} else {
parts.push(voxels);
}
}
fn do_compute_acd(&mut self, params: &VHACDParameters, mut voxels: VoxelSet) {
let intersections = voxels.intersections.clone();
let mut input_parts = Vec::new();
let mut parts = Vec::new();
let mut temp = Vec::new();
input_parts.push(std::mem::replace(&mut voxels, VoxelSet::new()));
let mut first_iteration = true;
self.volume_ch0 = 1.0;
// Compute the decomposition depth based on the number of convex hulls being requested.
let mut hull_count = 2;
let mut depth = 1;
while params.max_convex_hulls > hull_count {
depth += 1;
hull_count *= 2;
}
// We must always increment the decomposition depth one higher than the maximum number of hulls requested.
// The reason for this is as follows.
// Say, for example, the user requests 32 convex hulls exactly. This would be a decomposition depth of 5.
// However, when we do that, we do *not* necessarily get 32 hulls as a result. This is because, during
// the recursive descent of the binary tree, one or more of the leaf nodes may have no concavity and
// will not be split. So, in this way, even with a decomposition depth of 5, you can produce fewer than
// 32 hulls. So, in this case, we would set the decomposition depth to 6 (producing up to as high as 64 convex
// hulls). Then, the merge step which combines over-described hulls down to the user requested amount, we will end
// up getting exactly 32 convex hulls as a result. We could just allow the artist to directly control the
// decomposition depth directly, but this would be a bit too complex and the preference is simply to let them
// specify how many hulls they want and derive the solution from that.
depth += 1;
for _ in 0..depth {
if input_parts.is_empty() {
break;
}
for input_part in input_parts.drain(..) {
self.process_primitive_set(
params,
first_iteration,
&mut parts,
&mut temp,
input_part,
);
first_iteration = false;
}
std::mem::swap(&mut input_parts, &mut temp);
// Note that temp is already clear because our previous for
// loop used `drain`. However we call `clear` here explicitly
// to make sure it still works if we remove the `drain` in the
// future.
temp.clear();
}
parts.append(&mut input_parts);
self.voxel_parts = parts;
for part in &mut self.voxel_parts {
part.intersections = intersections.clone();
}
}
// Returns a vector such that `result[i]` gives the index of the voxelized convex part that
// intersects it.
//
// If multiple convex parts intersect the same primitive, then `result[i]` is set to `u32::MAX`.
// This is used to avoid some useless triangle/segment cutting when computing the exact convex hull
// of a voxelized convex part.
fn classify_primitives(&self, num_primitives: usize) -> Vec<u32> {
if num_primitives == 0 {
return Vec::new();
}
const NO_CLASS: u32 = u32::MAX - 1;
const MULTICLASS: u32 = u32::MAX;
let mut primitive_classes = Vec::new();
primitive_classes.resize(num_primitives, NO_CLASS);
for (ipart, part) in self.voxel_parts.iter().enumerate() {
for voxel in &part.voxels {
let range = voxel.intersections_range.0..voxel.intersections_range.1;
for inter in &part.intersections[range] {
let class = &mut primitive_classes[*inter as usize];
if *class == NO_CLASS {
*class = ipart as u32;
} else if *class != ipart as u32 {
*class = MULTICLASS;
}
}
}
}
primitive_classes
}
/// Compute the intersections between the voxelized convex part of this decomposition,
/// and all the primitives from the original decomposed polyline/trimesh,
///
/// This will panic if `keep_voxel_to_primitives_map` was set to `false` when initializing
/// `self`.
pub fn compute_primitive_intersections(
&self,
points: &[Point<Real>],
indices: &[[u32; DIM]],
) -> Vec<Vec<Point<Real>>> {
self.voxel_parts
.iter()
.map(|part| part.compute_primitive_intersections(points, indices))
.collect()
}
/// Compute the convex-hulls of the parts computed by this approximate convex-decomposition,
/// taking into account the primitives from the original polyline/trimesh being decomposed.
///
/// This will panic if `keep_voxel_to_primitives_map` was set to `false` when initializing
/// `self`.
#[cfg(feature = "dim2")]
pub fn compute_exact_convex_hulls(
&self,
points: &[Point<Real>],
indices: &[[u32; DIM]],
) -> Vec<Vec<Point<Real>>> {
self.voxel_parts
.iter()
.map(|part| part.compute_exact_convex_hull(points, indices))
.collect()
}
/// Compute the convex-hulls of the parts computed by this approximate convex-decomposition,
/// taking into account the primitives from the original polyline/trimesh being decomposed.
///
/// This will panic if `keep_voxel_to_primitives_map` was set to `false` when initializing
/// `self`.
#[cfg(feature = "dim3")]
pub fn compute_exact_convex_hulls(
&self,
points: &[Point<Real>],
indices: &[[u32; DIM]],
) -> Vec<(Vec<Point<Real>>, Vec<[u32; DIM]>)> {
self.voxel_parts
.iter()
.map(|part| part.compute_exact_convex_hull(points, indices))
.collect()
}
/// Compute the convex hulls of the voxelized approximately-convex parts
/// computed by `self` on the voxelized model.
///
/// Use `compute_exact_convex_hulls` instead if the original polyline/trimesh geometry
/// needs to be taken into account.
#[cfg(feature = "dim2")]
pub fn compute_convex_hulls(&self, downsampling: u32) -> Vec<Vec<Point<Real>>> {
let downsampling = downsampling.max(1);
self.voxel_parts
.iter()
.map(|part| part.compute_convex_hull(downsampling))
.collect()
}
/// Compute the convex hulls of the voxelized approximately-convex parts
/// computed by `self` on the voxelized model.
///
/// Use `compute_exact_convex_hulls` instead if the original polyline/trimesh geometry
/// needs to be taken into account.
#[cfg(feature = "dim3")]
pub fn compute_convex_hulls(
&self,
downsampling: u32,
) -> Vec<(Vec<Point<Real>>, Vec<[u32; DIM]>)> {
let downsampling = downsampling.max(1);
self.voxel_parts
.iter()
.map(|part| part.compute_convex_hull(downsampling))
.collect()
}
}
fn compute_concavity(volume: Real, volume_ch: Real, volume0: Real) -> Real {
(volume_ch - volume).abs() / volume0
}
fn clip_mesh(
points: &[Point<Real>],
plane: &CutPlane,
positive_part: &mut Vec<Point<Real>>,
negative_part: &mut Vec<Point<Real>>,
) {
for pt in points {
let d = plane.abc.dot(&pt.coords) + plane.d;
if d > 0.0 {
positive_part.push(*pt);
} else if d < 0.0 {
negative_part.push(*pt);
} else {
positive_part.push(*pt);
negative_part.push(*pt);
}
}
}
#[cfg(feature = "dim2")]
fn convex_hull(vertices: &[Point<Real>]) -> Vec<Point<Real>> {
if vertices.len() > 1 {
crate::transformation::convex_hull(vertices)
} else {
Vec::new()
}
}
#[cfg(feature = "dim3")]
fn convex_hull(vertices: &[Point<Real>]) -> (Vec<Point<Real>>, Vec<[u32; DIM]>) {
if vertices.len() > 2 {
crate::transformation::convex_hull(vertices)
} else {
(Vec::new(), Vec::new())
}
}
#[cfg(feature = "dim2")]
fn compute_volume(polygon: &[Point<Real>]) -> Real {
if !polygon.is_empty() {
crate::mass_properties::details::convex_polygon_area_and_center_of_mass(polygon).0
} else {
0.0
}
}
#[cfg(feature = "dim3")]
fn compute_volume(mesh: &(Vec<Point<Real>>, Vec<[u32; DIM]>)) -> Real {
if !mesh.0.is_empty() {
crate::mass_properties::details::trimesh_signed_volume_and_center_of_mass(&mesh.0, &mesh.1)
.0
} else {
0.0
}
}