parry3d/transformation/voxelization/
voxel_set.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
// Rust port, with modifications, of https://github.com/kmammou/v-hacd/blob/master/src/VHACD_Lib/src/vhacdVolume.cpp
// By Khaled Mamou
//
// # License of the original C++ code:
// > Copyright (c) 2011 Khaled Mamou (kmamou at gmail dot com)
// > All rights reserved.
// >
// >
// > Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
// >
// > 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
// >
// > 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
// >
// > 3. The names of the contributors may not be used to endorse or promote products derived from this software without specific prior written permission.
// >
// > THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

use super::{FillMode, VoxelizedVolume};
use crate::bounding_volume::Aabb;
use crate::math::{Matrix, Point, Real, Vector, DIM};
use crate::transformation::vhacd::CutPlane;
use std::sync::Arc;

#[cfg(feature = "dim2")]
type ConvexHull = Vec<Point<Real>>;
#[cfg(feature = "dim3")]
type ConvexHull = (Vec<Point<Real>>, Vec<[u32; DIM]>);

/// A voxel.
#[derive(Copy, Clone, Debug)]
pub struct Voxel {
    /// The integer coordinates of the voxel as part of the voxel grid.
    pub coords: Point<u32>,
    /// Is this voxel on the surface of the volume (i.e. not inside of it)?
    pub is_on_surface: bool,
    /// Range of indices (to be looked up into the `VoxelSet` primitive map)
    /// of the primitives intersected by this voxel.
    pub(crate) intersections_range: (usize, usize),
}

impl Default for Voxel {
    fn default() -> Self {
        Self {
            coords: Point::origin(),
            is_on_surface: false,
            intersections_range: (0, 0),
        }
    }
}

/// A sparse set of voxels.
///
/// It only contains voxels that are considered as "full" after a voxelization.
pub struct VoxelSet {
    /// The 3D origin of this voxel-set.
    pub origin: Point<Real>,
    /// The scale factor between the voxel integer coordinates and their
    /// actual float world-space coordinates.
    pub scale: Real,
    pub(crate) min_bb_voxels: Point<u32>,
    pub(crate) max_bb_voxels: Point<u32>,
    pub(crate) voxels: Vec<Voxel>,
    pub(crate) intersections: Arc<Vec<u32>>,
    pub(crate) primitive_classes: Arc<Vec<u32>>,
}

impl Default for VoxelSet {
    fn default() -> Self {
        Self::new()
    }
}

impl VoxelSet {
    /// Creates a new empty set of voxels.
    pub fn new() -> Self {
        Self {
            origin: Point::origin(),
            min_bb_voxels: Point::origin(),
            max_bb_voxels: Vector::repeat(1).into(),
            scale: 1.0,
            voxels: Vec::new(),
            intersections: Arc::new(Vec::new()),
            primitive_classes: Arc::new(Vec::new()),
        }
    }

    /// The volume of a single voxel of this voxel set.
    #[cfg(feature = "dim2")]
    pub fn voxel_volume(&self) -> Real {
        self.scale * self.scale
    }

    /// The volume of a single voxel of this voxel set.
    #[cfg(feature = "dim3")]
    pub fn voxel_volume(&self) -> Real {
        self.scale * self.scale * self.scale
    }

    /// Voxelizes the given shape described by its boundary:
    /// a triangle mesh (in 3D) or polyline (in 2D).
    ///
    /// # Parameters
    /// * `points` - The vertex buffer of the boundary of the shape to voxelize.
    /// * `indices` - The index buffer of the boundary of the shape to voxelize.
    /// * `resolution` - Controls the number of subdivision done along each axis. This number
    ///    is the number of subdivisions along the axis where the input shape has the largest extent.
    ///    The other dimensions will have a different automatically-determined resolution (in order to
    ///    keep the voxels cubic).
    /// * `fill_mode` - Controls what is being voxelized.
    /// * `keep_voxel_to_primitives_map` - If set to `true` a map between the voxels
    ///   and the primitives (3D triangles or 2D segments) it intersects will be computed.
    pub fn voxelize(
        points: &[Point<Real>],
        indices: &[[u32; DIM]],
        resolution: u32,
        fill_mode: FillMode,
        keep_voxel_to_primitives_map: bool,
    ) -> Self {
        VoxelizedVolume::voxelize(
            points,
            indices,
            resolution,
            fill_mode,
            keep_voxel_to_primitives_map,
        )
        .into()
    }

    /// The minimal coordinates of the integer bounding-box of the voxels in this set.
    pub fn min_bb_voxels(&self) -> Point<u32> {
        self.min_bb_voxels
    }

    /// The maximal coordinates of the integer bounding-box of the voxels in this set.
    pub fn max_bb_voxels(&self) -> Point<u32> {
        self.max_bb_voxels
    }

    /// Computes the total volume of the voxels contained by this set.
    pub fn compute_volume(&self) -> Real {
        self.voxel_volume() * self.voxels.len() as Real
    }

    fn get_voxel_point(&self, voxel: &Voxel) -> Point<Real> {
        self.get_point(na::convert(voxel.coords))
    }

    pub(crate) fn get_point(&self, voxel: Point<Real>) -> Point<Real> {
        self.origin + voxel.coords * self.scale
    }

    /// Does this voxel not contain any element?
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// The number of voxels in this set.
    pub fn len(&self) -> usize {
        self.voxels.len()
    }

    /// The set of voxels.
    pub fn voxels(&self) -> &[Voxel] {
        &self.voxels
    }

    /// Update the bounding box of this voxel set.
    pub fn compute_bb(&mut self) {
        let num_voxels = self.voxels.len();

        if num_voxels == 0 {
            return;
        }

        self.min_bb_voxels = self.voxels[0].coords;
        self.max_bb_voxels = self.voxels[0].coords;

        for p in 0..num_voxels {
            self.min_bb_voxels = self.min_bb_voxels.inf(&self.voxels[p].coords);
            self.max_bb_voxels = self.max_bb_voxels.sup(&self.voxels[p].coords);
        }
    }

    // We have these cfg because we need to
    // use the correct return type. We could just
    // return ConvexHull but that would expose though
    // the API a type alias that isn't really worth
    // existing.
    /// Compute the convex-hull of this voxel set after cutting each voxel
    /// by the primitives (3D triangle or 2D segments) it intersects.
    ///
    /// This will panic if this `VoxelSet` was created with `keep_voxel_to_primitives_map = false`.
    #[cfg(feature = "dim2")]
    pub fn compute_exact_convex_hull(
        &self,
        points: &[Point<Real>],
        indices: &[[u32; DIM]],
    ) -> Vec<Point<Real>> {
        self.do_compute_exact_convex_hull(points, indices)
    }

    /// Compute the convex-hull of this voxel set after cutting each voxel
    /// by the primitives (3D triangle or 2D segments) it intersects.
    ///
    /// This will panic if this `VoxelSet` was created with `keep_voxel_to_primitives_map = false`.
    #[cfg(feature = "dim3")]
    pub fn compute_exact_convex_hull(
        &self,
        points: &[Point<Real>],
        indices: &[[u32; DIM]],
    ) -> (Vec<Point<Real>>, Vec<[u32; DIM]>) {
        self.do_compute_exact_convex_hull(points, indices)
    }

    fn do_compute_exact_convex_hull(
        &self,
        points: &[Point<Real>],
        indices: &[[u32; DIM]],
    ) -> ConvexHull {
        assert!(!self.intersections.is_empty(),
                "Cannot compute exact convex hull without voxel-to-primitives-map. Consider passing voxel_to_primitives_map = true to the voxelizer.");
        let mut surface_points = Vec::new();
        #[cfg(feature = "dim3")]
        let (mut polygon, mut workspace) = (Vec::new(), Vec::new());
        let mut pushed_points = vec![false; points.len()];

        // Grab all the points.
        for voxel in self.voxels.iter().filter(|v| v.is_on_surface) {
            let intersections =
                &self.intersections[voxel.intersections_range.0..voxel.intersections_range.1];
            for prim_id in intersections {
                let ia = indices[*prim_id as usize][0] as usize;
                let ib = indices[*prim_id as usize][1] as usize;
                #[cfg(feature = "dim3")]
                let ic = indices[*prim_id as usize][2] as usize;

                // If the primitives have been classified by VHACD, we know that:
                // - A class equal to Some(u32::MAX) means that the primitives intersects multiple
                //   convex parts, so we need to split it.
                // - A class equal to None means that we did not compute any classes (so we
                //   must assume that each triangle have to be split since it may intersect
                //   multiple parts.
                // - A class different from `None` and `Some(u32::MAX)` means that the triangle is
                //   included in only one convex part. So instead of cutting it, just push the whole
                //   triangle once.
                let prim_class = self.primitive_classes.get(*prim_id as usize).copied();
                if prim_class == Some(u32::MAX) || prim_class.is_none() {
                    let aabb_center =
                        self.origin + voxel.coords.coords.map(|k| k as Real) * self.scale;
                    let aabb =
                        Aabb::from_half_extents(aabb_center, Vector::repeat(self.scale / 2.0));

                    #[cfg(feature = "dim2")]
                    if let Some(seg) = aabb.clip_segment(&points[ia], &points[ib]) {
                        surface_points.push(seg.a);
                        surface_points.push(seg.b);
                    }

                    #[cfg(feature = "dim3")]
                    {
                        polygon.clear();
                        polygon.extend_from_slice(&[points[ia], points[ib], points[ic]]);
                        aabb.clip_polygon_with_workspace(&mut polygon, &mut workspace);
                        surface_points.append(&mut polygon);
                    }
                } else {
                    // We know this triangle is only contained by
                    // one voxel set, i.e., `self`. So we don't
                    // need to cut it.
                    //
                    // Because one triangle may intersect multiple voxels contained by
                    // the same convex part, we only push vertices we have not pushed
                    // so far in order to avoid some useless duplicate points (duplicate
                    // points are OK as far as convex hull computation is concerned, but
                    // they imply some redundant computations).
                    let mut push_pt = |i: usize| {
                        if !pushed_points[i] {
                            surface_points.push(points[i]);
                            pushed_points[i] = true;
                        }
                    };

                    push_pt(ia);
                    push_pt(ib);
                    #[cfg(feature = "dim3")]
                    push_pt(ic);
                }
            }

            if intersections.is_empty() {
                self.map_voxel_points(voxel, |p| surface_points.push(p));
            }
        }

        // Compute the convex-hull.
        convex_hull(&surface_points)
    }

    /// Computes the intersections between all the voxels of this voxel set,
    /// and all the primitives (triangle or segments) it intersected (as per
    /// the voxel-to-primitives-map computed during voxelization).
    ///
    /// Panics if the voxelization was performed without setting the parameter
    /// `voxel_to_primitives_map = true`.
    pub fn compute_primitive_intersections(
        &self,
        points: &[Point<Real>],
        indices: &[[u32; DIM]],
    ) -> Vec<Point<Real>> {
        assert!(!self.intersections.is_empty(),
                "Cannot compute primitive intersections voxel-to-primitives-map. Consider passing voxel_to_primitives_map = true to the voxelizer.");
        let mut surface_points = Vec::new();
        #[cfg(feature = "dim3")]
        let (mut polygon, mut workspace) = (Vec::new(), Vec::new());

        // Grab all the points.
        for voxel in self.voxels.iter().filter(|v| v.is_on_surface) {
            let intersections =
                &self.intersections[voxel.intersections_range.0..voxel.intersections_range.1];
            for prim_id in intersections {
                let aabb_center = self.origin + voxel.coords.coords.map(|k| k as Real) * self.scale;
                let aabb = Aabb::from_half_extents(aabb_center, Vector::repeat(self.scale / 2.0));

                let pa = points[indices[*prim_id as usize][0] as usize];
                let pb = points[indices[*prim_id as usize][1] as usize];
                #[cfg(feature = "dim3")]
                let pc = points[indices[*prim_id as usize][2] as usize];

                #[cfg(feature = "dim2")]
                if let Some(seg) = aabb.clip_segment(&pa, &pb) {
                    surface_points.push(seg.a);
                    surface_points.push(seg.b);
                }

                #[cfg(feature = "dim3")]
                {
                    workspace.clear();
                    polygon.clear();
                    polygon.extend_from_slice(&[pa, pb, pc]);
                    aabb.clip_polygon_with_workspace(&mut polygon, &mut workspace);

                    if polygon.len() > 2 {
                        for i in 1..polygon.len() - 1 {
                            surface_points.push(polygon[0]);
                            surface_points.push(polygon[i]);
                            surface_points.push(polygon[i + 1]);
                        }
                    }
                }
            }
        }

        surface_points
    }

    /// Compute the convex-hull of the voxels in this set.
    ///
    /// # Parameters
    /// * `sampling` - The convex-hull computation will ignore `sampling` voxels at
    ///   regular intervals. Useful to save some computation times if an exact result isn't need.
    ///   Use `0` to make sure no voxel is being ignored.
    #[cfg(feature = "dim2")]
    pub fn compute_convex_hull(&self, sampling: u32) -> Vec<Point<Real>> {
        let mut points = Vec::new();

        // Grab all the points.
        for voxel in self
            .voxels
            .iter()
            .filter(|v| v.is_on_surface)
            .step_by(sampling as usize)
        {
            self.map_voxel_points(voxel, |p| points.push(p));
        }

        // Compute the convex-hull.
        convex_hull(&points)
    }

    /// Compute the convex-hull of the voxels in this set.
    ///
    /// # Parameters
    /// * `sampling` - The convex-hull computation will ignore `sampling` voxels at
    ///   regular intervals. Useful to save some computation times if an exact result isn't need.
    ///   Use `0` to make sure no voxel is being ignored.
    #[cfg(feature = "dim3")]
    pub fn compute_convex_hull(&self, sampling: u32) -> (Vec<Point<Real>>, Vec<[u32; DIM]>) {
        let mut points = Vec::new();

        // Grab all the points.
        for voxel in self
            .voxels
            .iter()
            .filter(|v| v.is_on_surface)
            .step_by(sampling as usize)
        {
            self.map_voxel_points(voxel, |p| points.push(p));
        }

        // Compute the convex-hull.
        convex_hull(&points)
    }

    /// Gets the vertices of the given voxel.
    fn map_voxel_points(&self, voxel: &Voxel, mut f: impl FnMut(Point<Real>)) {
        let ijk = voxel.coords.coords.map(|e| e as Real);

        #[cfg(feature = "dim2")]
        let shifts = [
            Vector::new(-0.5, -0.5),
            Vector::new(0.5, -0.5),
            Vector::new(0.5, 0.5),
            Vector::new(-0.5, 0.5),
        ];

        #[cfg(feature = "dim3")]
        let shifts = [
            Vector::new(-0.5, -0.5, -0.5),
            Vector::new(0.5, -0.5, -0.5),
            Vector::new(0.5, 0.5, -0.5),
            Vector::new(-0.5, 0.5, -0.5),
            Vector::new(-0.5, -0.5, 0.5),
            Vector::new(0.5, -0.5, 0.5),
            Vector::new(0.5, 0.5, 0.5),
            Vector::new(-0.5, 0.5, 0.5),
        ];

        for shift in &shifts {
            f(self.origin + (ijk + *shift) * self.scale)
        }
    }

    pub(crate) fn intersect(
        &self,
        plane: &CutPlane,
        positive_pts: &mut Vec<Point<Real>>,
        negative_pts: &mut Vec<Point<Real>>,
        sampling: u32,
    ) {
        let num_voxels = self.voxels.len();

        if num_voxels == 0 {
            return;
        }

        let d0 = self.scale;
        let mut sp = 0;
        let mut sn = 0;

        for v in 0..num_voxels {
            let voxel = self.voxels[v];
            let pt = self.get_voxel_point(&voxel);
            let d = plane.abc.dot(&pt.coords) + plane.d;

            // if      (d >= 0.0 && d <= d0) positive_pts.push(pt);
            // else if (d < 0.0 && -d <= d0) negative_pts.push(pt);

            if d >= 0.0 {
                if d <= d0 {
                    self.map_voxel_points(&voxel, |p| positive_pts.push(p));
                } else {
                    sp += 1;

                    if sp == sampling {
                        self.map_voxel_points(&voxel, |p| positive_pts.push(p));
                        sp = 0;
                    }
                }
            } else if -d <= d0 {
                self.map_voxel_points(&voxel, |p| negative_pts.push(p));
            } else {
                sn += 1;
                if sn == sampling {
                    self.map_voxel_points(&voxel, |p| negative_pts.push(p));
                    sn = 0;
                }
            }
        }
    }

    // Returns (negative_volume, positive_volume)
    pub(crate) fn compute_clipped_volumes(&self, plane: &CutPlane) -> (Real, Real) {
        if self.voxels.is_empty() {
            return (0.0, 0.0);
        }

        let mut num_positive_voxels = 0;

        for voxel in &self.voxels {
            let pt = self.get_voxel_point(voxel);
            let d = plane.abc.dot(&pt.coords) + plane.d;
            num_positive_voxels += (d >= 0.0) as usize;
        }

        let num_negative_voxels = self.voxels.len() - num_positive_voxels;
        let positive_volume = self.voxel_volume() * (num_positive_voxels as Real);
        let negative_volume = self.voxel_volume() * (num_negative_voxels as Real);

        (negative_volume, positive_volume)
    }

    // Set `on_surf` such that it contains only the voxel on surface contained by `self`.
    pub(crate) fn select_on_surface(&self, on_surf: &mut VoxelSet) {
        on_surf.origin = self.origin;
        on_surf.voxels.clear();
        on_surf.scale = self.scale;

        for voxel in &self.voxels {
            if voxel.is_on_surface {
                on_surf.voxels.push(*voxel);
            }
        }
    }

    /// Splits this voxel set into two parts, depending on where the voxel center lies wrt. the given plane.
    pub(crate) fn clip(
        &self,
        plane: &CutPlane,
        positive_part: &mut VoxelSet,
        negative_part: &mut VoxelSet,
    ) {
        let num_voxels = self.voxels.len();

        if num_voxels == 0 {
            return;
        }

        negative_part.origin = self.origin;
        negative_part.voxels.clear();
        negative_part.voxels.reserve(num_voxels);
        negative_part.scale = self.scale;

        positive_part.origin = self.origin;
        positive_part.voxels.clear();
        positive_part.voxels.reserve(num_voxels);
        positive_part.scale = self.scale;

        let d0 = self.scale;

        for v in 0..num_voxels {
            let mut voxel = self.voxels[v];
            let pt = self.get_voxel_point(&voxel);
            let d = plane.abc.dot(&pt.coords) + plane.d;

            if d >= 0.0 {
                if voxel.is_on_surface || d <= d0 {
                    voxel.is_on_surface = true;
                    positive_part.voxels.push(voxel);
                } else {
                    positive_part.voxels.push(voxel);
                }
            } else if voxel.is_on_surface || -d <= d0 {
                voxel.is_on_surface = true;
                negative_part.voxels.push(voxel);
            } else {
                negative_part.voxels.push(voxel);
            }
        }
    }

    /// Convert `self` into a mesh, including only the voxels on the surface or only the voxel
    /// inside of the volume.
    #[cfg(feature = "dim3")]
    pub fn to_trimesh(
        &self,
        base_index: u32,
        is_on_surface: bool,
    ) -> (Vec<Point<Real>>, Vec<[u32; DIM]>) {
        let mut vertices = Vec::new();
        let mut indices = Vec::new();

        for voxel in &self.voxels {
            if voxel.is_on_surface == is_on_surface {
                self.map_voxel_points(voxel, |p| vertices.push(p));

                indices.push([base_index, base_index + 2, base_index + 1]);
                indices.push([base_index, base_index + 3, base_index + 2]);
                indices.push([base_index + 4, base_index + 5, base_index + 6]);
                indices.push([base_index + 4, base_index + 6, base_index + 7]);
                indices.push([base_index + 7, base_index + 6, base_index + 2]);
                indices.push([base_index + 7, base_index + 2, base_index + 3]);
                indices.push([base_index + 4, base_index + 1, base_index + 5]);
                indices.push([base_index + 4, base_index, base_index + 1]);
                indices.push([base_index + 6, base_index + 5, base_index + 1]);
                indices.push([base_index + 6, base_index + 1, base_index + 2]);
                indices.push([base_index + 7, base_index, base_index + 4]);
                indices.push([base_index + 7, base_index + 3, base_index]);
            }
        }

        (vertices, indices)
    }

    pub(crate) fn compute_principal_axes(&self) -> Vector<Real> {
        let num_voxels = self.voxels.len();
        if num_voxels == 0 {
            return Vector::zeros();
        }

        // TODO: find a way to reuse crate::utils::cov?
        // The difficulty being that we need to iterate through the set of
        // points twice. So passing an iterator to crate::utils::cov
        // isn't really possible.
        let mut center = Point::origin();
        let denom = 1.0 / (num_voxels as Real);

        for voxel in &self.voxels {
            center += voxel.coords.map(|e| e as Real).coords * denom;
        }

        let mut cov_mat = Matrix::zeros();
        for voxel in &self.voxels {
            let xyz = voxel.coords.map(|e| e as Real) - center;
            cov_mat.syger(denom, &xyz, &xyz, 1.0);
        }

        cov_mat.symmetric_eigenvalues()
    }
}

#[cfg(feature = "dim2")]
fn convex_hull(vertices: &[Point<Real>]) -> Vec<Point<Real>> {
    if vertices.len() > 1 {
        crate::transformation::convex_hull(vertices)
    } else {
        Vec::new()
    }
}

#[cfg(feature = "dim3")]
fn convex_hull(vertices: &[Point<Real>]) -> (Vec<Point<Real>>, Vec<[u32; DIM]>) {
    if vertices.len() > 2 {
        crate::transformation::convex_hull(vertices)
    } else {
        (Vec::new(), Vec::new())
    }
}