parry3d/transformation/voxelization/voxelized_volume.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
// Rust port, with modifications, of https://github.com/kmammou/v-hacd/blob/master/src/VHACD_Lib/src/vhacdVolume.cpp
// By Khaled Mamou
//
// # License of the original C++ code:
// > Copyright (c) 2011 Khaled Mamou (kmamou at gmail dot com)
// > All rights reserved.
// >
// >
// > Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
// >
// > 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
// >
// > 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
// >
// > 3. The names of the contributors may not be used to endorse or promote products derived from this software without specific prior written permission.
// >
// > THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
use crate::bounding_volume::Aabb;
use crate::math::{Point, Real, Vector, DIM};
use crate::query;
use crate::transformation::voxelization::{Voxel, VoxelSet};
use std::sync::Arc;
/// Controls how the voxelization determines which voxel needs
/// to be considered empty, and which ones will be considered full.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum FillMode {
/// Only consider full the voxels intersecting the surface of the
/// shape being voxelized.
SurfaceOnly,
/// Use a flood-fill technique to consider fill the voxels intersecting
/// the surface of the shape being voxelized, as well as all the voxels
/// bounded of them.
FloodFill {
/// Detects holes inside of a solid contour.
detect_cavities: bool,
/// Attempts to properly handle self-intersections.
#[cfg(feature = "dim2")]
detect_self_intersections: bool,
},
// RaycastFill
}
impl FillMode {
#[cfg(feature = "dim2")]
pub(crate) fn detect_cavities(self) -> bool {
match self {
FillMode::FloodFill {
detect_cavities, ..
} => detect_cavities,
_ => false,
}
}
#[cfg(feature = "dim2")]
pub(crate) fn detect_self_intersections(self) -> bool {
match self {
FillMode::FloodFill {
detect_self_intersections,
..
} => detect_self_intersections,
_ => false,
}
}
#[cfg(feature = "dim3")]
pub(crate) fn detect_self_intersections(self) -> bool {
false
}
}
/// The values of a voxel.
///
/// Most values are only intermediate value set during the
/// voxelization process. The only values output after the
/// voxelization is complete are `PrimitiveOutsideSurface`,
/// `PrimitiveInsideSurface`, and `PrimitiveOnSurface`.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum VoxelValue {
/// Intermediate value, should be ignored by end-user code.
PrimitiveUndefined,
/// Intermediate value, should be ignored by end-user code.
PrimitiveOutsideSurfaceToWalk,
/// Intermediate value, should be ignored by end-user code.
PrimitiveInsideSurfaceToWalk,
/// Intermediate value, should be ignored by end-user code.
PrimitiveOnSurfaceNoWalk,
/// Intermediate value, should be ignored by end-user code.
PrimitiveOnSurfaceToWalk1,
/// Intermediate value, should be ignored by end-user code.
PrimitiveOnSurfaceToWalk2,
/// A voxel that is outside of the voxelized shape.
PrimitiveOutsideSurface,
/// A voxel that is on the interior of the voxelized shape.
PrimitiveInsideSurface,
/// Voxel that intersects the surface of the voxelized shape.
PrimitiveOnSurface,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
struct VoxelData {
#[cfg(feature = "dim2")]
multiplicity: u32,
num_primitive_intersections: u32,
}
/// A cubic volume filled with voxels.
pub struct VoxelizedVolume {
origin: Point<Real>,
scale: Real,
resolution: [u32; DIM],
values: Vec<VoxelValue>,
data: Vec<VoxelData>,
primitive_intersections: Vec<(u32, u32)>,
}
impl VoxelizedVolume {
/// Voxelizes the given shape described by its boundary:
/// a triangle mesh (in 3D) or polyline (in 2D).
///
/// # Parameters
/// * `points` - The vertex buffer of the boundary of the shape to voxelize.
/// * `indices` - The index buffer of the boundary of the shape to voxelize.
/// * `resolution` - Controls the number of subdivision done along each axis. This number
/// is the number of subdivisions along the axis where the input shape has the largest extent.
/// The other dimensions will have a different automatically-determined resolution (in order to
/// keep the voxels cubic).
/// * `fill_mode` - Controls what is being voxelized.
/// * `keep_voxel_to_primitives_map` - If set to `true` a map between the voxels
/// and the primitives (3D triangles or 2D segments) it intersects will be computed.
pub fn voxelize(
points: &[Point<Real>],
indices: &[[u32; DIM]],
resolution: u32,
fill_mode: FillMode,
keep_voxel_to_primitives_map: bool,
) -> Self {
let mut result = VoxelizedVolume {
resolution: [0; DIM],
origin: Point::origin(),
scale: 1.0,
values: Vec::new(),
data: Vec::new(),
primitive_intersections: Vec::new(),
};
if points.is_empty() {
return result;
}
let aabb = crate::bounding_volume::details::local_point_cloud_aabb(points);
result.origin = aabb.mins;
let d = aabb.maxs - aabb.mins;
let r;
#[cfg(feature = "dim2")]
if d[0] > d[1] {
r = d[0];
result.resolution[0] = resolution;
result.resolution[1] = 2 + (resolution as Real * d[1] / d[0]) as u32;
} else {
r = d[1];
result.resolution[1] = resolution;
result.resolution[0] = 2 + (resolution as Real * d[0] / d[1]) as u32;
}
#[cfg(feature = "dim3")]
if d[0] >= d[1] && d[0] >= d[2] {
r = d[0];
result.resolution[0] = resolution;
result.resolution[1] = 2 + (resolution as Real * d[1] / d[0]) as u32;
result.resolution[2] = 2 + (resolution as Real * d[2] / d[0]) as u32;
} else if d[1] >= d[0] && d[1] >= d[2] {
r = d[1];
result.resolution[1] = resolution;
result.resolution[0] = 2 + (resolution as Real * d[0] / d[1]) as u32;
result.resolution[2] = 2 + (resolution as Real * d[2] / d[1]) as u32;
} else {
r = d[2];
result.resolution[2] = resolution;
result.resolution[0] = 2 + (resolution as Real * d[0] / d[2]) as u32;
result.resolution[1] = 2 + (resolution as Real * d[1] / d[2]) as u32;
}
result.scale = r / (resolution as Real - 1.0);
let inv_scale = (resolution as Real - 1.0) / r;
result.allocate();
let mut tri_pts = [Point::origin(); DIM];
let box_half_size = Vector::repeat(0.5);
let mut ijk0 = Vector::repeat(0u32);
let mut ijk1 = Vector::repeat(0u32);
let detect_self_intersections = fill_mode.detect_self_intersections();
#[cfg(feature = "dim2")]
let lock_high_multiplicities =
fill_mode.detect_cavities() && fill_mode.detect_self_intersections();
for (tri_id, tri) in indices.iter().enumerate() {
// Find the range of voxels potentially intersecting the triangle.
for c in 0..DIM {
let pt = points[tri[c] as usize];
tri_pts[c] = (pt - result.origin.coords) * inv_scale;
let i = (tri_pts[c].x + 0.5) as u32;
let j = (tri_pts[c].y + 0.5) as u32;
#[cfg(feature = "dim3")]
let k = (tri_pts[c].z + 0.5) as u32;
assert!(i < result.resolution[0] && j < result.resolution[1]);
#[cfg(feature = "dim3")]
assert!(k < result.resolution[2]);
#[cfg(feature = "dim2")]
let ijk = Vector::new(i, j);
#[cfg(feature = "dim3")]
let ijk = Vector::new(i, j, k);
if c == 0 {
ijk0 = ijk;
ijk1 = ijk;
} else {
ijk0 = ijk0.inf(&ijk);
ijk1 = ijk1.sup(&ijk);
}
}
ijk0.apply(|e| *e = e.saturating_sub(1));
ijk1 = ijk1
.map(|e| e + 1)
.inf(&Point::from(result.resolution).coords);
#[cfg(feature = "dim2")]
let range_k = 0..1;
#[cfg(feature = "dim3")]
let range_k = ijk0.z..ijk1.z;
// Determine exactly what voxel intersect the triangle.
for i in ijk0.x..ijk1.x {
for j in ijk0.y..ijk1.y {
for k in range_k.clone() {
#[cfg(feature = "dim2")]
let pt = Point::new(i as Real, j as Real);
#[cfg(feature = "dim3")]
let pt = Point::new(i as Real, j as Real, k as Real);
let id = result.voxel_index(i, j, k);
let value = &mut result.values[id as usize];
let data = &mut result.data[id as usize];
if detect_self_intersections
|| keep_voxel_to_primitives_map
|| *value == VoxelValue::PrimitiveUndefined
{
let aabb = Aabb::from_half_extents(pt, box_half_size);
#[cfg(feature = "dim2")]
if !detect_self_intersections {
let segment = crate::shape::Segment::from(tri_pts);
let intersect =
query::details::intersection_test_aabb_segment(&aabb, &segment);
if intersect {
if keep_voxel_to_primitives_map {
data.num_primitive_intersections += 1;
result.primitive_intersections.push((id, tri_id as u32));
}
*value = VoxelValue::PrimitiveOnSurface;
}
} else if let Some(params) =
aabb.clip_line_parameters(&tri_pts[0], &(tri_pts[1] - tri_pts[0]))
{
let eps = 0.0; // -1.0e-6;
assert!(params.0 <= params.1);
if params.0 > 1.0 + eps || params.1 < 0.0 - eps {
continue;
}
data.multiplicity += ((params.0 >= -eps && params.0 <= eps)
|| (params.0 >= 1.0 - eps && params.0 <= 1.0 + eps))
as u32;
data.multiplicity += ((params.1 >= -eps && params.1 <= eps)
|| (params.1 >= 1.0 - eps && params.1 <= 1.0 + eps))
as u32;
data.multiplicity += (params.0 > eps) as u32 * 2;
data.multiplicity += (params.1 < 1.0 - eps) as u32 * 2;
if keep_voxel_to_primitives_map {
data.num_primitive_intersections += 1;
result.primitive_intersections.push((id, tri_id as u32));
}
if data.multiplicity > 4 && lock_high_multiplicities {
*value = VoxelValue::PrimitiveOnSurfaceNoWalk;
} else {
*value = VoxelValue::PrimitiveOnSurface;
}
};
#[cfg(feature = "dim3")]
{
let triangle = crate::shape::Triangle::from(tri_pts);
let intersect = query::details::intersection_test_aabb_triangle(
&aabb, &triangle,
);
if intersect {
*value = VoxelValue::PrimitiveOnSurface;
if keep_voxel_to_primitives_map {
data.num_primitive_intersections += 1;
result.primitive_intersections.push((id, tri_id as u32));
}
}
};
}
}
}
}
}
match fill_mode {
FillMode::SurfaceOnly => {
for value in &mut result.values {
if *value != VoxelValue::PrimitiveOnSurface {
*value = VoxelValue::PrimitiveOutsideSurface
}
}
}
FillMode::FloodFill {
detect_cavities, ..
} => {
#[cfg(feature = "dim2")]
{
result.mark_outside_surface(0, 0, result.resolution[0], 1);
result.mark_outside_surface(
0,
result.resolution[1] - 1,
result.resolution[0],
result.resolution[1],
);
result.mark_outside_surface(0, 0, 1, result.resolution[1]);
result.mark_outside_surface(
result.resolution[0] - 1,
0,
result.resolution[0],
result.resolution[1],
);
}
#[cfg(feature = "dim3")]
{
result.mark_outside_surface(
0,
0,
0,
result.resolution[0],
result.resolution[1],
1,
);
result.mark_outside_surface(
0,
0,
result.resolution[2] - 1,
result.resolution[0],
result.resolution[1],
result.resolution[2],
);
result.mark_outside_surface(
0,
0,
0,
result.resolution[0],
1,
result.resolution[2],
);
result.mark_outside_surface(
0,
result.resolution[1] - 1,
0,
result.resolution[0],
result.resolution[1],
result.resolution[2],
);
result.mark_outside_surface(
0,
0,
0,
1,
result.resolution[1],
result.resolution[2],
);
result.mark_outside_surface(
result.resolution[0] - 1,
0,
0,
result.resolution[0],
result.resolution[1],
result.resolution[2],
);
}
if detect_cavities {
let _ = result.propagate_values(
VoxelValue::PrimitiveOutsideSurfaceToWalk,
VoxelValue::PrimitiveOutsideSurface,
None,
VoxelValue::PrimitiveOnSurfaceToWalk1,
);
loop {
if !result.propagate_values(
VoxelValue::PrimitiveInsideSurfaceToWalk,
VoxelValue::PrimitiveInsideSurface,
Some(VoxelValue::PrimitiveOnSurfaceToWalk1),
VoxelValue::PrimitiveOnSurfaceToWalk2,
) {
break;
}
if !result.propagate_values(
VoxelValue::PrimitiveOutsideSurfaceToWalk,
VoxelValue::PrimitiveOutsideSurface,
Some(VoxelValue::PrimitiveOnSurfaceToWalk2),
VoxelValue::PrimitiveOnSurfaceToWalk1,
) {
break;
}
}
for voxel in &mut result.values {
if *voxel == VoxelValue::PrimitiveOnSurfaceToWalk1
|| *voxel == VoxelValue::PrimitiveOnSurfaceToWalk2
|| *voxel == VoxelValue::PrimitiveOnSurfaceNoWalk
{
*voxel = VoxelValue::PrimitiveOnSurface;
}
}
} else {
let _ = result.propagate_values(
VoxelValue::PrimitiveOutsideSurfaceToWalk,
VoxelValue::PrimitiveOutsideSurface,
None,
VoxelValue::PrimitiveOnSurface,
);
result.replace_value(
VoxelValue::PrimitiveUndefined,
VoxelValue::PrimitiveInsideSurface,
);
}
}
}
result
}
/// The number of voxel subdivisions along each coordinate axis.
pub fn resolution(&self) -> [u32; DIM] {
self.resolution
}
/// The scale factor that needs to be applied to the voxels of `self`
/// in order to give them the size matching the original model's size.
pub fn scale(&self) -> Real {
self.scale
}
fn allocate(&mut self) {
#[cfg(feature = "dim2")]
let len = self.resolution[0] * self.resolution[1];
#[cfg(feature = "dim3")]
let len = self.resolution[0] * self.resolution[1] * self.resolution[2];
self.values
.resize(len as usize, VoxelValue::PrimitiveUndefined);
self.data.resize(
len as usize,
VoxelData {
#[cfg(feature = "dim2")]
multiplicity: 0,
num_primitive_intersections: 0,
},
);
}
fn voxel_index(&self, i: u32, j: u32, _k: u32) -> u32 {
#[cfg(feature = "dim2")]
return i + j * self.resolution[0];
#[cfg(feature = "dim3")]
return i + j * self.resolution[0] + _k * self.resolution[0] * self.resolution[1];
}
fn voxel_mut(&mut self, i: u32, j: u32, k: u32) -> &mut VoxelValue {
let idx = self.voxel_index(i, j, k);
&mut self.values[idx as usize]
}
/// The value of the given voxel.
///
/// In 2D`, the `k` argument is ignored.
pub fn voxel(&self, i: u32, j: u32, k: u32) -> VoxelValue {
let idx = self.voxel_index(i, j, k);
self.values[idx as usize]
}
/// Mark all the PrimitiveUndefined voxels within the given bounds as PrimitiveOutsideSurfaceToWalk.
#[cfg(feature = "dim2")]
fn mark_outside_surface(&mut self, i0: u32, j0: u32, i1: u32, j1: u32) {
for i in i0..i1 {
for j in j0..j1 {
let v = self.voxel_mut(i, j, 0);
if *v == VoxelValue::PrimitiveUndefined {
*v = VoxelValue::PrimitiveOutsideSurfaceToWalk;
}
}
}
}
/// Mark all the PrimitiveUndefined voxels within the given bounds as PrimitiveOutsideSurfaceToWalk.
#[cfg(feature = "dim3")]
fn mark_outside_surface(&mut self, i0: u32, j0: u32, k0: u32, i1: u32, j1: u32, k1: u32) {
for i in i0..i1 {
for j in j0..j1 {
for k in k0..k1 {
let v = self.voxel_mut(i, j, k);
if *v == VoxelValue::PrimitiveUndefined {
*v = VoxelValue::PrimitiveOutsideSurfaceToWalk;
}
}
}
}
}
fn walk_forward(
primitive_undefined_value_to_set: VoxelValue,
on_surface_value_to_set: VoxelValue,
start: isize,
end: isize,
mut ptr: isize,
out: &mut [VoxelValue],
stride: isize,
max_distance: isize,
) {
let mut i = start;
let mut count = 0;
while count < max_distance && i < end {
if out[ptr as usize] == VoxelValue::PrimitiveUndefined {
out[ptr as usize] = primitive_undefined_value_to_set;
} else if out[ptr as usize] == VoxelValue::PrimitiveOnSurface {
out[ptr as usize] = on_surface_value_to_set;
break;
} else {
break;
}
i += 1;
ptr += stride;
count += 1;
}
}
fn walk_backward(
primitive_undefined_value_to_set: VoxelValue,
on_surface_value_to_set: VoxelValue,
start: isize,
end: isize,
mut ptr: isize,
out: &mut [VoxelValue],
stride: isize,
max_distance: isize,
) {
let mut i = start;
let mut count = 0;
while count < max_distance && i >= end {
if out[ptr as usize] == VoxelValue::PrimitiveUndefined {
out[ptr as usize] = primitive_undefined_value_to_set;
} else if out[ptr as usize] == VoxelValue::PrimitiveOnSurface {
out[ptr as usize] = on_surface_value_to_set;
break;
} else {
break;
}
i -= 1;
ptr -= stride;
count += 1;
}
}
fn propagate_values(
&mut self,
inside_surface_value_to_walk: VoxelValue,
inside_surface_value_to_set: VoxelValue,
on_surface_value_to_walk: Option<VoxelValue>,
on_surface_value_to_set: VoxelValue,
) -> bool {
let mut voxels_walked;
let mut walked_at_least_once = false;
let i0 = self.resolution[0];
let j0 = self.resolution[1];
#[cfg(feature = "dim2")]
let k0 = 1;
#[cfg(feature = "dim3")]
let k0 = self.resolution[2];
// Avoid striding too far in each direction to stay in L1 cache as much as possible.
// The cache size required for the walk is roughly (4 * walk_distance * 64) since
// the k direction doesn't count as it's walking byte per byte directly in a cache lines.
// ~16k is required for a walk distance of 64 in each directions.
let walk_distance = 64;
// using the stride directly instead of calling get_voxel for each iterations saves
// a lot of multiplications and pipeline stalls due to values dependencies on imul.
let istride = self.voxel_index(1, 0, 0) as isize - self.voxel_index(0, 0, 0) as isize;
let jstride = self.voxel_index(0, 1, 0) as isize - self.voxel_index(0, 0, 0) as isize;
#[cfg(feature = "dim3")]
let kstride = self.voxel_index(0, 0, 1) as isize - self.voxel_index(0, 0, 0) as isize;
// It might seem counter intuitive to go over the whole voxel range multiple times
// but since we do the run in memory order, it leaves us with far fewer cache misses
// than a BFS algorithm and it has the additional benefit of not requiring us to
// store and manipulate a fifo for recursion that might become huge when the number
// of voxels is large.
// This will outperform the BFS algorithm by several orders of magnitude in practice.
loop {
voxels_walked = 0;
for i in 0..i0 {
for j in 0..j0 {
for k in 0..k0 {
let idx = self.voxel_index(i, j, k) as isize;
let voxel = self.voxel_mut(i, j, k);
if *voxel == inside_surface_value_to_walk {
voxels_walked += 1;
walked_at_least_once = true;
*voxel = inside_surface_value_to_set;
} else if Some(*voxel) != on_surface_value_to_walk {
continue;
}
// walk in each direction to mark other voxel that should be walked.
// this will generate a 3d pattern that will help the overall
// algorithm converge faster while remaining cache friendly.
#[cfg(feature = "dim3")]
Self::walk_forward(
inside_surface_value_to_walk,
on_surface_value_to_set,
k as isize + 1,
k0 as isize,
idx + kstride,
&mut self.values,
kstride,
walk_distance,
);
#[cfg(feature = "dim3")]
Self::walk_backward(
inside_surface_value_to_walk,
on_surface_value_to_set,
k as isize - 1,
0,
idx - kstride,
&mut self.values,
kstride,
walk_distance,
);
Self::walk_forward(
inside_surface_value_to_walk,
on_surface_value_to_set,
j as isize + 1,
j0 as isize,
idx + jstride,
&mut self.values,
jstride,
walk_distance,
);
Self::walk_backward(
inside_surface_value_to_walk,
on_surface_value_to_set,
j as isize - 1,
0,
idx - jstride,
&mut self.values,
jstride,
walk_distance,
);
Self::walk_forward(
inside_surface_value_to_walk,
on_surface_value_to_set,
(i + 1) as isize,
i0 as isize,
idx + istride,
&mut self.values,
istride,
walk_distance,
);
Self::walk_backward(
inside_surface_value_to_walk,
on_surface_value_to_set,
i as isize - 1,
0,
idx - istride,
&mut self.values,
istride,
walk_distance,
);
}
}
}
if voxels_walked == 0 {
break;
}
}
walked_at_least_once
}
fn replace_value(&mut self, current_value: VoxelValue, new_value: VoxelValue) {
for voxel in &mut self.values {
if *voxel == current_value {
*voxel = new_value;
}
}
}
/// Naive conversion of all the voxels with the given `value` to a triangle-mesh.
///
/// This conversion is extremely naive: it will simply collect all the 12 triangles forming
/// the faces of each voxel. No actual boundary extraction is done.
#[cfg(feature = "dim3")]
pub fn to_trimesh(&self, value: VoxelValue) -> (Vec<Point<Real>>, Vec<[u32; DIM]>) {
let mut vertices = Vec::new();
let mut indices = Vec::new();
for i in 0..self.resolution[0] {
for j in 0..self.resolution[1] {
for k in 0..self.resolution[2] {
let voxel = self.voxel(i, j, k);
if voxel == value {
let ijk = Vector::new(i as Real, j as Real, k as Real);
let shifts = [
Vector::new(-0.5, -0.5, -0.5),
Vector::new(0.5, -0.5, -0.5),
Vector::new(0.5, 0.5, -0.5),
Vector::new(-0.5, 0.5, -0.5),
Vector::new(-0.5, -0.5, 0.5),
Vector::new(0.5, -0.5, 0.5),
Vector::new(0.5, 0.5, 0.5),
Vector::new(-0.5, 0.5, 0.5),
];
for shift in &shifts {
vertices.push(self.origin + (ijk + shift) * self.scale);
}
let s = vertices.len() as u32;
indices.push([s, s + 2, s + 1]);
indices.push([s, s + 3, s + 2]);
indices.push([s + 4, s + 5, s + 6]);
indices.push([s + 4, s + 6, s + 7]);
indices.push([s + 7, s + 6, s + 2]);
indices.push([s + 7, s + 2, s + 3]);
indices.push([s + 4, s + 1, s + 5]);
indices.push([s + 4, s, s + 1]);
indices.push([s + 6, s + 5, s + 1]);
indices.push([s + 6, s + 1, s + 2]);
indices.push([s + 7, s, s + 4]);
indices.push([s + 7, s + 3, s]);
}
}
}
}
(vertices, indices)
}
}
impl From<VoxelizedVolume> for VoxelSet {
fn from(mut shape: VoxelizedVolume) -> Self {
let mut curr_intersection_index = 0;
let mut vset = VoxelSet::new();
let mut vset_intersections = Vec::new();
vset.origin = shape.origin;
vset.scale = shape.scale;
#[cfg(feature = "dim2")]
let k1 = 1;
#[cfg(feature = "dim3")]
let k1 = shape.resolution[2];
for i in 0..shape.resolution[0] {
for j in 0..shape.resolution[1] {
for k in 0..k1 {
let id = shape.voxel_index(i, j, k) as usize;
let value = shape.values[id];
#[cfg(feature = "dim2")]
let coords = Point::new(i, j);
#[cfg(feature = "dim3")]
let coords = Point::new(i, j, k);
if value == VoxelValue::PrimitiveInsideSurface {
let voxel = Voxel {
coords,
is_on_surface: false,
intersections_range: (curr_intersection_index, curr_intersection_index),
};
vset.voxels.push(voxel);
} else if value == VoxelValue::PrimitiveOnSurface {
let mut voxel = Voxel {
coords,
is_on_surface: true,
intersections_range: (curr_intersection_index, curr_intersection_index),
};
if !shape.primitive_intersections.is_empty() {
let num_intersections =
shape.data[id].num_primitive_intersections as usize;
// We store the index where we should write the intersection on the
// vset into num_primitive_intersections. That way we can reuse it
// afterwards when copying the set of intersection into a single
// flat Vec.
shape.data[id].num_primitive_intersections =
curr_intersection_index as u32;
curr_intersection_index += num_intersections;
voxel.intersections_range.1 = curr_intersection_index;
}
vset.voxels.push(voxel);
}
}
}
}
if !shape.primitive_intersections.is_empty() {
vset_intersections.resize(shape.primitive_intersections.len(), 0);
for (voxel_id, prim_id) in shape.primitive_intersections {
let num_inter = &mut shape.data[voxel_id as usize].num_primitive_intersections;
vset_intersections[*num_inter as usize] = prim_id;
*num_inter += 1;
}
}
vset.intersections = Arc::new(vset_intersections);
vset
}
}
/*
fn traceRay(
mesh: &RaycastMesh,
start: Real,
dir: &Vector<Real>,
inside_count: &mut u32,
outside_count: &mut u32,
) {
let out_t;
let u;
let v;
let w;
let face_sign;
let face_index;
let hit = raycast_mesh.raycast(start, dir, out_t, u, v, w, face_sign, face_index);
if hit {
if face_sign >= 0 {
*inside_count += 1;
} else {
*outside_count += 1;
}
}
}
fn raycast_fill(volume: &Volume, raycast_mesh: &RaycastMesh) {
if !raycast_mesh {
return;
}
let scale = volume.scale;
let bmin = volume.min_bb;
let i0 = volume.resolution[0];
let j0 = volume.resolution[1];
let k0 = volume.resolution[2];
for i in 0..i0 {
for j in 0..j0 {
for k in 0..k0 {
let voxel = volume.get_voxel(i, j, k);
if voxel != VoxelValue::PrimitiveOnSurface {
let start = Vector::new(
i as Real * scale + bmin[0],
j as Real * scale + bmin[1],
k as Real * scale + bmin[2],
);
let mut inside_count = 0;
let mut outside_count = 0;
let directions = [
Vector::x(),
-Vector::x(),
Vector::y(),
-Vector::y(),
Vector::z(),
-Vector::z(),
];
for r in 0..6 {
traceRay(
raycast_mesh,
start,
&directions[r * 3],
&mut inside_count,
&mut outside_count,
);
// Early out if we hit the outside of the mesh
if outside_count != 0 {
break;
}
// Early out if we accumulated 3 inside hits
if inside_count >= 3 {
break;
}
}
if outside_count == 0 && inside_count >= 3 {
volume.set_voxel(i, j, k, VoxelValue::PrimitiveInsideSurface);
} else {
volume.set_voxel(i, j, k, VoxelValue::PrimitiveOutsideSurface);
}
}
}
}
}
}
*/