parry3d/utils/
segments_intersection.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
use na::Point2;

use crate::math::Real;
use crate::shape::{SegmentPointLocation, Triangle, TriangleOrientation};

#[cfg(not(feature = "std"))]
use na::ComplexField;

/// Intersection between two segments.
pub enum SegmentsIntersection {
    /// Single point of intersection.
    Point {
        /// Location of the intersection point on the first segment.
        loc1: SegmentPointLocation,
        /// Location of the intersection point on the second segment.
        loc2: SegmentPointLocation,
    },
    /// Intersection along a segment (when both segments are collinear).
    Segment {
        /// Location of the first intersection point on the first segment.
        first_loc1: SegmentPointLocation,
        /// Location of the first intersection point on the second segment.
        first_loc2: SegmentPointLocation,
        /// Location of the second intersection point on the first segment.
        second_loc1: SegmentPointLocation,
        /// Location of the second intersection point on the second segment.
        second_loc2: SegmentPointLocation,
    },
}

/// Computes the intersection between two segments.
pub fn segments_intersection2d(
    a: &Point2<Real>,
    b: &Point2<Real>,
    c: &Point2<Real>,
    d: &Point2<Real>,
    epsilon: Real,
) -> Option<SegmentsIntersection> {
    let denom = a.x * (d.y - c.y) + b.x * (c.y - d.y) + d.x * (b.y - a.y) + c.x * (a.y - b.y);

    // If denom is zero, then segments are parallel: handle separately.
    if denom.abs() < epsilon || ulps_eq!(denom, 0.0) {
        return parallel_intersection(a, b, c, d, epsilon);
    }

    let num = a.x * (d.y - c.y) + c.x * (a.y - d.y) + d.x * (c.y - a.y);
    let s = num / denom;

    let num = -(a.x * (c.y - b.y) + b.x * (a.y - c.y) + c.x * (b.y - a.y));
    let t = num / denom;

    if 0.0 > s || s > 1.0 || 0.0 > t || t > 1.0 {
        None
    } else {
        let loc1 = if s == 0.0 {
            SegmentPointLocation::OnVertex(0)
        } else if s == denom {
            SegmentPointLocation::OnVertex(1)
        } else {
            SegmentPointLocation::OnEdge([1.0 - s, s])
        };

        let loc2 = if t == 0.0 {
            SegmentPointLocation::OnVertex(0)
        } else if t == denom {
            SegmentPointLocation::OnVertex(1)
        } else {
            SegmentPointLocation::OnEdge([1.0 - t, t])
        };

        Some(SegmentsIntersection::Point { loc1, loc2 })
    }
}

fn parallel_intersection(
    a: &Point2<Real>,
    b: &Point2<Real>,
    c: &Point2<Real>,
    d: &Point2<Real>,
    epsilon: Real,
) -> Option<SegmentsIntersection> {
    if Triangle::orientation2d(a, b, c, epsilon) != TriangleOrientation::Degenerate {
        return None;
    }

    let ab_c = between(a, b, c);
    let ab_d = between(a, b, d);
    if let (Some(loc1), Some(loc2)) = (ab_c, ab_d) {
        return Some(SegmentsIntersection::Segment {
            first_loc1: loc1,
            first_loc2: SegmentPointLocation::OnVertex(0),
            second_loc1: loc2,
            second_loc2: SegmentPointLocation::OnVertex(1),
        });
    }

    let cd_a = between(c, d, a);
    let cd_b = between(c, d, b);
    if let (Some(loc1), Some(loc2)) = (cd_a, cd_b) {
        return Some(SegmentsIntersection::Segment {
            first_loc1: SegmentPointLocation::OnVertex(0),
            first_loc2: loc1,
            second_loc1: SegmentPointLocation::OnVertex(1),
            second_loc2: loc2,
        });
    }

    if let (Some(loc1), Some(loc2)) = (ab_c, cd_b) {
        return Some(SegmentsIntersection::Segment {
            first_loc1: loc1,
            first_loc2: SegmentPointLocation::OnVertex(0),
            second_loc1: SegmentPointLocation::OnVertex(1),
            second_loc2: loc2,
        });
    }

    if let (Some(loc1), Some(loc2)) = (ab_c, cd_a) {
        return Some(SegmentsIntersection::Segment {
            first_loc1: loc1,
            first_loc2: SegmentPointLocation::OnVertex(0),
            second_loc1: SegmentPointLocation::OnVertex(0),
            second_loc2: loc2,
        });
    }

    if let (Some(loc1), Some(loc2)) = (ab_d, cd_b) {
        return Some(SegmentsIntersection::Segment {
            first_loc1: loc1,
            first_loc2: SegmentPointLocation::OnVertex(1),
            second_loc1: SegmentPointLocation::OnVertex(1),
            second_loc2: loc2,
        });
    }

    if let (Some(loc1), Some(loc2)) = (ab_d, cd_a) {
        return Some(SegmentsIntersection::Segment {
            first_loc1: loc1,
            first_loc2: SegmentPointLocation::OnVertex(1),
            second_loc1: SegmentPointLocation::OnVertex(0),
            second_loc2: loc2,
        });
    }

    None
}

// Checks that `c` is in-between `a` and `b`.
// Assumes the three points are collinear.
fn between(a: &Point2<Real>, b: &Point2<Real>, c: &Point2<Real>) -> Option<SegmentPointLocation> {
    // If ab not vertical, check betweenness on x; else on y.
    // TODO: handle cases where we actually are on a vertex (to return OnEdge instead of OnVertex)?
    if a.x != b.x {
        if a.x <= c.x && c.x <= b.x {
            let bcoord = (c.x - a.x) / (b.x - a.x);
            return Some(SegmentPointLocation::OnEdge([1.0 - bcoord, bcoord]));
        } else if a.x >= c.x && c.x >= b.x {
            let bcoord = (c.x - b.x) / (a.x - b.x);
            return Some(SegmentPointLocation::OnEdge([bcoord, 1.0 - bcoord]));
        }
    } else if a.y != b.y {
        if a.y <= c.y && c.y <= b.y {
            let bcoord = (c.y - a.y) / (b.y - a.y);
            return Some(SegmentPointLocation::OnEdge([1.0 - bcoord, bcoord]));
        } else if a.y >= c.y && c.y >= b.y {
            let bcoord = (c.y - b.y) / (a.y - b.y);
            return Some(SegmentPointLocation::OnEdge([bcoord, 1.0 - bcoord]));
        }
    } else if a.x == c.x && a.y == c.y {
        return Some(SegmentPointLocation::OnVertex(0));
    }

    None
}