1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
//! Compute the transitive reduction and closure of a directed acyclic graph
//!
//! ## Transitive reduction and closure
//! The *transitive closure* of a graph **G = (V, E)** is the graph **Gc = (V, Ec)**
//! such that **(i, j)** belongs to **Ec** if and only if there is a path connecting
//! **i** to **j** in **G**. The *transitive reduction* of **G** is the graph **Gr
//! = (V, Er)** such that **Er** is minimal wrt. inclusion in **E** and the transitive
//! closure of **Gr** is the same as that of **G**.
//! The transitive reduction is well-defined for acyclic graphs only.

use crate::adj::{List, UnweightedList};
use crate::graph::IndexType;
use crate::visit::{
    GraphBase, IntoNeighbors, IntoNeighborsDirected, NodeCompactIndexable, NodeCount,
};
use crate::Direction;
use fixedbitset::FixedBitSet;

/// Creates a representation of the same graph respecting topological order for use in `tred::dag_transitive_reduction_closure`.
///
/// `toposort` must be a topological order on the node indices of `g` (for example obtained
/// from [`toposort`]).
///
/// [`toposort`]: ../fn.toposort.html
///
/// Returns a pair of a graph `res` and the reciprocal of the topological sort `revmap`.
///
/// `res` is the same graph as `g` with the following differences:
/// * Node and edge weights are stripped,
/// * Node indices are replaced by the corresponding rank in `toposort`,
/// * Iterating on the neighbors of a node respects topological order.
///
/// `revmap` is handy to get back to map indices in `g` to indices in `res`.
/// ```
/// use petgraph::prelude::*;
/// use petgraph::graph::DefaultIx;
/// use petgraph::visit::IntoNeighbors;
/// use petgraph::algo::tred::dag_to_toposorted_adjacency_list;
///
/// let mut g = Graph::<&str, (), Directed, DefaultIx>::new();
/// let second = g.add_node("second child");
/// let top = g.add_node("top");
/// let first = g.add_node("first child");
/// g.extend_with_edges(&[(top, second), (top, first), (first, second)]);
///
/// let toposort = vec![top, first, second];
///
/// let (res, revmap) = dag_to_toposorted_adjacency_list(&g, &toposort);
///
/// // let's compute the children of top in topological order
/// let children: Vec<NodeIndex> = res
///     .neighbors(revmap[top.index()])
///     .map(|ix: NodeIndex| toposort[ix.index()])
///     .collect();
/// assert_eq!(children, vec![first, second])
/// ```
///
/// Runtime: **O(|V| + |E|)**.
///
/// Space complexity: **O(|V| + |E|)**.
pub fn dag_to_toposorted_adjacency_list<G, Ix: IndexType>(
    g: G,
    toposort: &[G::NodeId],
) -> (UnweightedList<Ix>, Vec<Ix>)
where
    G: GraphBase + IntoNeighborsDirected + NodeCompactIndexable + NodeCount,
    G::NodeId: IndexType,
{
    let mut res = List::with_capacity(g.node_count());
    // map from old node index to rank in toposort
    let mut revmap = vec![Ix::default(); g.node_bound()];
    for (ix, &old_ix) in toposort.iter().enumerate() {
        let ix = Ix::new(ix);
        revmap[old_ix.index()] = ix;
        let iter = g.neighbors_directed(old_ix, Direction::Incoming);
        let new_ix: Ix = res.add_node_with_capacity(iter.size_hint().0);
        debug_assert_eq!(new_ix.index(), ix.index());
        for old_pre in iter {
            let pre: Ix = revmap[old_pre.index()];
            res.add_edge(pre, ix, ());
        }
    }
    (res, revmap)
}

/// Computes the transitive reduction and closure of a DAG.
///
/// The algorithm implemented here comes from [On the calculation of
/// transitive reduction-closure of
/// orders](https://www.sciencedirect.com/science/article/pii/0012365X9390164O) by Habib, Morvan
/// and Rampon.
///
/// The input graph must be in a very specific format: an adjacency
/// list such that:
/// * Node indices are a toposort, and
/// * The neighbors of all nodes are stored in topological order.
/// To get such a representation, use the function [`dag_to_toposorted_adjacency_list`].
///
/// [`dag_to_toposorted_adjacency_list`]: ./fn.dag_to_toposorted_adjacency_list.html
///
/// The output is the pair of the transitive reduction and the transitive closure.
///
/// Runtime complexity: **O(|V| + \sum_{(x, y) \in Er} d(y))** where **d(y)**
/// denotes the outgoing degree of **y** in the transitive closure of **G**.
/// This is still **O(|V|³)** in the worst case like the naive algorithm but
/// should perform better for some classes of graphs.
///
/// Space complexity: **O(|E|)**.
pub fn dag_transitive_reduction_closure<E, Ix: IndexType>(
    g: &List<E, Ix>,
) -> (UnweightedList<Ix>, UnweightedList<Ix>) {
    let mut tred = List::with_capacity(g.node_count());
    let mut tclos = List::with_capacity(g.node_count());
    let mut mark = FixedBitSet::with_capacity(g.node_count());
    for i in g.node_indices() {
        tred.add_node();
        tclos.add_node_with_capacity(g.neighbors(i).len());
    }
    // the algorithm relies on this iterator being toposorted
    for i in g.node_indices().rev() {
        // the algorighm relies on this iterator being toposorted
        for x in g.neighbors(i) {
            if !mark[x.index()] {
                tred.add_edge(i, x, ());
                tclos.add_edge(i, x, ());
                for e in tclos.edge_indices_from(x) {
                    let y = tclos.edge_endpoints(e).unwrap().1;
                    if !mark[y.index()] {
                        mark.insert(y.index());
                        tclos.add_edge(i, y, ());
                    }
                }
            }
        }
        for y in tclos.neighbors(i) {
            mark.set(y.index(), false);
        }
    }
    (tred, tclos)
}

#[cfg(test)]
#[test]
fn test_easy_tred() {
    let mut input = List::new();
    let a: u8 = input.add_node();
    let b = input.add_node();
    let c = input.add_node();
    input.add_edge(a, b, ());
    input.add_edge(a, c, ());
    input.add_edge(b, c, ());
    let (tred, tclos) = dag_transitive_reduction_closure(&input);
    assert_eq!(tred.node_count(), 3);
    assert_eq!(tclos.node_count(), 3);
    assert!(tred.find_edge(a, b).is_some());
    assert!(tred.find_edge(b, c).is_some());
    assert!(tred.find_edge(a, c).is_none());
    assert!(tclos.find_edge(a, b).is_some());
    assert!(tclos.find_edge(b, c).is_some());
    assert!(tclos.find_edge(a, c).is_some());
}