radsort/sort.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
//! Implementations of radix keys and sorting functions.
use core::mem;
use crate::{double_buffer::DoubleBuffer, Key};
/// Unsigned integers used as sorting keys for radix sort.
///
/// These keys can be sorted bitwise. For conversion from scalar types, see
/// [`Scalar::to_radix_key()`].
///
/// [`Scalar::to_radix_key()`]: ../scalar/trait.Scalar.html#tymethod.to_radix_key
pub trait RadixKey: Key {
/// Sorts the slice using provided key extraction function.
/// Runs one of the other functions, based on the length of the slice.
#[inline]
fn radix_sort<T, F>(slice: &mut [T], mut key_fn: F, unopt: bool)
where
F: FnMut(&T) -> Self,
{
// Sorting has no meaningful behavior on zero-sized types.
if mem::size_of::<T>() == 0 {
return;
}
let len = slice.len();
if len < 2 {
return;
}
#[cfg(not(any(target_pointer_width = "16", target_pointer_width = "32")))]
{
if len <= u32::MAX as usize {
Self::radix_sort_u32(slice, |t| key_fn(t), unopt);
return;
}
}
Self::radix_sort_usize(slice, |t| key_fn(t), unopt);
}
/// Sorting for slices with up to `u32::MAX` elements, which is a majority
/// of cases. Uses `u32` indices for histograms and offsets to save cache
/// space.
#[cfg(not(any(target_pointer_width = "16", target_pointer_width = "32")))]
fn radix_sort_u32<T, F>(slice: &mut [T], key_fn: F, unopt: bool)
where
F: FnMut(&T) -> Self;
/// Sorting function for slices with up to `usize::MAX` elements.
fn radix_sort_usize<T, F>(slice: &mut [T], key_fn: F, unopt: bool)
where
F: FnMut(&T) -> Self;
}
macro_rules! sort_impl {
($name:ident, $radix_key_type:ty, $offset_type:ty) => {
#[inline(never)] // Don't inline, the offset array needs a lot of stack
fn $name<T, F>(input: &mut [T], mut key_fn: F, unopt: bool)
where
F: FnMut(&T) -> $radix_key_type,
{
// This implementation is radix 256, so the size of a digit is 8 bits / one byte.
// You can experiment with different digit sizes by changing this constant, but
// according to my benchmarks, the overhead from arbitrary shifting and masking
// will be higher than what you save by having less digits.
const DIGIT_BITS: usize = 8;
const RADIX_KEY_BITS: usize = mem::size_of::<$radix_key_type>() * 8;
// Have one bucket for each possible value of the digit
const BUCKET_COUNT: usize = 1 << DIGIT_BITS;
const DIGIT_COUNT: usize = (RADIX_KEY_BITS + DIGIT_BITS - 1) / DIGIT_BITS;
let digit_skip_enabled: bool = !unopt;
/// Extracts the digit from the key, starting with the least significant digit.
/// The digit is used as a bucket index.
#[inline(always)]
fn extract_digit(key: $radix_key_type, digit: usize) -> usize {
const DIGIT_MASK: $radix_key_type = ((1 << DIGIT_BITS) - 1) as $radix_key_type;
((key >> (digit * DIGIT_BITS)) & DIGIT_MASK) as usize
}
// In the worst case (`u128` key, `input.len() >= u32::MAX`) uses 32 KiB on the stack.
let mut offsets = [[0 as $offset_type; BUCKET_COUNT]; DIGIT_COUNT];
let mut skip_digit = [false; DIGIT_COUNT];
{
// Calculate bucket offsets for each digit.
// Calculate histograms/bucket sizes and store in `offsets`.
for t in input.iter() {
let key = key_fn(t);
for digit in 0..DIGIT_COUNT {
offsets[digit][extract_digit(key, digit)] += 1;
}
}
if digit_skip_enabled {
// For each digit, check if all the elements are in the same bucket.
// If so, we can skip the whole digit. Instead of checking all the buckets,
// we pick a key and check whether the bucket contains all the elements.
let last_key = key_fn(input.last().unwrap());
for digit in 0..DIGIT_COUNT {
let last_bucket = extract_digit(last_key, digit);
let skip = offsets[digit][last_bucket] == input.len() as $offset_type;
skip_digit[digit] = skip;
}
}
// Turn the histogram/bucket sizes into bucket offsets by calculating a prefix sum.
// Sizes: |---b1---|-b2-|---b3---|----b4----|
// Offsets: 0 b1 b1+b2 b1+b2+b3
for digit in 0..DIGIT_COUNT {
if !(digit_skip_enabled && skip_digit[digit]) {
let mut offset_acc = 0;
for count in offsets[digit].iter_mut() {
let offset = offset_acc;
offset_acc += *count;
*count = offset;
}
}
}
// The `offsets` array now contains bucket offsets for each digit.
}
let len = input.len();
// Drop impl of DoubleBuffer ensures that `input` is consistent,
// e.g. in case of panic in the key function.
let mut buffer = DoubleBuffer::new(input);
// This is the main sorting loop. We sort the elements by each digit of the key,
// starting from the least-significant. After sorting by the last, most significant
// digit, our elements are sorted.
for digit in 0..DIGIT_COUNT {
if !(digit_skip_enabled && skip_digit[digit]) {
// Initial offset of each bucket.
let init_offsets = &offsets[digit];
// Offset of the first empty index in each bucket.
let mut working_offsets = *init_offsets;
buffer.scatter(|t| {
let key = key_fn(t);
let bucket = extract_digit(key, digit);
let offset = &mut working_offsets[bucket];
let index = *offset as usize;
// Increment the offset of the bucket. Use wrapping add in case the
// key function is unreliable and the bucket overflowed.
*offset = offset.wrapping_add(1);
index
});
// Check that each bucket had the same number of insertions as we expected.
// If this is not true, then the key function is unreliable and some elements
// in the write buffer were not written to.
//
// If the key function is unreliable, but the sizes of buckets ended up being
// the same, it would not get detected. This is sound, the only consequence is
// that the elements won't be sorted right.
{
// The `working_offsets` array now contains the end offset of each bucket.
// If the bucket is full, the working offset is now equal to the original
// offset of the next bucket. The working offset of the last bucket should
// be equal to the number of elements.
let bucket_sizes_match = working_offsets[0..BUCKET_COUNT - 1]
== offsets[digit][1..BUCKET_COUNT]
&& working_offsets[BUCKET_COUNT - 1] == len as $offset_type;
if !bucket_sizes_match {
// The bucket sizes do not match expected sizes, the key function is
// unreliable (programming mistake).
//
// The Drop impl will copy the last completed buffer into the slice.
drop(buffer);
panic!(
"The key function is not reliable: when called repeatedly, \
it returned different keys for the same element."
)
}
}
unsafe {
// SAFETY: we just ensured that every index was written to.
buffer.swap();
}
}
}
// The Drop impl will copy the last completed buffer into the slice.
drop(buffer);
}
};
}
macro_rules! radix_key_impl {
($($key_type:ty)*) => ($(
impl RadixKey for $key_type {
#[cfg(not(any(target_pointer_width = "16", target_pointer_width = "32")))]
sort_impl!(radix_sort_u32, $key_type, u32);
sort_impl!(radix_sort_usize, $key_type, usize);
}
)*)
}
radix_key_impl! { u8 u16 u32 u64 u128 }