radsort/
sort.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
//! Implementations of radix keys and sorting functions.

use core::mem;

use crate::{double_buffer::DoubleBuffer, Key};

/// Unsigned integers used as sorting keys for radix sort.
///
/// These keys can be sorted bitwise. For conversion from scalar types, see
/// [`Scalar::to_radix_key()`].
///
/// [`Scalar::to_radix_key()`]: ../scalar/trait.Scalar.html#tymethod.to_radix_key
pub trait RadixKey: Key {
    /// Sorts the slice using provided key extraction function.
    /// Runs one of the other functions, based on the length of the slice.
    #[inline]
    fn radix_sort<T, F>(slice: &mut [T], mut key_fn: F, unopt: bool)
    where
        F: FnMut(&T) -> Self,
    {
        // Sorting has no meaningful behavior on zero-sized types.
        if mem::size_of::<T>() == 0 {
            return;
        }

        let len = slice.len();
        if len < 2 {
            return;
        }

        #[cfg(not(any(target_pointer_width = "16", target_pointer_width = "32")))]
        {
            if len <= u32::MAX as usize {
                Self::radix_sort_u32(slice, |t| key_fn(t), unopt);
                return;
            }
        }

        Self::radix_sort_usize(slice, |t| key_fn(t), unopt);
    }

    /// Sorting for slices with up to `u32::MAX` elements, which is a majority
    /// of cases. Uses `u32` indices for histograms and offsets to save cache
    /// space.
    #[cfg(not(any(target_pointer_width = "16", target_pointer_width = "32")))]
    fn radix_sort_u32<T, F>(slice: &mut [T], key_fn: F, unopt: bool)
    where
        F: FnMut(&T) -> Self;

    /// Sorting function for slices with up to `usize::MAX` elements.
    fn radix_sort_usize<T, F>(slice: &mut [T], key_fn: F, unopt: bool)
    where
        F: FnMut(&T) -> Self;
}

macro_rules! sort_impl {
    ($name:ident, $radix_key_type:ty, $offset_type:ty) => {
        #[inline(never)] // Don't inline, the offset array needs a lot of stack
        fn $name<T, F>(input: &mut [T], mut key_fn: F, unopt: bool)
        where
            F: FnMut(&T) -> $radix_key_type,
        {
            // This implementation is radix 256, so the size of a digit is 8 bits / one byte.
            // You can experiment with different digit sizes by changing this constant, but
            // according to my benchmarks, the overhead from arbitrary shifting and masking
            // will be higher than what you save by having less digits.
            const DIGIT_BITS: usize = 8;

            const RADIX_KEY_BITS: usize = mem::size_of::<$radix_key_type>() * 8;

            // Have one bucket for each possible value of the digit
            const BUCKET_COUNT: usize = 1 << DIGIT_BITS;

            const DIGIT_COUNT: usize = (RADIX_KEY_BITS + DIGIT_BITS - 1) / DIGIT_BITS;

            let digit_skip_enabled: bool = !unopt;

            /// Extracts the digit from the key, starting with the least significant digit.
            /// The digit is used as a bucket index.
            #[inline(always)]
            fn extract_digit(key: $radix_key_type, digit: usize) -> usize {
                const DIGIT_MASK: $radix_key_type = ((1 << DIGIT_BITS) - 1) as $radix_key_type;
                ((key >> (digit * DIGIT_BITS)) & DIGIT_MASK) as usize
            }

            // In the worst case (`u128` key, `input.len() >= u32::MAX`) uses 32 KiB on the stack.
            let mut offsets = [[0 as $offset_type; BUCKET_COUNT]; DIGIT_COUNT];
            let mut skip_digit = [false; DIGIT_COUNT];

            {
                // Calculate bucket offsets for each digit.

                // Calculate histograms/bucket sizes and store in `offsets`.
                for t in input.iter() {
                    let key = key_fn(t);
                    for digit in 0..DIGIT_COUNT {
                        offsets[digit][extract_digit(key, digit)] += 1;
                    }
                }

                if digit_skip_enabled {
                    // For each digit, check if all the elements are in the same bucket.
                    // If so, we can skip the whole digit. Instead of checking all the buckets,
                    // we pick a key and check whether the bucket contains all the elements.
                    let last_key = key_fn(input.last().unwrap());
                    for digit in 0..DIGIT_COUNT {
                        let last_bucket = extract_digit(last_key, digit);
                        let skip = offsets[digit][last_bucket] == input.len() as $offset_type;
                        skip_digit[digit] = skip;
                    }
                }

                // Turn the histogram/bucket sizes into bucket offsets by calculating a prefix sum.
                // Sizes:     |---b1---|-b2-|---b3---|----b4----|
                // Offsets:   0        b1   b1+b2    b1+b2+b3
                for digit in 0..DIGIT_COUNT {
                    if !(digit_skip_enabled && skip_digit[digit]) {
                        let mut offset_acc = 0;
                        for count in offsets[digit].iter_mut() {
                            let offset = offset_acc;
                            offset_acc += *count;
                            *count = offset;
                        }
                    }
                }

                // The `offsets` array now contains bucket offsets for each digit.
            }

            let len = input.len();

            // Drop impl of DoubleBuffer ensures that `input` is consistent,
            // e.g. in case of panic in the key function.
            let mut buffer = DoubleBuffer::new(input);

            // This is the main sorting loop. We sort the elements by each digit of the key,
            // starting from the least-significant. After sorting by the last, most significant
            // digit, our elements are sorted.
            for digit in 0..DIGIT_COUNT {
                if !(digit_skip_enabled && skip_digit[digit]) {
                    // Initial offset of each bucket.
                    let init_offsets = &offsets[digit];
                    // Offset of the first empty index in each bucket.
                    let mut working_offsets = *init_offsets;

                    buffer.scatter(|t| {
                        let key = key_fn(t);
                        let bucket = extract_digit(key, digit);

                        let offset = &mut working_offsets[bucket];

                        let index = *offset as usize;

                        // Increment the offset of the bucket. Use wrapping add in case the
                        // key function is unreliable and the bucket overflowed.
                        *offset = offset.wrapping_add(1);

                        index
                    });

                    // Check that each bucket had the same number of insertions as we expected.
                    // If this is not true, then the key function is unreliable and some elements
                    // in the write buffer were not written to.
                    //
                    // If the key function is unreliable, but the sizes of buckets ended up being
                    // the same, it would not get detected. This is sound, the only consequence is
                    // that the elements won't be sorted right.
                    {
                        // The `working_offsets` array now contains the end offset of each bucket.
                        // If the bucket is full, the working offset is now equal to the original
                        // offset of the next bucket. The working offset of the last bucket should
                        // be equal to the number of elements.
                        let bucket_sizes_match = working_offsets[0..BUCKET_COUNT - 1]
                            == offsets[digit][1..BUCKET_COUNT]
                            && working_offsets[BUCKET_COUNT - 1] == len as $offset_type;

                        if !bucket_sizes_match {
                            // The bucket sizes do not match expected sizes, the key function is
                            // unreliable (programming mistake).
                            //
                            // The Drop impl will copy the last completed buffer into the slice.
                            drop(buffer);
                            panic!(
                                "The key function is not reliable: when called repeatedly, \
                                it returned different keys for the same element."
                            )
                        }
                    }

                    unsafe {
                        // SAFETY: we just ensured that every index was written to.
                        buffer.swap();
                    }
                }
            }

            // The Drop impl will copy the last completed buffer into the slice.
            drop(buffer);
        }
    };
}

macro_rules! radix_key_impl {
    ($($key_type:ty)*) => ($(
        impl RadixKey for $key_type {

            #[cfg(not(any(target_pointer_width = "16", target_pointer_width = "32")))]
            sort_impl!(radix_sort_u32, $key_type, u32);

            sort_impl!(radix_sort_usize, $key_type, usize);
        }
    )*)
}

radix_key_impl! { u8 u16 u32 u64 u128 }