rapier2d/dynamics/ccd/ccd_solver.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
use super::TOIEntry;
use crate::dynamics::{IslandManager, RigidBodyHandle, RigidBodySet};
use crate::geometry::{ColliderParent, ColliderSet, CollisionEvent, NarrowPhase};
use crate::math::Real;
use crate::parry::utils::SortedPair;
use crate::pipeline::{EventHandler, QueryPipeline};
use crate::prelude::{query_pipeline_generators, ActiveEvents, CollisionEventFlags};
use parry::query::{DefaultQueryDispatcher, QueryDispatcher};
use parry::utils::hashmap::HashMap;
use std::collections::BinaryHeap;
pub enum PredictedImpacts {
Impacts(HashMap<RigidBodyHandle, Real>),
ImpactsAfterEndTime(Real),
NoImpacts,
}
/// Solver responsible for performing motion-clamping on fast-moving bodies.
#[derive(Clone)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct CCDSolver {
#[cfg_attr(feature = "serde-serialize", serde(skip))]
query_pipeline: QueryPipeline,
}
impl Default for CCDSolver {
fn default() -> Self {
Self::new()
}
}
impl CCDSolver {
/// Initializes a new CCD solver
pub fn new() -> Self {
Self::with_query_dispatcher(DefaultQueryDispatcher)
}
/// Initializes a CCD solver with a custom `QueryDispatcher` used for computing time-of-impacts.
///
/// Use this constructor in order to use a custom `QueryDispatcher` that is aware of your own
/// user-defined shapes.
pub fn with_query_dispatcher<D>(d: D) -> Self
where
D: 'static + QueryDispatcher,
{
CCDSolver {
query_pipeline: QueryPipeline::with_query_dispatcher(d),
}
}
/// Apply motion-clamping to the bodies affected by the given `impacts`.
///
/// The `impacts` should be the result of a previous call to `self.predict_next_impacts`.
pub fn clamp_motions(&self, dt: Real, bodies: &mut RigidBodySet, impacts: &PredictedImpacts) {
if let PredictedImpacts::Impacts(tois) = impacts {
for (handle, toi) in tois {
let rb = bodies.index_mut_internal(*handle);
let local_com = &rb.mprops.local_mprops.local_com;
let min_toi = (rb.ccd.ccd_thickness
* 0.15
* crate::utils::inv(rb.ccd.max_point_velocity(&rb.integrated_vels)))
.min(dt);
// println!(
// "Min toi: {}, Toi: {}, thick: {}, max_vel: {}",
// min_toi,
// toi,
// rb.ccd.ccd_thickness,
// rb.ccd.max_point_velocity(&rb.integrated_vels)
// );
let new_pos =
rb.integrated_vels
.integrate(toi.max(min_toi), &rb.pos.position, local_com);
rb.pos.next_position = new_pos;
}
}
}
/// Updates the set of bodies that needs CCD to be resolved.
///
/// Returns `true` if any rigid-body must have CCD resolved.
pub fn update_ccd_active_flags(
&self,
islands: &IslandManager,
bodies: &mut RigidBodySet,
dt: Real,
include_forces: bool,
) -> bool {
let mut ccd_active = false;
// println!("Checking CCD activation");
for handle in islands.active_dynamic_bodies() {
let rb = bodies.index_mut_internal(*handle);
if rb.ccd.ccd_enabled {
let forces = if include_forces {
Some(&rb.forces)
} else {
None
};
let moving_fast = rb.ccd.is_moving_fast(dt, &rb.integrated_vels, forces);
rb.ccd.ccd_active = moving_fast;
ccd_active = ccd_active || moving_fast;
}
}
ccd_active
}
/// Find the first time a CCD-enabled body has a non-sensor collider hitting another non-sensor collider.
#[profiling::function]
pub fn find_first_impact(
&mut self,
dt: Real,
islands: &IslandManager,
bodies: &RigidBodySet,
colliders: &ColliderSet,
narrow_phase: &NarrowPhase,
) -> Option<Real> {
// Update the query pipeline.
self.query_pipeline.update_with_generator(
query_pipeline_generators::SweptAabbWithPredictedPosition {
bodies,
colliders,
dt,
},
);
let mut pairs_seen = HashMap::default();
let mut min_toi = dt;
for handle in islands.active_dynamic_bodies() {
let rb1 = &bodies[*handle];
if rb1.ccd.ccd_active {
let predicted_body_pos1 = rb1.pos.integrate_forces_and_velocities(
dt,
&rb1.forces,
&rb1.integrated_vels,
&rb1.mprops,
);
for ch1 in &rb1.colliders.0 {
let co1 = &colliders[*ch1];
let co1_parent = co1
.parent
.as_ref()
.expect("Could not find the ColliderParent component.");
if co1.is_sensor() {
continue; // Ignore sensors.
}
let predicted_collider_pos1 = predicted_body_pos1 * co1_parent.pos_wrt_parent;
let aabb1 = co1
.shape
.compute_swept_aabb(&co1.pos, &predicted_collider_pos1);
self.query_pipeline
.colliders_with_aabb_intersecting_aabb(&aabb1, |ch2| {
if *ch1 == *ch2 {
// Ignore self-intersection.
return true;
}
if pairs_seen
.insert(
SortedPair::new(ch1.into_raw_parts().0, ch2.into_raw_parts().0),
(),
)
.is_none()
{
let co1 = &colliders[*ch1];
let co2 = &colliders[*ch2];
let bh1 = co1.parent.map(|p| p.handle);
let bh2 = co2.parent.map(|p| p.handle);
// Ignore self-intersection and sensors and apply collision groups filter.
if bh1 == bh2 // Ignore self-intersection.
|| (co1.is_sensor() || co2.is_sensor()) // Ignore sensors.
|| !co1.flags.collision_groups.test(co2.flags.collision_groups) // Apply collision groups.
|| !co1.flags.solver_groups.test(co2.flags.solver_groups)
// Apply solver groups.
{
return true;
}
let smallest_dist = narrow_phase
.contact_pair(*ch1, *ch2)
.and_then(|p| p.find_deepest_contact())
.map(|c| c.1.dist)
.unwrap_or(0.0);
let rb2 = bh2.and_then(|h| bodies.get(h));
if let Some(toi) = TOIEntry::try_from_colliders(
self.query_pipeline.query_dispatcher(),
*ch1,
*ch2,
co1,
co2,
Some(rb1),
rb2,
None,
None,
0.0,
min_toi,
smallest_dist,
) {
min_toi = min_toi.min(toi.toi);
}
}
true
});
}
}
}
if min_toi < dt {
Some(min_toi)
} else {
None
}
}
/// Outputs the set of bodies as well as their first time-of-impact event.
#[profiling::function]
pub fn predict_impacts_at_next_positions(
&mut self,
dt: Real,
islands: &IslandManager,
bodies: &RigidBodySet,
colliders: &ColliderSet,
narrow_phase: &NarrowPhase,
events: &dyn EventHandler,
) -> PredictedImpacts {
let mut frozen = HashMap::<_, Real>::default();
let mut all_toi = BinaryHeap::new();
let mut pairs_seen = HashMap::default();
let mut min_overstep = dt;
// Update the query pipeline.
self.query_pipeline.update_with_generator(
query_pipeline_generators::SweptAabbWithNextPosition { bodies, colliders },
);
/*
*
* First, collect all TOIs.
*
*/
// TODO: don't iterate through all the colliders.
for handle in islands.active_dynamic_bodies() {
let rb1 = &bodies[*handle];
if rb1.ccd.ccd_active {
let predicted_body_pos1 = rb1.pos.integrate_forces_and_velocities(
dt,
&rb1.forces,
&rb1.integrated_vels,
&rb1.mprops,
);
for ch1 in &rb1.colliders.0 {
let co1 = &colliders[*ch1];
let co_parent1 = co1
.parent
.as_ref()
.expect("Could not find the ColliderParent component.");
let predicted_collider_pos1 = predicted_body_pos1 * co_parent1.pos_wrt_parent;
let aabb1 = co1
.shape
.compute_swept_aabb(&co1.pos, &predicted_collider_pos1);
self.query_pipeline
.colliders_with_aabb_intersecting_aabb(&aabb1, |ch2| {
if *ch1 == *ch2 {
// Ignore self-intersection.
return true;
}
if pairs_seen
.insert(
SortedPair::new(ch1.into_raw_parts().0, ch2.into_raw_parts().0),
(),
)
.is_none()
{
let co1 = &colliders[*ch1];
let co2 = &colliders[*ch2];
let bh1 = co1.parent.map(|p| p.handle);
let bh2 = co2.parent.map(|p| p.handle);
// Ignore self-intersections and apply groups filter.
if bh1 == bh2
|| !co1.flags.collision_groups.test(co2.flags.collision_groups)
{
return true;
}
let smallest_dist = narrow_phase
.contact_pair(*ch1, *ch2)
.and_then(|p| p.find_deepest_contact())
.map(|c| c.1.dist)
.unwrap_or(0.0);
let rb1 = bh1.map(|h| &bodies[h]);
let rb2 = bh2.map(|h| &bodies[h]);
if let Some(toi) = TOIEntry::try_from_colliders(
self.query_pipeline.query_dispatcher(),
*ch1,
*ch2,
co1,
co2,
rb1,
rb2,
None,
None,
0.0,
// NOTE: we use dt here only once we know that
// there is at least one TOI before dt.
min_overstep,
smallest_dist,
) {
if toi.toi > dt {
min_overstep = min_overstep.min(toi.toi);
} else {
min_overstep = dt;
all_toi.push(toi);
}
}
}
true
});
}
}
}
/*
*
* If the smallest TOI is outside of the time interval, return.
*
*/
if min_overstep == dt && all_toi.is_empty() {
return PredictedImpacts::NoImpacts;
} else if min_overstep > dt {
return PredictedImpacts::ImpactsAfterEndTime(min_overstep);
}
// NOTE: all fixed bodies (and kinematic bodies?) should be considered as "frozen", this
// may avoid some resweeps.
let mut pseudo_intersections_to_check = vec![];
while let Some(toi) = all_toi.pop() {
assert!(toi.toi <= dt);
let rb1 = toi.b1.and_then(|b| bodies.get(b));
let rb2 = toi.b2.and_then(|b| bodies.get(b));
let mut colliders_to_check = Vec::new();
let should_freeze1 = rb1.is_some()
&& rb1.unwrap().ccd.ccd_active
&& !frozen.contains_key(&toi.b1.unwrap());
let should_freeze2 = rb2.is_some()
&& rb2.unwrap().ccd.ccd_active
&& !frozen.contains_key(&toi.b2.unwrap());
if !should_freeze1 && !should_freeze2 {
continue;
}
if toi.is_pseudo_intersection_test {
// NOTE: this test is redundant with the previous `if !should_freeze && ...`
// but let's keep it to avoid tricky regressions if we end up swapping both
// `if` for some reasons in the future.
if should_freeze1 || should_freeze2 {
// This is only an intersection so we don't have to freeze and there is no
// need to resweep. However we will need to see if we have to generate
// intersection events, so push the TOI for further testing.
pseudo_intersections_to_check.push(toi);
}
continue;
}
if should_freeze1 {
let _ = frozen.insert(toi.b1.unwrap(), toi.toi);
colliders_to_check.extend_from_slice(&rb1.unwrap().colliders.0);
}
if should_freeze2 {
let _ = frozen.insert(toi.b2.unwrap(), toi.toi);
colliders_to_check.extend_from_slice(&rb2.unwrap().colliders.0);
}
let start_time = toi.toi;
// NOTE: the 1 and 2 indices (e.g., `ch1`, `ch2`) below are unrelated to the
// ones we used above.
for ch1 in &colliders_to_check {
let co1 = &colliders[*ch1];
let co1_parent = co1.parent.as_ref().unwrap();
let rb1 = &bodies[co1_parent.handle];
let co_next_pos1 = rb1.pos.next_position * co1_parent.pos_wrt_parent;
let aabb = co1.shape.compute_swept_aabb(&co1.pos, &co_next_pos1);
self.query_pipeline
.colliders_with_aabb_intersecting_aabb(&aabb, |ch2| {
let co2 = &colliders[*ch2];
let bh1 = co1.parent.map(|p| p.handle);
let bh2 = co2.parent.map(|p| p.handle);
// Ignore self-intersection and apply groups filter.
if bh1 == bh2
|| !co1.flags.collision_groups.test(co2.flags.collision_groups)
{
return true;
}
let frozen1 = bh1.and_then(|h| frozen.get(&h));
let frozen2 = bh2.and_then(|h| frozen.get(&h));
let rb1 = bh1.and_then(|h| bodies.get(h));
let rb2 = bh2.and_then(|h| bodies.get(h));
if (frozen1.is_some() || !rb1.map(|b| b.ccd.ccd_active).unwrap_or(false))
&& (frozen2.is_some()
|| !rb2.map(|b| b.ccd.ccd_active).unwrap_or(false))
{
// We already did a resweep.
return true;
}
let smallest_dist = narrow_phase
.contact_pair(*ch1, *ch2)
.and_then(|p| p.find_deepest_contact())
.map(|c| c.1.dist)
.unwrap_or(0.0);
if let Some(toi) = TOIEntry::try_from_colliders(
self.query_pipeline.query_dispatcher(),
*ch1,
*ch2,
co1,
co2,
rb1,
rb2,
frozen1.copied(),
frozen2.copied(),
start_time,
dt,
smallest_dist,
) {
all_toi.push(toi);
}
true
});
}
}
for toi in pseudo_intersections_to_check {
// See if the intersection is still active once the bodies
// reach their final positions.
// - If the intersection is still active, don't report it yet. It will be
// reported by the narrow-phase at the next timestep/substep.
// - If the intersection isn't active anymore, and it wasn't intersecting
// before, then we need to generate one interaction-start and one interaction-stop
// events because it will never be detected by the narrow-phase because of tunneling.
let co1 = &colliders[toi.c1];
let co2 = &colliders[toi.c2];
if !co1.is_sensor() && !co2.is_sensor() {
// TODO: this happens if we found a TOI between two non-sensor
// colliders with mismatching solver_flags. It is not clear
// what we should do in this case: we could report a
// contact started/contact stopped event for example. But in
// that case, what contact pair should be pass to these events?
// For now we just ignore this special case. Let's wait for an actual
// use-case to come up before we determine what we want to do here.
continue;
}
let co_next_pos1 = if let Some(b1) = toi.b1 {
let co_parent1: &ColliderParent = co1.parent.as_ref().unwrap();
let rb1 = &bodies[b1];
let local_com1 = &rb1.mprops.local_mprops.local_com;
let frozen1 = frozen.get(&b1);
let pos1 = frozen1
.map(|t| {
rb1.integrated_vels
.integrate(*t, &rb1.pos.position, local_com1)
})
.unwrap_or(rb1.pos.next_position);
pos1 * co_parent1.pos_wrt_parent
} else {
co1.pos.0
};
let co_next_pos2 = if let Some(b2) = toi.b2 {
let co_parent2: &ColliderParent = co2.parent.as_ref().unwrap();
let rb2 = &bodies[b2];
let local_com2 = &rb2.mprops.local_mprops.local_com;
let frozen2 = frozen.get(&b2);
let pos2 = frozen2
.map(|t| {
rb2.integrated_vels
.integrate(*t, &rb2.pos.position, local_com2)
})
.unwrap_or(rb2.pos.next_position);
pos2 * co_parent2.pos_wrt_parent
} else {
co2.pos.0
};
let prev_coll_pos12 = co1.pos.inv_mul(&co2.pos);
let next_coll_pos12 = co_next_pos1.inv_mul(&co_next_pos2);
let query_dispatcher = self.query_pipeline.query_dispatcher();
let intersect_before = query_dispatcher
.intersection_test(&prev_coll_pos12, co1.shape.as_ref(), co2.shape.as_ref())
.unwrap_or(false);
let intersect_after = query_dispatcher
.intersection_test(&next_coll_pos12, co1.shape.as_ref(), co2.shape.as_ref())
.unwrap_or(false);
if !intersect_before
&& !intersect_after
&& (co1.flags.active_events | co2.flags.active_events)
.contains(ActiveEvents::COLLISION_EVENTS)
{
// Emit one intersection-started and one intersection-stopped event.
events.handle_collision_event(
bodies,
colliders,
CollisionEvent::Started(toi.c1, toi.c2, CollisionEventFlags::SENSOR),
None,
);
events.handle_collision_event(
bodies,
colliders,
CollisionEvent::Stopped(toi.c1, toi.c2, CollisionEventFlags::SENSOR),
None,
);
}
}
PredictedImpacts::Impacts(frozen)
}
}