rapier2d/dynamics/joint/generic_joint.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
#![allow(clippy::bad_bit_mask)] // Clippy will complain about the bitmasks due to JointAxesMask::FREE_FIXED_AXES being 0.
use crate::dynamics::solver::MotorParameters;
use crate::dynamics::{FixedJoint, MotorModel, PrismaticJoint, RevoluteJoint, RopeJoint};
use crate::math::{Isometry, Point, Real, Rotation, UnitVector, Vector, SPATIAL_DIM};
use crate::utils::{SimdBasis, SimdRealCopy};
#[cfg(feature = "dim3")]
use crate::dynamics::SphericalJoint;
#[cfg(feature = "dim3")]
bitflags::bitflags! {
/// A bit mask identifying multiple degrees of freedom of a joint.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct JointAxesMask: u8 {
/// The linear (translational) degree of freedom along the local X axis of a joint.
const LIN_X = 1 << 0;
/// The linear (translational) degree of freedom along the local Y axis of a joint.
const LIN_Y = 1 << 1;
/// The linear (translational) degree of freedom along the local Z axis of a joint.
const LIN_Z = 1 << 2;
/// The angular degree of freedom along the local X axis of a joint.
const ANG_X = 1 << 3;
/// The angular degree of freedom along the local Y axis of a joint.
const ANG_Y = 1 << 4;
/// The angular degree of freedom along the local Z axis of a joint.
const ANG_Z = 1 << 5;
/// The set of degrees of freedom locked by a revolute joint.
const LOCKED_REVOLUTE_AXES = Self::LIN_X.bits() | Self::LIN_Y.bits() | Self::LIN_Z.bits() | Self::ANG_Y.bits() | Self::ANG_Z.bits();
/// The set of degrees of freedom locked by a prismatic joint.
const LOCKED_PRISMATIC_AXES = Self::LIN_Y.bits() | Self::LIN_Z.bits() | Self::ANG_X.bits() | Self::ANG_Y.bits() | Self::ANG_Z.bits();
/// The set of degrees of freedom locked by a fixed joint.
const LOCKED_FIXED_AXES = Self::LIN_X.bits() | Self::LIN_Y.bits() | Self::LIN_Z.bits() | Self::ANG_X.bits() | Self::ANG_Y.bits() | Self::ANG_Z.bits();
/// The set of degrees of freedom locked by a spherical joint.
const LOCKED_SPHERICAL_AXES = Self::LIN_X.bits() | Self::LIN_Y.bits() | Self::LIN_Z.bits();
/// The set of degrees of freedom left free by a revolute joint.
const FREE_REVOLUTE_AXES = Self::ANG_X.bits();
/// The set of degrees of freedom left free by a prismatic joint.
const FREE_PRISMATIC_AXES = Self::LIN_X.bits();
/// The set of degrees of freedom left free by a fixed joint.
const FREE_FIXED_AXES = 0;
/// The set of degrees of freedom left free by a spherical joint.
const FREE_SPHERICAL_AXES = Self::ANG_X.bits() | Self::ANG_Y.bits() | Self::ANG_Z.bits();
/// The set of all translational degrees of freedom.
const LIN_AXES = Self::LIN_X.bits() | Self::LIN_Y.bits() | Self::LIN_Z.bits();
/// The set of all angular degrees of freedom.
const ANG_AXES = Self::ANG_X.bits() | Self::ANG_Y.bits() | Self::ANG_Z.bits();
}
}
#[cfg(feature = "dim2")]
bitflags::bitflags! {
/// A bit mask identifying multiple degrees of freedom of a joint.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct JointAxesMask: u8 {
/// The linear (translational) degree of freedom along the local X axis of a joint.
const LIN_X = 1 << 0;
/// The linear (translational) degree of freedom along the local Y axis of a joint.
const LIN_Y = 1 << 1;
/// The angular degree of freedom of a joint.
const ANG_X = 1 << 2;
/// The set of degrees of freedom locked by a revolute joint.
const LOCKED_REVOLUTE_AXES = Self::LIN_X.bits() | Self::LIN_Y.bits();
/// The set of degrees of freedom locked by a prismatic joint.
const LOCKED_PRISMATIC_AXES = Self::LIN_Y.bits() | Self::ANG_X.bits();
/// The set of degrees of freedom locked by a fixed joint.
const LOCKED_FIXED_AXES = Self::LIN_X.bits() | Self::LIN_Y.bits() | Self::ANG_X.bits();
/// The set of degrees of freedom left free by a revolute joint.
const FREE_REVOLUTE_AXES = Self::ANG_X.bits();
/// The set of degrees of freedom left free by a prismatic joint.
const FREE_PRISMATIC_AXES = Self::LIN_X.bits();
/// The set of degrees of freedom left free by a fixed joint.
const FREE_FIXED_AXES = 0;
/// The set of all translational degrees of freedom.
const LIN_AXES = Self::LIN_X.bits() | Self::LIN_Y.bits();
/// The set of all angular degrees of freedom.
const ANG_AXES = Self::ANG_X.bits();
}
}
impl Default for JointAxesMask {
fn default() -> Self {
Self::empty()
}
}
/// Identifiers of degrees of freedoms of a joint.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum JointAxis {
/// The linear (translational) degree of freedom along the joint’s local X axis.
LinX = 0,
/// The linear (translational) degree of freedom along the joint’s local Y axis.
LinY,
/// The linear (translational) degree of freedom along the joint’s local Z axis.
#[cfg(feature = "dim3")]
LinZ,
/// The rotational degree of freedom along the joint’s local X axis.
AngX,
/// The rotational degree of freedom along the joint’s local Y axis.
#[cfg(feature = "dim3")]
AngY,
/// The rotational degree of freedom along the joint’s local Z axis.
#[cfg(feature = "dim3")]
AngZ,
}
impl From<JointAxis> for JointAxesMask {
fn from(axis: JointAxis) -> Self {
JointAxesMask::from_bits(1 << axis as usize).unwrap()
}
}
/// The limits of a joint along one of its degrees of freedom.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct JointLimits<N> {
/// The minimum bound of the joint limit.
pub min: N,
/// The maximum bound of the joint limit.
pub max: N,
/// The impulse applied to enforce the joint’s limit.
pub impulse: N,
}
impl<N: SimdRealCopy> Default for JointLimits<N> {
fn default() -> Self {
Self {
min: -N::splat(Real::MAX),
max: N::splat(Real::MAX),
impulse: N::splat(0.0),
}
}
}
impl<N: SimdRealCopy> From<[N; 2]> for JointLimits<N> {
fn from(value: [N; 2]) -> Self {
Self {
min: value[0],
max: value[1],
impulse: N::splat(0.0),
}
}
}
/// A joint’s motor along one of its degrees of freedom.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct JointMotor {
/// The target velocity of the motor.
pub target_vel: Real,
/// The target position of the motor.
pub target_pos: Real,
/// The stiffness coefficient of the motor’s spring-like equation.
pub stiffness: Real,
/// The damping coefficient of the motor’s spring-like equation.
pub damping: Real,
/// The maximum force this motor can deliver.
pub max_force: Real,
/// The impulse applied by this motor.
pub impulse: Real,
/// The spring-like model used for simulating this motor.
pub model: MotorModel,
}
impl Default for JointMotor {
fn default() -> Self {
Self {
target_pos: 0.0,
target_vel: 0.0,
stiffness: 0.0,
damping: 0.0,
max_force: Real::MAX,
impulse: 0.0,
model: MotorModel::AccelerationBased,
}
}
}
impl JointMotor {
pub(crate) fn motor_params(&self, dt: Real) -> MotorParameters<Real> {
let (erp_inv_dt, cfm_coeff, cfm_gain) =
self.model
.combine_coefficients(dt, self.stiffness, self.damping);
MotorParameters {
erp_inv_dt,
cfm_coeff,
cfm_gain,
// keep_lhs,
target_pos: self.target_pos,
target_vel: self.target_vel,
max_impulse: self.max_force * dt,
}
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
/// Enum indicating whether or not a joint is enabled.
pub enum JointEnabled {
/// The joint is enabled.
Enabled,
/// The joint wasn’t disabled by the user explicitly but it is attached to
/// a disabled rigid-body.
DisabledByAttachedBody,
/// The joint is disabled by the user explicitly.
Disabled,
}
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Copy, Clone, Debug, PartialEq)]
/// A generic joint.
pub struct GenericJoint {
/// The joint’s frame, expressed in the first rigid-body’s local-space.
pub local_frame1: Isometry<Real>,
/// The joint’s frame, expressed in the second rigid-body’s local-space.
pub local_frame2: Isometry<Real>,
/// The degrees-of-freedoms locked by this joint.
pub locked_axes: JointAxesMask,
/// The degrees-of-freedoms limited by this joint.
pub limit_axes: JointAxesMask,
/// The degrees-of-freedoms motorised by this joint.
pub motor_axes: JointAxesMask,
/// The coupled degrees of freedom of this joint.
///
/// Note that coupling degrees of freedoms (DoF) changes the interpretation of the coupled joint’s limits and motors.
/// If multiple linear DoF are limited/motorized, only the limits/motor configuration for the first
/// coupled linear DoF is applied to all coupled linear DoF. Similarly, if multiple angular DoF are limited/motorized
/// only the limits/motor configuration for the first coupled angular DoF is applied to all coupled angular DoF.
pub coupled_axes: JointAxesMask,
/// The limits, along each degrees of freedoms of this joint.
///
/// Note that the limit must also be explicitly enabled by the `limit_axes` bitmask.
/// For coupled degrees of freedoms (DoF), only the first linear (resp. angular) coupled DoF limit and `limit_axis`
/// bitmask is applied to the coupled linear (resp. angular) axes.
pub limits: [JointLimits<Real>; SPATIAL_DIM],
/// The motors, along each degrees of freedoms of this joint.
///
/// Note that the motor must also be explicitly enabled by the `motor_axes` bitmask.
/// For coupled degrees of freedoms (DoF), only the first linear (resp. angular) coupled DoF motor and `motor_axes`
/// bitmask is applied to the coupled linear (resp. angular) axes.
pub motors: [JointMotor; SPATIAL_DIM],
/// Are contacts between the attached rigid-bodies enabled?
pub contacts_enabled: bool,
/// Whether or not the joint is enabled.
pub enabled: JointEnabled,
/// User-defined data associated to this joint.
pub user_data: u128,
}
impl Default for GenericJoint {
fn default() -> Self {
Self {
local_frame1: Isometry::identity(),
local_frame2: Isometry::identity(),
locked_axes: JointAxesMask::empty(),
limit_axes: JointAxesMask::empty(),
motor_axes: JointAxesMask::empty(),
coupled_axes: JointAxesMask::empty(),
limits: [JointLimits::default(); SPATIAL_DIM],
motors: [JointMotor::default(); SPATIAL_DIM],
contacts_enabled: true,
enabled: JointEnabled::Enabled,
user_data: 0,
}
}
}
impl GenericJoint {
/// Creates a new generic joint that locks the specified degrees of freedom.
#[must_use]
pub fn new(locked_axes: JointAxesMask) -> Self {
*Self::default().lock_axes(locked_axes)
}
#[cfg(feature = "simd-is-enabled")]
/// Can this joint use SIMD-accelerated constraint formulations?
pub(crate) fn supports_simd_constraints(&self) -> bool {
self.limit_axes.is_empty() && self.motor_axes.is_empty()
}
#[doc(hidden)]
pub fn complete_ang_frame(axis: UnitVector<Real>) -> Rotation<Real> {
let basis = axis.orthonormal_basis();
#[cfg(feature = "dim2")]
{
use na::{Matrix2, Rotation2, UnitComplex};
let mat = Matrix2::from_columns(&[axis.into_inner(), basis[0]]);
let rotmat = Rotation2::from_matrix_unchecked(mat);
UnitComplex::from_rotation_matrix(&rotmat)
}
#[cfg(feature = "dim3")]
{
use na::{Matrix3, Rotation3, UnitQuaternion};
let mat = Matrix3::from_columns(&[axis.into_inner(), basis[0], basis[1]]);
let rotmat = Rotation3::from_matrix_unchecked(mat);
UnitQuaternion::from_rotation_matrix(&rotmat)
}
}
/// Is this joint enabled?
pub fn is_enabled(&self) -> bool {
self.enabled == JointEnabled::Enabled
}
/// Set whether this joint is enabled or not.
pub fn set_enabled(&mut self, enabled: bool) {
match self.enabled {
JointEnabled::Enabled | JointEnabled::DisabledByAttachedBody => {
if !enabled {
self.enabled = JointEnabled::Disabled;
}
}
JointEnabled::Disabled => {
if enabled {
self.enabled = JointEnabled::Enabled;
}
}
}
}
/// Add the specified axes to the set of axes locked by this joint.
pub fn lock_axes(&mut self, axes: JointAxesMask) -> &mut Self {
self.locked_axes |= axes;
self
}
/// Sets the joint’s frame, expressed in the first rigid-body’s local-space.
pub fn set_local_frame1(&mut self, local_frame: Isometry<Real>) -> &mut Self {
self.local_frame1 = local_frame;
self
}
/// Sets the joint’s frame, expressed in the second rigid-body’s local-space.
pub fn set_local_frame2(&mut self, local_frame: Isometry<Real>) -> &mut Self {
self.local_frame2 = local_frame;
self
}
/// The principal (local X) axis of this joint, expressed in the first rigid-body’s local-space.
#[must_use]
pub fn local_axis1(&self) -> UnitVector<Real> {
self.local_frame1 * Vector::x_axis()
}
/// Sets the principal (local X) axis of this joint, expressed in the first rigid-body’s local-space.
pub fn set_local_axis1(&mut self, local_axis: UnitVector<Real>) -> &mut Self {
self.local_frame1.rotation = Self::complete_ang_frame(local_axis);
self
}
/// The principal (local X) axis of this joint, expressed in the second rigid-body’s local-space.
#[must_use]
pub fn local_axis2(&self) -> UnitVector<Real> {
self.local_frame2 * Vector::x_axis()
}
/// Sets the principal (local X) axis of this joint, expressed in the second rigid-body’s local-space.
pub fn set_local_axis2(&mut self, local_axis: UnitVector<Real>) -> &mut Self {
self.local_frame2.rotation = Self::complete_ang_frame(local_axis);
self
}
/// The anchor of this joint, expressed in the first rigid-body’s local-space.
#[must_use]
pub fn local_anchor1(&self) -> Point<Real> {
self.local_frame1.translation.vector.into()
}
/// Sets anchor of this joint, expressed in the first rigid-body’s local-space.
pub fn set_local_anchor1(&mut self, anchor1: Point<Real>) -> &mut Self {
self.local_frame1.translation.vector = anchor1.coords;
self
}
/// The anchor of this joint, expressed in the second rigid-body’s local-space.
#[must_use]
pub fn local_anchor2(&self) -> Point<Real> {
self.local_frame2.translation.vector.into()
}
/// Sets anchor of this joint, expressed in the second rigid-body’s local-space.
pub fn set_local_anchor2(&mut self, anchor2: Point<Real>) -> &mut Self {
self.local_frame2.translation.vector = anchor2.coords;
self
}
/// Are contacts between the attached rigid-bodies enabled?
pub fn contacts_enabled(&self) -> bool {
self.contacts_enabled
}
/// Sets whether contacts between the attached rigid-bodies are enabled.
pub fn set_contacts_enabled(&mut self, enabled: bool) -> &mut Self {
self.contacts_enabled = enabled;
self
}
/// The joint limits along the specified axis.
#[must_use]
pub fn limits(&self, axis: JointAxis) -> Option<&JointLimits<Real>> {
let i = axis as usize;
if self.limit_axes.contains(axis.into()) {
Some(&self.limits[i])
} else {
None
}
}
/// Sets the joint limits along the specified axis.
pub fn set_limits(&mut self, axis: JointAxis, limits: [Real; 2]) -> &mut Self {
let i = axis as usize;
self.limit_axes |= axis.into();
self.limits[i].min = limits[0];
self.limits[i].max = limits[1];
self
}
/// The spring-like motor model along the specified axis of this joint.
#[must_use]
pub fn motor_model(&self, axis: JointAxis) -> Option<MotorModel> {
let i = axis as usize;
if self.motor_axes.contains(axis.into()) {
Some(self.motors[i].model)
} else {
None
}
}
/// Set the spring-like model used by the motor to reach the desired target velocity and position.
pub fn set_motor_model(&mut self, axis: JointAxis, model: MotorModel) -> &mut Self {
self.motors[axis as usize].model = model;
self
}
/// Sets the target velocity this motor needs to reach.
pub fn set_motor_velocity(
&mut self,
axis: JointAxis,
target_vel: Real,
factor: Real,
) -> &mut Self {
self.set_motor(
axis,
self.motors[axis as usize].target_pos,
target_vel,
0.0,
factor,
)
}
/// Sets the target angle this motor needs to reach.
pub fn set_motor_position(
&mut self,
axis: JointAxis,
target_pos: Real,
stiffness: Real,
damping: Real,
) -> &mut Self {
self.set_motor(axis, target_pos, 0.0, stiffness, damping)
}
/// Sets the maximum force the motor can deliver along the specified axis.
pub fn set_motor_max_force(&mut self, axis: JointAxis, max_force: Real) -> &mut Self {
self.motors[axis as usize].max_force = max_force;
self
}
/// The motor affecting the joint’s degree of freedom along the specified axis.
#[must_use]
pub fn motor(&self, axis: JointAxis) -> Option<&JointMotor> {
let i = axis as usize;
if self.motor_axes.contains(axis.into()) {
Some(&self.motors[i])
} else {
None
}
}
/// Configure both the target angle and target velocity of the motor.
pub fn set_motor(
&mut self,
axis: JointAxis,
target_pos: Real,
target_vel: Real,
stiffness: Real,
damping: Real,
) -> &mut Self {
self.motor_axes |= axis.into();
let i = axis as usize;
self.motors[i].target_vel = target_vel;
self.motors[i].target_pos = target_pos;
self.motors[i].stiffness = stiffness;
self.motors[i].damping = damping;
self
}
/// Flips the orientation of the joint, including limits and motors.
pub fn flip(&mut self) {
std::mem::swap(&mut self.local_frame1, &mut self.local_frame2);
let coupled_bits = self.coupled_axes.bits();
for dim in 0..SPATIAL_DIM {
if coupled_bits & (1 << dim) == 0 {
let limit = self.limits[dim];
self.limits[dim].min = -limit.max;
self.limits[dim].max = -limit.min;
}
self.motors[dim].target_vel = -self.motors[dim].target_vel;
self.motors[dim].target_pos = -self.motors[dim].target_pos;
}
}
}
macro_rules! joint_conversion_methods(
($as_joint: ident, $as_joint_mut: ident, $Joint: ty, $axes: expr) => {
/// Converts the joint to its specific variant, if it is one.
#[must_use]
pub fn $as_joint(&self) -> Option<&$Joint> {
if self.locked_axes == $axes {
// SAFETY: this is OK because the target joint type is
// a `repr(transparent)` newtype of `Joint`.
Some(unsafe { std::mem::transmute::<&Self, &$Joint>(self) })
} else {
None
}
}
/// Converts the joint to its specific mutable variant, if it is one.
#[must_use]
pub fn $as_joint_mut(&mut self) -> Option<&mut $Joint> {
if self.locked_axes == $axes {
// SAFETY: this is OK because the target joint type is
// a `repr(transparent)` newtype of `Joint`.
Some(unsafe { std::mem::transmute::<&mut Self, &mut $Joint>(self) })
} else {
None
}
}
}
);
impl GenericJoint {
joint_conversion_methods!(
as_revolute,
as_revolute_mut,
RevoluteJoint,
JointAxesMask::LOCKED_REVOLUTE_AXES
);
joint_conversion_methods!(
as_fixed,
as_fixed_mut,
FixedJoint,
JointAxesMask::LOCKED_FIXED_AXES
);
joint_conversion_methods!(
as_prismatic,
as_prismatic_mut,
PrismaticJoint,
JointAxesMask::LOCKED_PRISMATIC_AXES
);
joint_conversion_methods!(
as_rope,
as_rope_mut,
RopeJoint,
JointAxesMask::FREE_FIXED_AXES
);
#[cfg(feature = "dim3")]
joint_conversion_methods!(
as_spherical,
as_spherical_mut,
SphericalJoint,
JointAxesMask::LOCKED_SPHERICAL_AXES
);
}
/// Create generic joints using the builder pattern.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct GenericJointBuilder(pub GenericJoint);
impl GenericJointBuilder {
/// Creates a new generic joint builder.
#[must_use]
pub fn new(locked_axes: JointAxesMask) -> Self {
Self(GenericJoint::new(locked_axes))
}
/// Sets the degrees of freedom locked by the joint.
#[must_use]
pub fn locked_axes(mut self, axes: JointAxesMask) -> Self {
self.0.locked_axes = axes;
self
}
/// Sets whether contacts between the attached rigid-bodies are enabled.
#[must_use]
pub fn contacts_enabled(mut self, enabled: bool) -> Self {
self.0.contacts_enabled = enabled;
self
}
/// Sets the joint’s frame, expressed in the first rigid-body’s local-space.
#[must_use]
pub fn local_frame1(mut self, local_frame: Isometry<Real>) -> Self {
self.0.set_local_frame1(local_frame);
self
}
/// Sets the joint’s frame, expressed in the second rigid-body’s local-space.
#[must_use]
pub fn local_frame2(mut self, local_frame: Isometry<Real>) -> Self {
self.0.set_local_frame2(local_frame);
self
}
/// Sets the principal (local X) axis of this joint, expressed in the first rigid-body’s local-space.
#[must_use]
pub fn local_axis1(mut self, local_axis: UnitVector<Real>) -> Self {
self.0.set_local_axis1(local_axis);
self
}
/// Sets the principal (local X) axis of this joint, expressed in the second rigid-body’s local-space.
#[must_use]
pub fn local_axis2(mut self, local_axis: UnitVector<Real>) -> Self {
self.0.set_local_axis2(local_axis);
self
}
/// Sets the anchor of this joint, expressed in the first rigid-body’s local-space.
#[must_use]
pub fn local_anchor1(mut self, anchor1: Point<Real>) -> Self {
self.0.set_local_anchor1(anchor1);
self
}
/// Sets the anchor of this joint, expressed in the second rigid-body’s local-space.
#[must_use]
pub fn local_anchor2(mut self, anchor2: Point<Real>) -> Self {
self.0.set_local_anchor2(anchor2);
self
}
/// Sets the joint limits along the specified axis.
#[must_use]
pub fn limits(mut self, axis: JointAxis, limits: [Real; 2]) -> Self {
self.0.set_limits(axis, limits);
self
}
/// Sets the coupled degrees of freedom for this joint’s limits and motor.
#[must_use]
pub fn coupled_axes(mut self, axes: JointAxesMask) -> Self {
self.0.coupled_axes = axes;
self
}
/// Set the spring-like model used by the motor to reach the desired target velocity and position.
#[must_use]
pub fn motor_model(mut self, axis: JointAxis, model: MotorModel) -> Self {
self.0.set_motor_model(axis, model);
self
}
/// Sets the target velocity this motor needs to reach.
#[must_use]
pub fn motor_velocity(mut self, axis: JointAxis, target_vel: Real, factor: Real) -> Self {
self.0.set_motor_velocity(axis, target_vel, factor);
self
}
/// Sets the target angle this motor needs to reach.
#[must_use]
pub fn motor_position(
mut self,
axis: JointAxis,
target_pos: Real,
stiffness: Real,
damping: Real,
) -> Self {
self.0
.set_motor_position(axis, target_pos, stiffness, damping);
self
}
/// Configure both the target angle and target velocity of the motor.
#[must_use]
pub fn set_motor(
mut self,
axis: JointAxis,
target_pos: Real,
target_vel: Real,
stiffness: Real,
damping: Real,
) -> Self {
self.0
.set_motor(axis, target_pos, target_vel, stiffness, damping);
self
}
/// Sets the maximum force the motor can deliver along the specified axis.
#[must_use]
pub fn motor_max_force(mut self, axis: JointAxis, max_force: Real) -> Self {
self.0.set_motor_max_force(axis, max_force);
self
}
/// An arbitrary user-defined 128-bit integer associated to the joints built by this builder.
pub fn user_data(mut self, data: u128) -> Self {
self.0.user_data = data;
self
}
/// Builds the generic joint.
#[must_use]
pub fn build(self) -> GenericJoint {
self.0
}
}
impl From<GenericJointBuilder> for GenericJoint {
fn from(val: GenericJointBuilder) -> GenericJoint {
val.0
}
}