rapier2d/dynamics/joint/multibody_joint/
multibody.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
use super::multibody_link::{MultibodyLink, MultibodyLinkVec};
use super::multibody_workspace::MultibodyWorkspace;
use crate::dynamics::{RigidBodyHandle, RigidBodySet, RigidBodyType, RigidBodyVelocity};
#[cfg(feature = "dim3")]
use crate::math::Matrix;
use crate::math::{
    AngDim, AngVector, Dim, Isometry, Jacobian, Point, Real, Vector, ANG_DIM, DIM, SPATIAL_DIM,
};
use crate::prelude::MultibodyJoint;
use crate::utils::{IndexMut2, SimdAngularInertia, SimdCross, SimdCrossMatrix};
use na::{
    self, DMatrix, DVector, DVectorView, DVectorViewMut, Dyn, OMatrix, SMatrix, SVector,
    StorageMut, LU,
};

#[cfg(doc)]
use crate::prelude::{GenericJoint, RigidBody};

#[repr(C)]
#[derive(Copy, Clone, Debug, Default)]
struct Force {
    linear: Vector<Real>,
    angular: AngVector<Real>,
}

impl Force {
    fn new(linear: Vector<Real>, angular: AngVector<Real>) -> Self {
        Self { linear, angular }
    }

    fn as_vector(&self) -> &SVector<Real, SPATIAL_DIM> {
        unsafe { std::mem::transmute(self) }
    }
}

#[cfg(feature = "dim2")]
fn concat_rb_mass_matrix(
    mass: Vector<Real>,
    inertia: Real,
) -> SMatrix<Real, SPATIAL_DIM, SPATIAL_DIM> {
    let mut result = SMatrix::<Real, SPATIAL_DIM, SPATIAL_DIM>::zeros();
    result[(0, 0)] = mass.x;
    result[(1, 1)] = mass.y;
    result[(2, 2)] = inertia;
    result
}

#[cfg(feature = "dim3")]
fn concat_rb_mass_matrix(
    mass: Vector<Real>,
    inertia: Matrix<Real>,
) -> SMatrix<Real, SPATIAL_DIM, SPATIAL_DIM> {
    let mut result = SMatrix::<Real, SPATIAL_DIM, SPATIAL_DIM>::zeros();
    result[(0, 0)] = mass.x;
    result[(1, 1)] = mass.y;
    result[(2, 2)] = mass.z;
    result
        .fixed_view_mut::<ANG_DIM, ANG_DIM>(DIM, DIM)
        .copy_from(&inertia);
    result
}

/// An articulated body simulated using the reduced-coordinates approach.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone, Debug)]
pub struct Multibody {
    // TODO: serialization: skip the workspace fields.
    pub(crate) links: MultibodyLinkVec,
    pub(crate) velocities: DVector<Real>,
    pub(crate) damping: DVector<Real>,
    pub(crate) accelerations: DVector<Real>,

    body_jacobians: Vec<Jacobian<Real>>,
    // NOTE: the mass matrices are dimensioned based on the non-kinematic degrees of
    //       freedoms only. The `Self::augmented_mass_permutation` sequence can be used to
    //       move dofs from/to a format that matches the augmented mass.
    // TODO: use sparse matrices?
    augmented_mass: DMatrix<Real>,
    inv_augmented_mass: LU<Real, Dyn, Dyn>,
    // The indexing sequence for moving all kinematics degrees of
    // freedoms to the end of the generalized coordinates vector.
    augmented_mass_indices: IndexSequence,

    acc_augmented_mass: DMatrix<Real>,
    acc_inv_augmented_mass: LU<Real, Dyn, Dyn>,

    ndofs: usize,
    pub(crate) root_is_dynamic: bool,
    pub(crate) solver_id: usize,
    self_contacts_enabled: bool,

    /*
     * Workspaces.
     */
    workspace: MultibodyWorkspace,
    coriolis_v: Vec<OMatrix<Real, Dim, Dyn>>,
    coriolis_w: Vec<OMatrix<Real, AngDim, Dyn>>,
    i_coriolis_dt: Jacobian<Real>,
}
impl Default for Multibody {
    fn default() -> Self {
        Multibody::new()
    }
}

impl Multibody {
    /// Creates a new multibody with no link.
    pub fn new() -> Self {
        Self::with_self_contacts(true)
    }

    pub(crate) fn with_self_contacts(self_contacts_enabled: bool) -> Self {
        Multibody {
            links: MultibodyLinkVec(Vec::new()),
            velocities: DVector::zeros(0),
            damping: DVector::zeros(0),
            accelerations: DVector::zeros(0),
            body_jacobians: Vec::new(),
            augmented_mass: DMatrix::zeros(0, 0),
            inv_augmented_mass: LU::new(DMatrix::zeros(0, 0)),
            acc_augmented_mass: DMatrix::zeros(0, 0),
            acc_inv_augmented_mass: LU::new(DMatrix::zeros(0, 0)),
            augmented_mass_indices: IndexSequence::new(),
            ndofs: 0,
            solver_id: 0,
            workspace: MultibodyWorkspace::new(),
            coriolis_v: Vec::new(),
            coriolis_w: Vec::new(),
            i_coriolis_dt: Jacobian::zeros(0),
            root_is_dynamic: false,
            self_contacts_enabled,
            // solver_workspace: Some(SolverWorkspace::new()),
        }
    }

    pub(crate) fn with_root(handle: RigidBodyHandle, self_contacts_enabled: bool) -> Self {
        let mut mb = Multibody::with_self_contacts(self_contacts_enabled);
        // NOTE: we have no way of knowing if the root in fixed at this point, so
        //       we mark it as dynamic and will fix later with `Self::update_root_type`.
        mb.root_is_dynamic = true;
        let joint = MultibodyJoint::free(Isometry::identity());
        mb.add_link(None, joint, handle);
        mb
    }

    pub(crate) fn remove_link(self, to_remove: usize, joint_only: bool) -> Vec<Multibody> {
        let mut result = vec![];
        let mut link2mb = vec![usize::MAX; self.links.len()];
        let mut link_id2new_id = vec![usize::MAX; self.links.len()];

        // Split multibody and update the set of links and ndofs.
        for (i, mut link) in self.links.0.into_iter().enumerate() {
            let is_new_root = i == 0
                || !joint_only && link.parent_internal_id == to_remove
                || joint_only && i == to_remove;

            if !joint_only && i == to_remove {
                continue;
            } else if is_new_root {
                link2mb[i] = result.len();
                result.push(Multibody::with_self_contacts(self.self_contacts_enabled));
            } else {
                link2mb[i] = link2mb[link.parent_internal_id]
            }

            let curr_mb = &mut result[link2mb[i]];
            link_id2new_id[i] = curr_mb.links.len();

            if is_new_root {
                let joint = MultibodyJoint::fixed(*link.local_to_world());
                link.joint = joint;
            }

            curr_mb.ndofs += link.joint().ndofs();
            curr_mb.links.push(link);
        }

        // Adjust all the internal ids, and copy the data from the
        // previous multibody to the new one.
        for mb in &mut result {
            mb.grow_buffers(mb.ndofs, mb.links.len());
            mb.workspace.resize(mb.links.len(), mb.ndofs);

            let mut assembly_id = 0;
            for (i, link) in mb.links.iter_mut().enumerate() {
                let link_ndofs = link.joint().ndofs();
                mb.velocities
                    .rows_mut(assembly_id, link_ndofs)
                    .copy_from(&self.velocities.rows(link.assembly_id, link_ndofs));
                mb.damping
                    .rows_mut(assembly_id, link_ndofs)
                    .copy_from(&self.damping.rows(link.assembly_id, link_ndofs));
                mb.accelerations
                    .rows_mut(assembly_id, link_ndofs)
                    .copy_from(&self.accelerations.rows(link.assembly_id, link_ndofs));

                link.internal_id = i;
                link.assembly_id = assembly_id;

                // NOTE: for the root, the current`link.parent_internal_id` is invalid since that
                //       parent lies in a different multibody now.
                link.parent_internal_id = if i != 0 {
                    link_id2new_id[link.parent_internal_id]
                } else {
                    0
                };
                assembly_id += link_ndofs;
            }
        }

        result
    }

    pub(crate) fn append(&mut self, mut rhs: Multibody, parent: usize, joint: MultibodyJoint) {
        let rhs_root_ndofs = rhs.links[0].joint.ndofs();
        // Values for rhs will be copied into the buffers of `self` starting at this index.
        let rhs_copy_shift = self.ndofs + joint.ndofs();
        // Number of dofs to copy from rhs. The root’s dofs isn’t included because it will be
        // replaced by `joint.
        let rhs_copy_ndofs = rhs.ndofs - rhs_root_ndofs;

        // Adjust the ids of all the rhs links except the first one.
        let base_assembly_id = self.velocities.len() - rhs_root_ndofs + joint.ndofs();
        let base_internal_id = self.links.len() + 1;
        let base_parent_id = self.links.len();

        for link in &mut rhs.links.0[1..] {
            link.assembly_id += base_assembly_id;
            link.internal_id += base_internal_id;
            link.parent_internal_id += base_parent_id;
        }

        // Adjust the first link.
        {
            rhs.links[0].joint = joint;
            rhs.links[0].assembly_id = self.velocities.len();
            rhs.links[0].internal_id = self.links.len();
            rhs.links[0].parent_internal_id = parent;
        }

        // Grow buffers then append data from rhs.
        self.grow_buffers(rhs_copy_ndofs + rhs.links[0].joint.ndofs(), rhs.links.len());

        if rhs_copy_ndofs > 0 {
            self.velocities
                .rows_mut(rhs_copy_shift, rhs_copy_ndofs)
                .copy_from(&rhs.velocities.rows(rhs_root_ndofs, rhs_copy_ndofs));
            self.damping
                .rows_mut(rhs_copy_shift, rhs_copy_ndofs)
                .copy_from(&rhs.damping.rows(rhs_root_ndofs, rhs_copy_ndofs));
            self.accelerations
                .rows_mut(rhs_copy_shift, rhs_copy_ndofs)
                .copy_from(&rhs.accelerations.rows(rhs_root_ndofs, rhs_copy_ndofs));
        }

        rhs.links[0]
            .joint
            .default_damping(&mut self.damping.rows_mut(base_assembly_id, rhs_root_ndofs));

        self.links.append(&mut rhs.links);
        self.ndofs = self.velocities.len();
        self.workspace.resize(self.links.len(), self.ndofs);
    }

    /// Whether self-contacts are enabled on this multibody.
    ///
    /// If set to `false` no two link from this multibody can generate contacts, even
    /// if the contact is enabled on the individual joint with [`GenericJoint::contacts_enabled`].
    pub fn self_contacts_enabled(&self) -> bool {
        self.self_contacts_enabled
    }

    /// Sets whether self-contacts are enabled on this multibody.
    ///
    /// If set to `false` no two link from this multibody can generate contacts, even
    /// if the contact is enabled on the individual joint with [`GenericJoint::contacts_enabled`].
    pub fn set_self_contacts_enabled(&mut self, enabled: bool) {
        self.self_contacts_enabled = enabled;
    }

    /// The inverse augmented mass matrix of this multibody.
    pub fn inv_augmented_mass(&self) -> &LU<Real, Dyn, Dyn> {
        &self.inv_augmented_mass
    }

    /// The first link of this multibody.
    #[inline]
    pub fn root(&self) -> &MultibodyLink {
        &self.links[0]
    }

    /// Mutable reference to the first link of this multibody.
    #[inline]
    pub fn root_mut(&mut self) -> &mut MultibodyLink {
        &mut self.links[0]
    }

    /// Reference `i`-th multibody link of this multibody.
    ///
    /// Return `None` if there is less than `i + 1` multibody links.
    #[inline]
    pub fn link(&self, id: usize) -> Option<&MultibodyLink> {
        self.links.get(id)
    }

    /// Mutable reference to the multibody link with the given id.
    ///
    /// Return `None` if the given id does not identifies a multibody link part of `self`.
    #[inline]
    pub fn link_mut(&mut self, id: usize) -> Option<&mut MultibodyLink> {
        self.links.get_mut(id)
    }

    /// The number of links on this multibody.
    pub fn num_links(&self) -> usize {
        self.links.len()
    }

    /// Iterator through all the links of this multibody.
    ///
    /// All link are guaranteed to be yielded before its descendant.
    pub fn links(&self) -> impl Iterator<Item = &MultibodyLink> {
        self.links.iter()
    }

    /// Mutable iterator through all the links of this multibody.
    ///
    /// All link are guaranteed to be yielded before its descendant.
    pub fn links_mut(&mut self) -> impl Iterator<Item = &mut MultibodyLink> {
        self.links.iter_mut()
    }

    /// The vector of damping applied to this multibody.
    #[inline]
    pub fn damping(&self) -> &DVector<Real> {
        &self.damping
    }

    /// Mutable vector of damping applied to this multibody.
    #[inline]
    pub fn damping_mut(&mut self) -> &mut DVector<Real> {
        &mut self.damping
    }

    pub(crate) fn add_link(
        &mut self,
        parent: Option<usize>, // TODO: should be a RigidBodyHandle?
        dof: MultibodyJoint,
        body: RigidBodyHandle,
    ) -> &mut MultibodyLink {
        assert!(
            parent.is_none() || !self.links.is_empty(),
            "Multibody::build_body: invalid parent id."
        );

        /*
         * Compute the indices.
         */
        let assembly_id = self.velocities.len();
        let internal_id = self.links.len();

        /*
         * Grow the buffers.
         */
        let ndofs = dof.ndofs();
        self.grow_buffers(ndofs, 1);
        self.ndofs += ndofs;

        /*
         * Setup default damping.
         */
        dof.default_damping(&mut self.damping.rows_mut(assembly_id, ndofs));

        /*
         * Create the multibody.
         */
        let local_to_parent = dof.body_to_parent();
        let local_to_world;

        let parent_internal_id;
        if let Some(parent) = parent {
            parent_internal_id = parent;
            let parent_link = &mut self.links[parent_internal_id];
            local_to_world = parent_link.local_to_world * local_to_parent;
        } else {
            parent_internal_id = 0;
            local_to_world = local_to_parent;
        }

        let rb = MultibodyLink::new(
            body,
            internal_id,
            assembly_id,
            parent_internal_id,
            dof,
            local_to_world,
            local_to_parent,
        );

        self.links.push(rb);
        self.workspace.resize(self.links.len(), self.ndofs);

        &mut self.links[internal_id]
    }

    fn grow_buffers(&mut self, ndofs: usize, num_jacobians: usize) {
        let len = self.velocities.len();
        self.velocities.resize_vertically_mut(len + ndofs, 0.0);
        self.damping.resize_vertically_mut(len + ndofs, 0.0);
        self.accelerations.resize_vertically_mut(len + ndofs, 0.0);
        self.body_jacobians
            .extend((0..num_jacobians).map(|_| Jacobian::zeros(0)));
    }

    pub(crate) fn update_acceleration(&mut self, bodies: &RigidBodySet) {
        if self.ndofs == 0 {
            return; // Nothing to do.
        }

        self.accelerations.fill(0.0);

        // Eqn 42 to 45
        for i in 0..self.links.len() {
            let link = &self.links[i];
            let rb = &bodies[link.rigid_body];

            let mut acc = RigidBodyVelocity::zero();

            if i != 0 {
                let parent_id = link.parent_internal_id;
                let parent_link = &self.links[parent_id];
                let parent_rb = &bodies[parent_link.rigid_body];

                acc += self.workspace.accs[parent_id];
                // The 2.0 originates from the two identical terms of Jdot (the terms become
                // identical once they are multiplied by the generalized velocities).
                acc.linvel += 2.0 * parent_rb.vels.angvel.gcross(link.joint_velocity.linvel);
                #[cfg(feature = "dim3")]
                {
                    acc.angvel += parent_rb.vels.angvel.cross(&link.joint_velocity.angvel);
                }

                acc.linvel += parent_rb
                    .vels
                    .angvel
                    .gcross(parent_rb.vels.angvel.gcross(link.shift02));
                acc.linvel += self.workspace.accs[parent_id].angvel.gcross(link.shift02);
            }

            acc.linvel += rb.vels.angvel.gcross(rb.vels.angvel.gcross(link.shift23));
            acc.linvel += acc.angvel.gcross(link.shift23);

            self.workspace.accs[i] = acc;

            // TODO: should gyroscopic forces already be computed by the rigid-body itself
            //       (at the same time that we add the gravity force)?
            let gyroscopic;
            let rb_inertia = rb.mprops.effective_angular_inertia();
            let rb_mass = rb.mprops.effective_mass();

            #[cfg(feature = "dim3")]
            {
                gyroscopic = rb.vels.angvel.cross(&(rb_inertia * rb.vels.angvel));
            }
            #[cfg(feature = "dim2")]
            {
                gyroscopic = 0.0;
            }

            let external_forces = Force::new(
                rb.forces.force - rb_mass.component_mul(&acc.linvel),
                rb.forces.torque - gyroscopic - rb_inertia * acc.angvel,
            );
            self.accelerations.gemv_tr(
                1.0,
                &self.body_jacobians[i],
                external_forces.as_vector(),
                1.0,
            );
        }

        self.accelerations
            .cmpy(-1.0, &self.damping, &self.velocities, 1.0);

        self.augmented_mass_indices
            .with_rearranged_rows_mut(&mut self.accelerations, |accs| {
                self.acc_inv_augmented_mass.solve_mut(accs);
            });
    }

    /// Computes the constant terms of the dynamics.
    #[profiling::function]
    pub(crate) fn update_dynamics(&mut self, dt: Real, bodies: &mut RigidBodySet) {
        /*
         * Compute velocities.
         * NOTE: this is needed for kinematic bodies too.
         */
        let link = &mut self.links[0];
        let joint_velocity = link
            .joint
            .jacobian_mul_coordinates(&self.velocities.as_slice()[link.assembly_id..]);

        link.joint_velocity = joint_velocity;
        bodies.index_mut_internal(link.rigid_body).vels = link.joint_velocity;

        for i in 1..self.links.len() {
            let (link, parent_link) = self.links.get_mut_with_parent(i);
            let rb = &bodies[link.rigid_body];
            let parent_rb = &bodies[parent_link.rigid_body];

            let joint_velocity = link
                .joint
                .jacobian_mul_coordinates(&self.velocities.as_slice()[link.assembly_id..]);
            link.joint_velocity = joint_velocity.transformed(
                &(parent_link.local_to_world.rotation * link.joint.data.local_frame1.rotation),
            );
            let mut new_rb_vels = parent_rb.vels + link.joint_velocity;
            let shift = rb.mprops.world_com - parent_rb.mprops.world_com;
            new_rb_vels.linvel += parent_rb.vels.angvel.gcross(shift);
            new_rb_vels.linvel += link.joint_velocity.angvel.gcross(link.shift23);

            bodies.index_mut_internal(link.rigid_body).vels = new_rb_vels;
        }

        /*
         * Update augmented mass matrix.
         */
        self.update_inertias(dt, bodies);
    }

    fn update_body_jacobians(&mut self) {
        for i in 0..self.links.len() {
            let link = &self.links[i];

            if self.body_jacobians[i].ncols() != self.ndofs {
                // TODO: use a resize instead.
                self.body_jacobians[i] = Jacobian::zeros(self.ndofs);
            }

            let parent_to_world;

            if i != 0 {
                let parent_id = link.parent_internal_id;
                let parent_link = &self.links[parent_id];
                parent_to_world = parent_link.local_to_world;

                let (link_j, parent_j) = self.body_jacobians.index_mut_const(i, parent_id);
                link_j.copy_from(parent_j);

                {
                    let mut link_j_v = link_j.fixed_rows_mut::<DIM>(0);
                    let parent_j_w = parent_j.fixed_rows::<ANG_DIM>(DIM);

                    let shift_tr = (link.shift02).gcross_matrix_tr();
                    link_j_v.gemm(1.0, &shift_tr, &parent_j_w, 1.0);
                }
            } else {
                self.body_jacobians[i].fill(0.0);
                parent_to_world = Isometry::identity();
            }

            let ndofs = link.joint.ndofs();
            let mut tmp = SMatrix::<Real, SPATIAL_DIM, SPATIAL_DIM>::zeros();
            let mut link_joint_j = tmp.columns_mut(0, ndofs);
            let mut link_j_part = self.body_jacobians[i].columns_mut(link.assembly_id, ndofs);
            link.joint.jacobian(
                &(parent_to_world.rotation * link.joint.data.local_frame1.rotation),
                &mut link_joint_j,
            );
            link_j_part += link_joint_j;

            {
                let link_j = &mut self.body_jacobians[i];
                let (mut link_j_v, link_j_w) =
                    link_j.rows_range_pair_mut(0..DIM, DIM..DIM + ANG_DIM);
                let shift_tr = link.shift23.gcross_matrix_tr();
                link_j_v.gemm(1.0, &shift_tr, &link_j_w, 1.0);
            }
        }
    }

    fn update_inertias(&mut self, dt: Real, bodies: &RigidBodySet) {
        if self.ndofs == 0 {
            return; // Nothing to do.
        }

        if self.augmented_mass.ncols() != self.ndofs {
            // TODO: do a resize instead of a full reallocation.
            self.augmented_mass = DMatrix::zeros(self.ndofs, self.ndofs);
            self.acc_augmented_mass = DMatrix::zeros(self.ndofs, self.ndofs);
        } else {
            self.augmented_mass.fill(0.0);
            self.acc_augmented_mass.fill(0.0);
        }

        self.augmented_mass_indices.clear();

        if self.coriolis_v.len() != self.links.len() {
            self.coriolis_v.resize(
                self.links.len(),
                OMatrix::<Real, Dim, Dyn>::zeros(self.ndofs),
            );
            self.coriolis_w.resize(
                self.links.len(),
                OMatrix::<Real, AngDim, Dyn>::zeros(self.ndofs),
            );
            self.i_coriolis_dt = Jacobian::zeros(self.ndofs);
        }

        let mut curr_assembly_id = 0;

        for i in 0..self.links.len() {
            let link = &self.links[i];
            let rb = &bodies[link.rigid_body];
            let rb_mass = rb.mprops.effective_mass();
            let rb_inertia = rb.mprops.effective_angular_inertia().into_matrix();
            let body_jacobian = &self.body_jacobians[i];

            // NOTE: the mass matrix index reordering operates on the assumption that the assembly
            //       ids are traversed in order. This assert is here to ensure the assumption always
            //       hold.
            assert_eq!(
                curr_assembly_id, link.assembly_id,
                "Internal error: contiguity assumption on assembly_id does not hold."
            );
            curr_assembly_id += link.joint.ndofs();

            if link.joint.kinematic {
                for k in link.assembly_id..link.assembly_id + link.joint.ndofs() {
                    self.augmented_mass_indices.remove(k);
                }
            } else {
                for k in link.assembly_id..link.assembly_id + link.joint.ndofs() {
                    self.augmented_mass_indices.keep(k);
                }
            }

            #[allow(unused_mut)] // mut is needed for 3D but not for 2D.
            let mut augmented_inertia = rb_inertia;

            #[cfg(feature = "dim3")]
            {
                // Derivative of gyroscopic forces.
                let gyroscopic_matrix = rb.vels.angvel.gcross_matrix() * rb_inertia
                    - (rb_inertia * rb.vels.angvel).gcross_matrix();

                augmented_inertia += gyroscopic_matrix * dt;
            }

            // TODO: optimize that (knowing the structure of the augmented inertia matrix).
            // TODO: this could be better optimized in 2D.
            let rb_mass_matrix_wo_gyro = concat_rb_mass_matrix(rb_mass, rb_inertia);
            let rb_mass_matrix = concat_rb_mass_matrix(rb_mass, augmented_inertia);
            self.augmented_mass
                .quadform(1.0, &rb_mass_matrix_wo_gyro, body_jacobian, 1.0);
            self.acc_augmented_mass
                .quadform(1.0, &rb_mass_matrix, body_jacobian, 1.0);

            /*
             *
             * Coriolis matrix.
             *
             */
            let rb_j = &self.body_jacobians[i];
            let rb_j_w = rb_j.fixed_rows::<ANG_DIM>(DIM);

            let ndofs = link.joint.ndofs();

            if i != 0 {
                let parent_id = link.parent_internal_id;
                let parent_link = &self.links[parent_id];
                let parent_rb = &bodies[parent_link.rigid_body];
                let parent_j = &self.body_jacobians[parent_id];
                let parent_j_w = parent_j.fixed_rows::<ANG_DIM>(DIM);
                let parent_w = parent_rb.vels.angvel.gcross_matrix();

                let (coriolis_v, parent_coriolis_v) = self.coriolis_v.index_mut2(i, parent_id);
                let (coriolis_w, parent_coriolis_w) = self.coriolis_w.index_mut2(i, parent_id);

                coriolis_v.copy_from(parent_coriolis_v);
                coriolis_w.copy_from(parent_coriolis_w);

                // [c1 - c0].gcross() * (JDot + JDot/u * qdot)"
                let shift_cross_tr = link.shift02.gcross_matrix_tr();
                coriolis_v.gemm(1.0, &shift_cross_tr, parent_coriolis_w, 1.0);

                // JDot (but the 2.0 originates from the sum of two identical terms in JDot and JDot/u * gdot)
                let dvel_cross = (rb.vels.angvel.gcross(link.shift02)
                    + 2.0 * link.joint_velocity.linvel)
                    .gcross_matrix_tr();
                coriolis_v.gemm(1.0, &dvel_cross, &parent_j_w, 1.0);

                // JDot/u * qdot
                coriolis_v.gemm(
                    1.0,
                    &link.joint_velocity.linvel.gcross_matrix_tr(),
                    &parent_j_w,
                    1.0,
                );
                coriolis_v.gemm(1.0, &(parent_w * shift_cross_tr), &parent_j_w, 1.0);

                #[cfg(feature = "dim3")]
                {
                    let vel_wrt_joint_w = link.joint_velocity.angvel.gcross_matrix();
                    coriolis_w.gemm(-1.0, &vel_wrt_joint_w, &parent_j_w, 1.0);
                }

                // JDot (but the 2.0 originates from the sum of two identical terms in JDot and JDot/u * gdot)
                if !link.joint.kinematic {
                    let mut coriolis_v_part = coriolis_v.columns_mut(link.assembly_id, ndofs);

                    let mut tmp1 = SMatrix::<Real, SPATIAL_DIM, SPATIAL_DIM>::zeros();
                    let mut rb_joint_j = tmp1.columns_mut(0, ndofs);
                    link.joint.jacobian(
                        &(parent_link.local_to_world.rotation
                            * link.joint.data.local_frame1.rotation),
                        &mut rb_joint_j,
                    );

                    let rb_joint_j_v = rb_joint_j.fixed_rows::<DIM>(0);
                    coriolis_v_part.gemm(2.0, &parent_w, &rb_joint_j_v, 1.0);

                    #[cfg(feature = "dim3")]
                    {
                        let rb_joint_j_w = rb_joint_j.fixed_rows::<ANG_DIM>(DIM);
                        let mut coriolis_w_part = coriolis_w.columns_mut(link.assembly_id, ndofs);
                        coriolis_w_part.gemm(1.0, &parent_w, &rb_joint_j_w, 1.0);
                    }
                }
            } else {
                self.coriolis_v[i].fill(0.0);
                self.coriolis_w[i].fill(0.0);
            }

            let coriolis_v = &mut self.coriolis_v[i];
            let coriolis_w = &mut self.coriolis_w[i];

            {
                // [c3 - c2].gcross() * (JDot + JDot/u * qdot)
                let shift_cross_tr = link.shift23.gcross_matrix_tr();
                coriolis_v.gemm(1.0, &shift_cross_tr, coriolis_w, 1.0);

                // JDot
                let dvel_cross = rb.vels.angvel.gcross(link.shift23).gcross_matrix_tr();
                coriolis_v.gemm(1.0, &dvel_cross, &rb_j_w, 1.0);

                // JDot/u * qdot
                coriolis_v.gemm(
                    1.0,
                    &(rb.vels.angvel.gcross_matrix() * shift_cross_tr),
                    &rb_j_w,
                    1.0,
                );
            }

            let coriolis_v = &mut self.coriolis_v[i];
            let coriolis_w = &mut self.coriolis_w[i];

            /*
             * Meld with the mass matrix.
             */
            {
                let mut i_coriolis_dt_v = self.i_coriolis_dt.fixed_rows_mut::<DIM>(0);
                i_coriolis_dt_v.copy_from(coriolis_v);
                i_coriolis_dt_v
                    .column_iter_mut()
                    .for_each(|mut c| c.component_mul_assign(&(rb_mass * dt)));
            }

            #[cfg(feature = "dim2")]
            {
                let mut i_coriolis_dt_w = self.i_coriolis_dt.fixed_rows_mut::<ANG_DIM>(DIM);
                // NOTE: this is just an axpy, but on row columns.
                i_coriolis_dt_w.zip_apply(coriolis_w, |o, x| *o = x * dt * rb_inertia);
            }
            #[cfg(feature = "dim3")]
            {
                let mut i_coriolis_dt_w = self.i_coriolis_dt.fixed_rows_mut::<ANG_DIM>(DIM);
                i_coriolis_dt_w.gemm(dt, &rb_inertia, coriolis_w, 0.0);
            }

            self.acc_augmented_mass
                .gemm_tr(1.0, rb_j, &self.i_coriolis_dt, 1.0);
        }

        /*
         * Damping.
         */
        for i in 0..self.ndofs {
            self.acc_augmented_mass[(i, i)] += self.damping[i] * dt;
            self.augmented_mass[(i, i)] += self.damping[i] * dt;
        }

        let effective_dim = self
            .augmented_mass_indices
            .dim_after_removal(self.acc_augmented_mass.nrows());

        // PERF: since we clone the matrix anyway for LU, should be directly output
        //       a new matrix instead of applying permutations?
        self.augmented_mass_indices
            .rearrange_columns(&mut self.acc_augmented_mass, true);
        self.augmented_mass_indices
            .rearrange_columns(&mut self.augmented_mass, true);

        self.augmented_mass_indices
            .rearrange_rows(&mut self.acc_augmented_mass, true);
        self.augmented_mass_indices
            .rearrange_rows(&mut self.augmented_mass, true);

        // TODO: avoid allocation inside LU at each timestep.
        self.acc_inv_augmented_mass = LU::new(
            self.acc_augmented_mass
                .view((0, 0), (effective_dim, effective_dim))
                .into_owned(),
        );
        self.inv_augmented_mass = LU::new(
            self.augmented_mass
                .view((0, 0), (effective_dim, effective_dim))
                .into_owned(),
        );
    }

    /// The generalized velocity at the multibody_joint of the given link.
    #[inline]
    pub fn joint_velocity(&self, link: &MultibodyLink) -> DVectorView<Real> {
        let ndofs = link.joint().ndofs();
        DVectorView::from_slice(
            &self.velocities.as_slice()[link.assembly_id..link.assembly_id + ndofs],
            ndofs,
        )
    }

    /// The generalized accelerations of this multibodies.
    #[inline]
    pub fn generalized_acceleration(&self) -> DVectorView<Real> {
        self.accelerations.rows(0, self.ndofs)
    }

    /// The generalized velocities of this multibodies.
    #[inline]
    pub fn generalized_velocity(&self) -> DVectorView<Real> {
        self.velocities.rows(0, self.ndofs)
    }

    /// The body jacobian for link `link_id` calculated by the last call to [`Multibody::forward_kinematics`].
    #[inline]
    pub fn body_jacobian(&self, link_id: usize) -> &Jacobian<Real> {
        &self.body_jacobians[link_id]
    }

    /// The mutable generalized velocities of this multibodies.
    #[inline]
    pub fn generalized_velocity_mut(&mut self) -> DVectorViewMut<Real> {
        self.velocities.rows_mut(0, self.ndofs)
    }

    #[inline]
    pub(crate) fn integrate(&mut self, dt: Real) {
        for rb in self.links.iter_mut() {
            rb.joint
                .integrate(dt, &self.velocities.as_slice()[rb.assembly_id..])
        }
    }

    /// Apply displacements, in generalized coordinates, to this multibody.
    ///
    /// Note this does **not** updates the link poses, only their generalized coordinates.
    /// To update the link poses and associated rigid-bodies, call [`Self::forward_kinematics`].
    pub fn apply_displacements(&mut self, disp: &[Real]) {
        for link in self.links.iter_mut() {
            link.joint.apply_displacement(&disp[link.assembly_id..])
        }
    }

    pub(crate) fn update_root_type(&mut self, bodies: &RigidBodySet, take_body_pose: bool) {
        if let Some(rb) = bodies.get(self.links[0].rigid_body) {
            if rb.is_dynamic() != self.root_is_dynamic {
                let root_pose = if take_body_pose {
                    *rb.position()
                } else {
                    self.links[0].local_to_world
                };

                if rb.is_dynamic() {
                    let free_joint = MultibodyJoint::free(root_pose);
                    let prev_root_ndofs = self.links[0].joint().ndofs();
                    self.links[0].joint = free_joint;
                    self.links[0].assembly_id = 0;
                    self.ndofs += SPATIAL_DIM;

                    self.velocities = self.velocities.clone().insert_rows(0, SPATIAL_DIM, 0.0);
                    self.damping = self.damping.clone().insert_rows(0, SPATIAL_DIM, 0.0);
                    self.accelerations =
                        self.accelerations.clone().insert_rows(0, SPATIAL_DIM, 0.0);

                    for link in &mut self.links[1..] {
                        link.assembly_id += SPATIAL_DIM - prev_root_ndofs;
                    }
                } else {
                    assert!(self.velocities.len() >= SPATIAL_DIM);
                    assert!(self.damping.len() >= SPATIAL_DIM);
                    assert!(self.accelerations.len() >= SPATIAL_DIM);

                    let fixed_joint = MultibodyJoint::fixed(root_pose);
                    let prev_root_ndofs = self.links[0].joint().ndofs();
                    self.links[0].joint = fixed_joint;
                    self.links[0].assembly_id = 0;
                    self.ndofs -= prev_root_ndofs;

                    if self.ndofs == 0 {
                        self.velocities = DVector::zeros(0);
                        self.damping = DVector::zeros(0);
                        self.accelerations = DVector::zeros(0);
                    } else {
                        self.velocities =
                            self.velocities.index((prev_root_ndofs.., 0)).into_owned();
                        self.damping = self.damping.index((prev_root_ndofs.., 0)).into_owned();
                        self.accelerations = self
                            .accelerations
                            .index((prev_root_ndofs.., 0))
                            .into_owned();
                    }

                    for link in &mut self.links[1..] {
                        link.assembly_id -= prev_root_ndofs;
                    }
                }

                self.root_is_dynamic = rb.is_dynamic();
            }

            // Make sure the positions are properly set to match the rigid-body’s.
            if take_body_pose {
                if self.links[0].joint.data.locked_axes.is_empty() {
                    self.links[0].joint.set_free_pos(*rb.position());
                } else {
                    self.links[0].joint.data.local_frame1 = *rb.position();
                }
            }
        }
    }

    /// Update the rigid-body poses based on this multibody joint poses.
    ///
    /// This is typically called after [`Self::forward_kinematics`] to apply the new joint poses
    /// to the rigid-bodies.
    pub fn update_rigid_bodies(&self, bodies: &mut RigidBodySet, update_mass_properties: bool) {
        self.update_rigid_bodies_internal(bodies, update_mass_properties, false, true)
    }

    pub(crate) fn update_rigid_bodies_internal(
        &self,
        bodies: &mut RigidBodySet,
        update_mass_properties: bool,
        update_next_positions_only: bool,
        change_tracking: bool,
    ) {
        // Handle the children. They all have a parent within this multibody.
        for link in self.links.iter() {
            let rb = if change_tracking {
                bodies.get_mut_internal_with_modification_tracking(link.rigid_body)
            } else {
                bodies.get_mut_internal(link.rigid_body)
            };

            if let Some(rb) = rb {
                rb.pos.next_position = link.local_to_world;

                if !update_next_positions_only {
                    rb.pos.position = link.local_to_world;
                }

                if update_mass_properties {
                    rb.mprops.update_world_mass_properties(&link.local_to_world);
                }
            }
        }
    }

    // TODO: make a version that doesn’t write back to bodies and doesn’t update the jacobians
    //       (i.e. just something used by the velocity solver’s small steps).
    /// Apply forward-kinematics to this multibody.
    ///
    /// This will update the [`MultibodyLink`] pose information as wall as the body jacobians.
    /// This will also ensure that the multibody has the proper number of degrees of freedom if
    /// its root node changed between dynamic and non-dynamic.
    ///
    /// Note that this does **not** update the poses of the [`RigidBody`] attached to the joints.
    /// Run [`Self::update_rigid_bodies`] to trigger that update.
    ///
    /// This method updates `self` with the result of the forward-kinematics operation.
    /// For a non-mutable version running forward kinematics on a single link, see
    /// [`Self::forward_kinematics_single_link`].
    ///
    /// ## Parameters
    /// - `bodies`: the set of rigid-bodies.
    /// - `read_root_pose_from_rigid_body`: if set to `true`, the root joint (either a fixed joint,
    ///   or a free joint) will have its pose set to its associated-rigid-body pose. Set this to `true`
    ///   when the root rigid-body pose has been modified and needs to affect the multibody.
    pub fn forward_kinematics(
        &mut self,
        bodies: &RigidBodySet,
        read_root_pose_from_rigid_body: bool,
    ) {
        // Be sure the degrees of freedom match and take the root position if needed.
        self.update_root_type(bodies, read_root_pose_from_rigid_body);

        // Special case for the root, which has no parent.
        {
            let link = &mut self.links[0];
            link.local_to_parent = link.joint.body_to_parent();
            link.local_to_world = link.local_to_parent;
        }

        // Handle the children. They all have a parent within this multibody.
        for i in 1..self.links.len() {
            let (link, parent_link) = self.links.get_mut_with_parent(i);

            link.local_to_parent = link.joint.body_to_parent();
            link.local_to_world = parent_link.local_to_world * link.local_to_parent;

            {
                let parent_rb = &bodies[parent_link.rigid_body];
                let link_rb = &bodies[link.rigid_body];
                let c0 = parent_link.local_to_world * parent_rb.mprops.local_mprops.local_com;
                let c2 = link.local_to_world
                    * Point::from(link.joint.data.local_frame2.translation.vector);
                let c3 = link.local_to_world * link_rb.mprops.local_mprops.local_com;

                link.shift02 = c2 - c0;
                link.shift23 = c3 - c2;
            }

            assert_eq!(
                bodies[link.rigid_body].body_type,
                RigidBodyType::Dynamic,
                "A rigid-body that is not at the root of a multibody must be dynamic."
            );
        }

        /*
         * Compute body jacobians.
         */
        self.update_body_jacobians();
    }

    /// Computes the ids of all the links between the root and the link identified by `link_id`.
    pub fn kinematic_branch(&self, link_id: usize) -> Vec<usize> {
        let mut branch = vec![]; // Perf: avoid allocation.
        let mut curr_id = Some(link_id);

        while let Some(id) = curr_id {
            branch.push(id);
            curr_id = self.links[id].parent_id();
        }

        branch.reverse();
        branch
    }

    /// Apply forward-kinematics to compute the position of a single link of this multibody.
    ///
    /// If `out_jacobian` is `Some`, this will simultaneously compute the new jacobian of this link.
    /// If `displacement` is `Some`, the generalized position considered during transform propagation
    /// is the sum of the current position of `self` and this `displacement`.
    // TODO: this shares a lot of code with `forward_kinematics` and `update_body_jacobians`, except
    //       that we are only traversing a single kinematic chain. Could this be refactored?
    pub fn forward_kinematics_single_link(
        &self,
        bodies: &RigidBodySet,
        link_id: usize,
        displacement: Option<&[Real]>,
        out_jacobian: Option<&mut Jacobian<Real>>,
    ) -> Isometry<Real> {
        let branch = self.kinematic_branch(link_id);
        self.forward_kinematics_single_branch(bodies, &branch, displacement, out_jacobian)
    }

    /// Apply forward-kinematics to compute the position of a single sorted branch of this multibody.
    ///
    /// The given `branch` must have the following properties:
    /// - It must be sorted, i.e., `branch[i] < branch[i + 1]`.
    /// - All the indices must be part of the same kinematic branch.
    /// - If a link is `branch[i]`, then `branch[i - 1]` must be its parent.
    ///
    /// In general, this method shouldn’t be used directly and [`Self::forward_kinematics_single_link`̦]
    /// should be preferred since it computes the branch indices automatically.
    ///
    /// If you want to calculate the branch indices manually, see [`Self::kinematic_branch`].
    ///
    /// If `out_jacobian` is `Some`, this will simultaneously compute the new jacobian of this branch.
    /// This represents the body jacobian for the last link in the branch.
    ///
    /// If `displacement` is `Some`, the generalized position considered during transform propagation
    /// is the sum of the current position of `self` and this `displacement`.
    // TODO: this shares a lot of code with `forward_kinematics` and `update_body_jacobians`, except
    //       that we are only traversing a single kinematic chain. Could this be refactored?
    #[profiling::function]
    pub fn forward_kinematics_single_branch(
        &self,
        bodies: &RigidBodySet,
        branch: &[usize],
        displacement: Option<&[Real]>,
        mut out_jacobian: Option<&mut Jacobian<Real>>,
    ) -> Isometry<Real> {
        if let Some(out_jacobian) = out_jacobian.as_deref_mut() {
            if out_jacobian.ncols() != self.ndofs {
                *out_jacobian = Jacobian::zeros(self.ndofs);
            } else {
                out_jacobian.fill(0.0);
            }
        }

        let mut parent_link: Option<MultibodyLink> = None;

        for i in branch {
            let mut link = self.links[*i];

            if let Some(displacement) = displacement {
                link.joint
                    .apply_displacement(&displacement[link.assembly_id..]);
            }

            let parent_to_world;

            if let Some(parent_link) = parent_link {
                link.local_to_parent = link.joint.body_to_parent();
                link.local_to_world = parent_link.local_to_world * link.local_to_parent;

                {
                    let parent_rb = &bodies[parent_link.rigid_body];
                    let link_rb = &bodies[link.rigid_body];
                    let c0 = parent_link.local_to_world * parent_rb.mprops.local_mprops.local_com;
                    let c2 = link.local_to_world
                        * Point::from(link.joint.data.local_frame2.translation.vector);
                    let c3 = link.local_to_world * link_rb.mprops.local_mprops.local_com;

                    link.shift02 = c2 - c0;
                    link.shift23 = c3 - c2;
                }

                parent_to_world = parent_link.local_to_world;

                if let Some(out_jacobian) = out_jacobian.as_deref_mut() {
                    let (mut link_j_v, parent_j_w) =
                        out_jacobian.rows_range_pair_mut(0..DIM, DIM..DIM + ANG_DIM);
                    let shift_tr = (link.shift02).gcross_matrix_tr();
                    link_j_v.gemm(1.0, &shift_tr, &parent_j_w, 1.0);
                }
            } else {
                link.local_to_parent = link.joint.body_to_parent();
                link.local_to_world = link.local_to_parent;
                parent_to_world = Isometry::identity();
            }

            if let Some(out_jacobian) = out_jacobian.as_deref_mut() {
                let ndofs = link.joint.ndofs();
                let mut tmp = SMatrix::<Real, SPATIAL_DIM, SPATIAL_DIM>::zeros();
                let mut link_joint_j = tmp.columns_mut(0, ndofs);
                let mut link_j_part = out_jacobian.columns_mut(link.assembly_id, ndofs);
                link.joint.jacobian(
                    &(parent_to_world.rotation * link.joint.data.local_frame1.rotation),
                    &mut link_joint_j,
                );
                link_j_part += link_joint_j;

                {
                    let (mut link_j_v, link_j_w) =
                        out_jacobian.rows_range_pair_mut(0..DIM, DIM..DIM + ANG_DIM);
                    let shift_tr = link.shift23.gcross_matrix_tr();
                    link_j_v.gemm(1.0, &shift_tr, &link_j_w, 1.0);
                }
            }

            parent_link = Some(link);
        }

        parent_link
            .map(|link| link.local_to_world)
            .unwrap_or_else(Isometry::identity)
    }

    /// The total number of freedoms of this multibody.
    #[inline]
    pub fn ndofs(&self) -> usize {
        self.ndofs
    }

    pub(crate) fn fill_jacobians(
        &self,
        link_id: usize,
        unit_force: Vector<Real>,
        unit_torque: SVector<Real, ANG_DIM>,
        j_id: &mut usize,
        jacobians: &mut DVector<Real>,
    ) -> (Real, Real) {
        if self.ndofs == 0 {
            return (0.0, 0.0);
        }

        let wj_id = *j_id + self.ndofs;
        let force = Force {
            linear: unit_force,
            #[cfg(feature = "dim2")]
            angular: unit_torque[0],
            #[cfg(feature = "dim3")]
            angular: unit_torque,
        };

        let link = &self.links[link_id];
        let mut out_j = jacobians.rows_mut(*j_id, self.ndofs);
        self.body_jacobians[link.internal_id].tr_mul_to(force.as_vector(), &mut out_j);

        // TODO: Optimize with a copy_nonoverlapping?
        for i in 0..self.ndofs {
            jacobians[wj_id + i] = jacobians[*j_id + i];
        }

        {
            let mut out_invm_j = jacobians.rows_mut(wj_id, self.ndofs);
            self.augmented_mass_indices
                .with_rearranged_rows_mut(&mut out_invm_j, |out_invm_j| {
                    self.inv_augmented_mass.solve_mut(out_invm_j);
                });
        }

        let j = jacobians.rows(*j_id, self.ndofs);
        let invm_j = jacobians.rows(wj_id, self.ndofs);
        *j_id += self.ndofs * 2;

        (j.dot(&invm_j), j.dot(&self.generalized_velocity()))
    }

    // #[cfg(feature = "parallel")]
    // #[inline]
    // pub(crate) fn has_active_internal_constraints(&self) -> bool {
    //     self.links()
    //         .any(|link| link.joint().num_velocity_constraints() != 0)
    // }

    #[cfg(feature = "parallel")]
    #[inline]
    #[allow(dead_code)] // That will likely be useful when we re-introduce intra-island parallelism.
    pub(crate) fn num_active_internal_constraints_and_jacobian_lines(&self) -> (usize, usize) {
        let num_constraints: usize = self
            .links
            .iter()
            .map(|l| l.joint().num_velocity_constraints())
            .sum();
        (num_constraints, num_constraints)
    }
}

#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone, Debug)]
struct IndexSequence {
    first_to_remove: usize,
    index_map: Vec<usize>,
}

impl IndexSequence {
    fn new() -> Self {
        Self {
            first_to_remove: usize::MAX,
            index_map: vec![],
        }
    }

    fn clear(&mut self) {
        self.first_to_remove = usize::MAX;
        self.index_map.clear();
    }

    fn keep(&mut self, i: usize) {
        if self.first_to_remove == usize::MAX {
            // Nothing got removed yet. No need to register any
            // special indexing.
            return;
        }

        self.index_map.push(i);
    }

    fn remove(&mut self, i: usize) {
        if self.first_to_remove == usize::MAX {
            self.first_to_remove = i;
        }
    }

    fn dim_after_removal(&self, original_dim: usize) -> usize {
        if self.first_to_remove == usize::MAX {
            original_dim
        } else {
            self.first_to_remove + self.index_map.len()
        }
    }

    fn rearrange_columns<R: na::Dim, C: na::Dim, S: StorageMut<Real, R, C>>(
        &self,
        mat: &mut na::Matrix<Real, R, C, S>,
        clear_removed: bool,
    ) {
        if self.first_to_remove == usize::MAX {
            // Nothing to rearrange.
            return;
        }

        for (target_shift, source) in self.index_map.iter().enumerate() {
            let target = self.first_to_remove + target_shift;
            let (mut target_col, source_col) = mat.columns_range_pair_mut(target, *source);
            target_col.copy_from(&source_col);
        }

        if clear_removed {
            mat.columns_range_mut(self.first_to_remove + self.index_map.len()..)
                .fill(0.0);
        }
    }

    fn rearrange_rows<R: na::Dim, C: na::Dim, S: StorageMut<Real, R, C>>(
        &self,
        mat: &mut na::Matrix<Real, R, C, S>,
        clear_removed: bool,
    ) {
        if self.first_to_remove == usize::MAX {
            // Nothing to rearrange.
            return;
        }

        for mut col in mat.column_iter_mut() {
            for (target_shift, source) in self.index_map.iter().enumerate() {
                let target = self.first_to_remove + target_shift;
                col[target] = col[*source];
            }

            if clear_removed {
                col.rows_range_mut(self.first_to_remove + self.index_map.len()..)
                    .fill(0.0);
            }
        }
    }

    fn inv_rearrange_rows<R: na::Dim, C: na::Dim, S: StorageMut<Real, R, C>>(
        &self,
        mat: &mut na::Matrix<Real, R, C, S>,
    ) {
        if self.first_to_remove == usize::MAX {
            // Nothing to rearrange.
            return;
        }

        for mut col in mat.column_iter_mut() {
            for (target_shift, source) in self.index_map.iter().enumerate().rev() {
                let target = self.first_to_remove + target_shift;
                col[*source] = col[target];
                col[target] = 0.0;
            }
        }
    }

    fn with_rearranged_rows_mut<C: na::Dim, S: StorageMut<Real, Dyn, C>>(
        &self,
        mat: &mut na::Matrix<Real, Dyn, C, S>,
        mut f: impl FnMut(&mut na::MatrixViewMut<Real, Dyn, C, S::RStride, S::CStride>),
    ) {
        self.rearrange_rows(mat, true);
        let effective_dim = self.dim_after_removal(mat.nrows());
        if effective_dim > 0 {
            f(&mut mat.rows_mut(0, effective_dim));
        }
        self.inv_rearrange_rows(mat);
    }
}

#[cfg(test)]
mod test {
    use super::IndexSequence;
    use crate::dynamics::{ImpulseJointSet, IslandManager};
    use crate::math::{Real, SPATIAL_DIM};
    use crate::prelude::{
        ColliderSet, MultibodyJointHandle, MultibodyJointSet, RevoluteJoint, RigidBodyBuilder,
        RigidBodySet,
    };
    use na::{DVector, RowDVector};

    #[test]
    fn test_multibody_append() {
        let mut bodies = RigidBodySet::new();
        let mut joints = MultibodyJointSet::new();

        let a = bodies.insert(RigidBodyBuilder::dynamic());
        let b = bodies.insert(RigidBodyBuilder::dynamic());
        let c = bodies.insert(RigidBodyBuilder::dynamic());
        let d = bodies.insert(RigidBodyBuilder::dynamic());

        #[cfg(feature = "dim2")]
        let joint = RevoluteJoint::new();
        #[cfg(feature = "dim3")]
        let joint = RevoluteJoint::new(na::Vector::x_axis());

        let mb_handle = joints.insert(a, b, joint, true).unwrap();
        joints.insert(c, d, joint, true).unwrap();
        joints.insert(b, c, joint, true).unwrap();

        assert_eq!(joints.get(mb_handle).unwrap().0.ndofs, SPATIAL_DIM + 3);
    }

    #[test]
    fn test_multibody_insert() {
        let mut rnd = oorandom::Rand32::new(1234);

        for k in 0..10 {
            let mut bodies = RigidBodySet::new();
            let mut multibody_joints = MultibodyJointSet::new();

            let num_links = 100;
            let mut handles = vec![];

            for _ in 0..num_links {
                handles.push(bodies.insert(RigidBodyBuilder::dynamic()));
            }

            let mut insertion_id: Vec<_> = (0..num_links - 1).collect();

            #[cfg(feature = "dim2")]
            let joint = RevoluteJoint::new();
            #[cfg(feature = "dim3")]
            let joint = RevoluteJoint::new(na::Vector::x_axis());

            match k {
                0 => {} // Remove in insertion order.
                1 => {
                    // Remove from leaf to root.
                    insertion_id.reverse();
                }
                _ => {
                    // Shuffle the vector a bit.
                    // (This test checks multiple shuffle arrangements due to k > 2).
                    for l in 0..num_links - 1 {
                        insertion_id.swap(l, rnd.rand_range(0..num_links as u32 - 1) as usize);
                    }
                }
            }

            let mut mb_handle = MultibodyJointHandle::invalid();
            for i in insertion_id {
                mb_handle = multibody_joints
                    .insert(handles[i], handles[i + 1], joint, true)
                    .unwrap();
            }

            assert_eq!(
                multibody_joints.get(mb_handle).unwrap().0.ndofs,
                SPATIAL_DIM + num_links - 1
            );
        }
    }

    #[test]
    fn test_multibody_remove() {
        let mut rnd = oorandom::Rand32::new(1234);

        for k in 0..10 {
            let mut bodies = RigidBodySet::new();
            let mut multibody_joints = MultibodyJointSet::new();
            let mut colliders = ColliderSet::new();
            let mut impulse_joints = ImpulseJointSet::new();
            let mut islands = IslandManager::new();

            let num_links = 100;
            let mut handles = vec![];

            for _ in 0..num_links {
                handles.push(bodies.insert(RigidBodyBuilder::dynamic()));
            }

            #[cfg(feature = "dim2")]
            let joint = RevoluteJoint::new();
            #[cfg(feature = "dim3")]
            let joint = RevoluteJoint::new(na::Vector::x_axis());

            for i in 0..num_links - 1 {
                multibody_joints
                    .insert(handles[i], handles[i + 1], joint, true)
                    .unwrap();
            }

            match k {
                0 => {} // Remove in insertion order.
                1 => {
                    // Remove from leaf to root.
                    handles.reverse();
                }
                _ => {
                    // Shuffle the vector a bit.
                    // (This test checks multiple shuffle arrangements due to k > 2).
                    for l in 0..num_links {
                        handles.swap(l, rnd.rand_range(0..num_links as u32) as usize);
                    }
                }
            }

            for handle in handles {
                bodies.remove(
                    handle,
                    &mut islands,
                    &mut colliders,
                    &mut impulse_joints,
                    &mut multibody_joints,
                    true,
                );
            }
        }
    }

    fn test_sequence() -> IndexSequence {
        let mut seq = IndexSequence::new();
        seq.remove(2);
        seq.remove(3);
        seq.remove(4);
        seq.keep(5);
        seq.keep(6);
        seq.remove(7);
        seq.keep(8);
        seq
    }

    #[test]
    fn index_sequence_rearrange_columns() {
        let seq = test_sequence();
        let mut vec = RowDVector::from_fn(10, |_, c| c as Real);
        seq.rearrange_columns(&mut vec, true);
        assert_eq!(
            vec,
            RowDVector::from(vec![0.0, 1.0, 5.0, 6.0, 8.0, 0.0, 0.0, 0.0, 0.0, 0.0])
        );
    }

    #[test]
    fn index_sequence_rearrange_rows() {
        let seq = test_sequence();
        let mut vec = DVector::from_fn(10, |r, _| r as Real);
        seq.rearrange_rows(&mut vec, true);
        assert_eq!(
            vec,
            DVector::from(vec![0.0, 1.0, 5.0, 6.0, 8.0, 0.0, 0.0, 0.0, 0.0, 0.0])
        );
        seq.inv_rearrange_rows(&mut vec);
        assert_eq!(
            vec,
            DVector::from(vec![0.0, 1.0, 0.0, 0.0, 0.0, 5.0, 6.0, 0.0, 8.0, 0.0])
        );
    }

    #[test]
    fn index_sequence_with_rearranged_rows_mut() {
        let seq = test_sequence();
        let mut vec = DVector::from_fn(10, |r, _| r as Real);
        seq.with_rearranged_rows_mut(&mut vec, |v| {
            assert_eq!(v.len(), 5);
            assert_eq!(*v, DVector::from(vec![0.0, 1.0, 5.0, 6.0, 8.0]));
            *v *= 10.0;
        });
        assert_eq!(
            vec,
            DVector::from(vec![0.0, 10.0, 0.0, 0.0, 0.0, 50.0, 60.0, 0.0, 80.0, 0.0])
        );
    }
}