rapier2d/dynamics/rigid_body.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
#[cfg(doc)]
use super::IntegrationParameters;
use crate::dynamics::{
LockedAxes, MassProperties, RigidBodyActivation, RigidBodyAdditionalMassProps, RigidBodyCcd,
RigidBodyChanges, RigidBodyColliders, RigidBodyDamping, RigidBodyDominance, RigidBodyForces,
RigidBodyIds, RigidBodyMassProps, RigidBodyPosition, RigidBodyType, RigidBodyVelocity,
};
use crate::geometry::{
ColliderHandle, ColliderMassProps, ColliderParent, ColliderPosition, ColliderSet, ColliderShape,
};
use crate::math::{AngVector, Isometry, Point, Real, Rotation, Vector};
use crate::utils::SimdCross;
use num::Zero;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
/// A rigid body.
///
/// To create a new rigid-body, use the [`RigidBodyBuilder`] structure.
#[derive(Debug, Clone)]
pub struct RigidBody {
pub(crate) pos: RigidBodyPosition,
pub(crate) mprops: RigidBodyMassProps,
// NOTE: we need this so that the CCD can use the actual velocities obtained
// by the velocity solver with bias. If we switch to interpolation, we
// should remove this field.
pub(crate) integrated_vels: RigidBodyVelocity,
pub(crate) vels: RigidBodyVelocity,
pub(crate) damping: RigidBodyDamping,
pub(crate) forces: RigidBodyForces,
pub(crate) ccd: RigidBodyCcd,
pub(crate) ids: RigidBodyIds,
pub(crate) colliders: RigidBodyColliders,
/// Whether or not this rigid-body is sleeping.
pub(crate) activation: RigidBodyActivation,
pub(crate) changes: RigidBodyChanges,
/// The status of the body, governing how it is affected by external forces.
pub(crate) body_type: RigidBodyType,
/// The dominance group this rigid-body is part of.
pub(crate) dominance: RigidBodyDominance,
pub(crate) enabled: bool,
pub(crate) additional_solver_iterations: usize,
/// User-defined data associated to this rigid-body.
pub user_data: u128,
}
impl Default for RigidBody {
fn default() -> Self {
Self::new()
}
}
impl RigidBody {
fn new() -> Self {
Self {
pos: RigidBodyPosition::default(),
mprops: RigidBodyMassProps::default(),
integrated_vels: RigidBodyVelocity::default(),
vels: RigidBodyVelocity::default(),
damping: RigidBodyDamping::default(),
forces: RigidBodyForces::default(),
ccd: RigidBodyCcd::default(),
ids: RigidBodyIds::default(),
colliders: RigidBodyColliders::default(),
activation: RigidBodyActivation::active(),
changes: RigidBodyChanges::all(),
body_type: RigidBodyType::Dynamic,
dominance: RigidBodyDominance::default(),
enabled: true,
user_data: 0,
additional_solver_iterations: 0,
}
}
pub(crate) fn reset_internal_references(&mut self) {
self.colliders.0 = Vec::new();
self.ids = Default::default();
}
/// Copy all the characteristics from `other` to `self`.
///
/// If you have a mutable reference to a rigid-body `rigid_body: &mut RigidBody`, attempting to
/// assign it a whole new rigid-body instance, e.g., `*rigid_body = RigidBodyBuilder::dynamic().build()`,
/// will crash due to some internal indices being overwritten. Instead, use
/// `rigid_body.copy_from(&RigidBodyBuilder::dynamic().build())`.
///
/// This method will allow you to set most characteristics of this rigid-body from another
/// rigid-body instance without causing any breakage.
///
/// This method **cannot** be used for editing the list of colliders attached to this rigid-body.
/// Therefore, the list of colliders attached to `self` won’t be replaced by the one attached
/// to `other`.
///
/// The pose of `other` will only copied into `self` if `self` doesn’t have a parent (if it has
/// a parent, its position is directly controlled by the parent rigid-body).
pub fn copy_from(&mut self, other: &RigidBody) {
// NOTE: we deconstruct the rigid-body struct to be sure we don’t forget to
// add some copies here if we add more field to RigidBody in the future.
let RigidBody {
pos,
mprops,
integrated_vels,
vels,
damping,
forces,
ccd,
ids: _ids, // Internal ids must not be overwritten.
colliders: _colliders, // This function cannot be used to edit collider sets.
activation,
changes: _changes, // Will be set to ALL.
body_type,
dominance,
enabled,
additional_solver_iterations,
user_data,
} = other;
self.pos = *pos;
self.mprops = mprops.clone();
self.integrated_vels = *integrated_vels;
self.vels = *vels;
self.damping = *damping;
self.forces = *forces;
self.ccd = *ccd;
self.activation = *activation;
self.body_type = *body_type;
self.dominance = *dominance;
self.enabled = *enabled;
self.additional_solver_iterations = *additional_solver_iterations;
self.user_data = *user_data;
self.changes = RigidBodyChanges::all();
}
/// Set the additional number of solver iterations run for this rigid-body and
/// everything interacting with it.
///
/// See [`Self::set_additional_solver_iterations`] for additional information.
pub fn additional_solver_iterations(&self) -> usize {
self.additional_solver_iterations
}
/// Set the additional number of solver iterations run for this rigid-body and
/// everything interacting with it.
///
/// Increasing this number will help improve simulation accuracy on this rigid-body
/// and every rigid-body interacting directly or indirectly with it (through joints
/// or contacts). This implies a performance hit.
///
/// The default value is 0, meaning exactly [`IntegrationParameters::num_solver_iterations`] will
/// be used as number of solver iterations for this body.
pub fn set_additional_solver_iterations(&mut self, additional_iterations: usize) {
self.additional_solver_iterations = additional_iterations;
}
/// The activation status of this rigid-body.
pub fn activation(&self) -> &RigidBodyActivation {
&self.activation
}
/// Mutable reference to the activation status of this rigid-body.
pub fn activation_mut(&mut self) -> &mut RigidBodyActivation {
self.changes |= RigidBodyChanges::SLEEP;
&mut self.activation
}
/// Is this rigid-body enabled?
pub fn is_enabled(&self) -> bool {
self.enabled
}
/// Sets whether this rigid-body is enabled or not.
pub fn set_enabled(&mut self, enabled: bool) {
if enabled != self.enabled {
if enabled {
// NOTE: this is probably overkill, but it makes sure we don’t
// forget anything that needs to be updated because the rigid-body
// was basically interpreted as if it was removed while it was
// disabled.
self.changes = RigidBodyChanges::all();
} else {
self.changes |= RigidBodyChanges::ENABLED_OR_DISABLED;
}
self.enabled = enabled;
}
}
/// The linear damping coefficient of this rigid-body.
#[inline]
pub fn linear_damping(&self) -> Real {
self.damping.linear_damping
}
/// Sets the linear damping coefficient of this rigid-body.
#[inline]
pub fn set_linear_damping(&mut self, damping: Real) {
self.damping.linear_damping = damping;
}
/// The angular damping coefficient of this rigid-body.
#[inline]
pub fn angular_damping(&self) -> Real {
self.damping.angular_damping
}
/// Sets the angular damping coefficient of this rigid-body.
#[inline]
pub fn set_angular_damping(&mut self, damping: Real) {
self.damping.angular_damping = damping
}
/// The type of this rigid-body.
pub fn body_type(&self) -> RigidBodyType {
self.body_type
}
/// Sets the type of this rigid-body.
pub fn set_body_type(&mut self, status: RigidBodyType, wake_up: bool) {
if status != self.body_type {
self.changes.insert(RigidBodyChanges::TYPE);
self.body_type = status;
if status == RigidBodyType::Fixed {
self.vels = RigidBodyVelocity::zero();
}
if self.is_dynamic() && wake_up {
self.wake_up(true);
}
}
}
/// The world-space center-of-mass of this rigid-body.
#[inline]
pub fn center_of_mass(&self) -> &Point<Real> {
&self.mprops.world_com
}
/// The local-space center-of-mass of this rigid-body.
#[inline]
pub fn local_center_of_mass(&self) -> &Point<Real> {
&self.mprops.local_mprops.local_com
}
/// The mass-properties of this rigid-body.
#[inline]
pub fn mass_properties(&self) -> &RigidBodyMassProps {
&self.mprops
}
/// The dominance group of this rigid-body.
///
/// This method always returns `i8::MAX + 1` for non-dynamic
/// rigid-bodies.
#[inline]
pub fn effective_dominance_group(&self) -> i16 {
self.dominance.effective_group(&self.body_type)
}
/// Sets the axes along which this rigid-body cannot translate or rotate.
#[inline]
pub fn set_locked_axes(&mut self, locked_axes: LockedAxes, wake_up: bool) {
if locked_axes != self.mprops.flags {
if self.is_dynamic() && wake_up {
self.wake_up(true);
}
self.mprops.flags = locked_axes;
self.update_world_mass_properties();
}
}
/// The axes along which this rigid-body cannot translate or rotate.
#[inline]
pub fn locked_axes(&self) -> LockedAxes {
self.mprops.flags
}
#[inline]
/// Locks or unlocks all the rotations of this rigid-body.
pub fn lock_rotations(&mut self, locked: bool, wake_up: bool) {
if locked != self.mprops.flags.contains(LockedAxes::ROTATION_LOCKED) {
if self.is_dynamic() && wake_up {
self.wake_up(true);
}
self.mprops.flags.set(LockedAxes::ROTATION_LOCKED_X, locked);
self.mprops.flags.set(LockedAxes::ROTATION_LOCKED_Y, locked);
self.mprops.flags.set(LockedAxes::ROTATION_LOCKED_Z, locked);
self.update_world_mass_properties();
}
}
#[inline]
/// Locks or unlocks rotations of this rigid-body along each cartesian axes.
pub fn set_enabled_rotations(
&mut self,
allow_rotations_x: bool,
allow_rotations_y: bool,
allow_rotations_z: bool,
wake_up: bool,
) {
if self.mprops.flags.contains(LockedAxes::ROTATION_LOCKED_X) == allow_rotations_x
|| self.mprops.flags.contains(LockedAxes::ROTATION_LOCKED_Y) == allow_rotations_y
|| self.mprops.flags.contains(LockedAxes::ROTATION_LOCKED_Z) == allow_rotations_z
{
if self.is_dynamic() && wake_up {
self.wake_up(true);
}
self.mprops
.flags
.set(LockedAxes::ROTATION_LOCKED_X, !allow_rotations_x);
self.mprops
.flags
.set(LockedAxes::ROTATION_LOCKED_Y, !allow_rotations_y);
self.mprops
.flags
.set(LockedAxes::ROTATION_LOCKED_Z, !allow_rotations_z);
self.update_world_mass_properties();
}
}
/// Locks or unlocks rotations of this rigid-body along each cartesian axes.
#[deprecated(note = "Use `set_enabled_rotations` instead")]
pub fn restrict_rotations(
&mut self,
allow_rotations_x: bool,
allow_rotations_y: bool,
allow_rotations_z: bool,
wake_up: bool,
) {
self.set_enabled_rotations(
allow_rotations_x,
allow_rotations_y,
allow_rotations_z,
wake_up,
);
}
#[inline]
/// Locks or unlocks all the rotations of this rigid-body.
pub fn lock_translations(&mut self, locked: bool, wake_up: bool) {
if locked != self.mprops.flags.contains(LockedAxes::TRANSLATION_LOCKED) {
if self.is_dynamic() && wake_up {
self.wake_up(true);
}
self.mprops
.flags
.set(LockedAxes::TRANSLATION_LOCKED, locked);
self.update_world_mass_properties();
}
}
#[inline]
/// Locks or unlocks rotations of this rigid-body along each cartesian axes.
pub fn set_enabled_translations(
&mut self,
allow_translation_x: bool,
allow_translation_y: bool,
#[cfg(feature = "dim3")] allow_translation_z: bool,
wake_up: bool,
) {
#[cfg(feature = "dim2")]
if self.mprops.flags.contains(LockedAxes::TRANSLATION_LOCKED_X) != allow_translation_x
&& self.mprops.flags.contains(LockedAxes::TRANSLATION_LOCKED_Y) != allow_translation_y
{
// Nothing to change.
return;
}
#[cfg(feature = "dim3")]
if self.mprops.flags.contains(LockedAxes::TRANSLATION_LOCKED_X) != allow_translation_x
&& self.mprops.flags.contains(LockedAxes::TRANSLATION_LOCKED_Y) != allow_translation_y
&& self.mprops.flags.contains(LockedAxes::TRANSLATION_LOCKED_Z) != allow_translation_z
{
// Nothing to change.
return;
}
if self.is_dynamic() && wake_up {
self.wake_up(true);
}
self.mprops
.flags
.set(LockedAxes::TRANSLATION_LOCKED_X, !allow_translation_x);
self.mprops
.flags
.set(LockedAxes::TRANSLATION_LOCKED_Y, !allow_translation_y);
#[cfg(feature = "dim3")]
self.mprops
.flags
.set(LockedAxes::TRANSLATION_LOCKED_Z, !allow_translation_z);
self.update_world_mass_properties();
}
#[inline]
#[deprecated(note = "Use `set_enabled_translations` instead")]
/// Locks or unlocks rotations of this rigid-body along each cartesian axes.
pub fn restrict_translations(
&mut self,
allow_translation_x: bool,
allow_translation_y: bool,
#[cfg(feature = "dim3")] allow_translation_z: bool,
wake_up: bool,
) {
self.set_enabled_translations(
allow_translation_x,
allow_translation_y,
#[cfg(feature = "dim3")]
allow_translation_z,
wake_up,
)
}
/// Are the translations of this rigid-body locked?
#[cfg(feature = "dim2")]
pub fn is_translation_locked(&self) -> bool {
self.mprops
.flags
.contains(LockedAxes::TRANSLATION_LOCKED_X | LockedAxes::TRANSLATION_LOCKED_Y)
}
/// Are the translations of this rigid-body locked?
#[cfg(feature = "dim3")]
pub fn is_translation_locked(&self) -> bool {
self.mprops.flags.contains(LockedAxes::TRANSLATION_LOCKED)
}
/// Are the rotations of this rigid-body locked?
#[cfg(feature = "dim2")]
pub fn is_rotation_locked(&self) -> bool {
self.mprops.flags.contains(LockedAxes::ROTATION_LOCKED_Z)
}
/// Returns `true` for each rotational degrees of freedom locked on this rigid-body.
#[cfg(feature = "dim3")]
pub fn is_rotation_locked(&self) -> [bool; 3] {
[
self.mprops.flags.contains(LockedAxes::ROTATION_LOCKED_X),
self.mprops.flags.contains(LockedAxes::ROTATION_LOCKED_Y),
self.mprops.flags.contains(LockedAxes::ROTATION_LOCKED_Z),
]
}
/// Enables of disable CCD (Continuous Collision-Detection) for this rigid-body.
///
/// CCD prevents tunneling, but may still allow limited interpenetration of colliders.
pub fn enable_ccd(&mut self, enabled: bool) {
self.ccd.ccd_enabled = enabled;
}
/// Is CCD (continuous collision-detection) enabled for this rigid-body?
pub fn is_ccd_enabled(&self) -> bool {
self.ccd.ccd_enabled
}
/// Sets the maximum prediction distance Soft Continuous Collision-Detection.
///
/// When set to 0, soft-CCD is disabled. Soft-CCD helps prevent tunneling especially of
/// slow-but-thin to moderately fast objects. The soft CCD prediction distance indicates how
/// far in the object’s path the CCD algorithm is allowed to inspect. Large values can impact
/// performance badly by increasing the work needed from the broad-phase.
///
/// It is a generally cheaper variant of regular CCD (that can be enabled with
/// [`RigidBody::enable_ccd`] since it relies on predictive constraints instead of
/// shape-cast and substeps.
pub fn set_soft_ccd_prediction(&mut self, prediction_distance: Real) {
self.ccd.soft_ccd_prediction = prediction_distance;
}
/// The soft-CCD prediction distance for this rigid-body.
///
/// See the documentation of [`RigidBody::set_soft_ccd_prediction`] for additional details on
/// soft-CCD.
pub fn soft_ccd_prediction(&self) -> Real {
self.ccd.soft_ccd_prediction
}
// This is different from `is_ccd_enabled`. This checks that CCD
// is active for this rigid-body, i.e., if it was seen to move fast
// enough to justify a CCD run.
/// Is CCD active for this rigid-body?
///
/// The CCD is considered active if the rigid-body is moving at
/// a velocity greater than an automatically-computed threshold.
///
/// This is not the same as `self.is_ccd_enabled` which only
/// checks if CCD is enabled to run for this rigid-body or if
/// it is completely disabled (independently from its velocity).
pub fn is_ccd_active(&self) -> bool {
self.ccd.ccd_active
}
/// Recompute the mass-properties of this rigid-bodies based on its currently attached colliders.
pub fn recompute_mass_properties_from_colliders(&mut self, colliders: &ColliderSet) {
self.mprops.recompute_mass_properties_from_colliders(
colliders,
&self.colliders,
&self.pos.position,
);
}
/// Sets the rigid-body's additional mass.
///
/// The total angular inertia of the rigid-body will be scaled automatically based on this
/// additional mass. If this scaling effect isn’t desired, use [`Self::set_additional_mass_properties`]
/// instead of this method.
///
/// This is only the "additional" mass because the total mass of the rigid-body is
/// equal to the sum of this additional mass and the mass computed from the colliders
/// (with non-zero densities) attached to this rigid-body.
///
/// That total mass (which includes the attached colliders’ contributions)
/// will be updated at the name physics step, or can be updated manually with
/// [`Self::recompute_mass_properties_from_colliders`].
///
/// This will override any previous mass-properties set by [`Self::set_additional_mass`],
/// [`Self::set_additional_mass_properties`], [`RigidBodyBuilder::additional_mass`], or
/// [`RigidBodyBuilder::additional_mass_properties`] for this rigid-body.
///
/// If `wake_up` is `true` then the rigid-body will be woken up if it was
/// put to sleep because it did not move for a while.
#[inline]
pub fn set_additional_mass(&mut self, additional_mass: Real, wake_up: bool) {
self.do_set_additional_mass_properties(
RigidBodyAdditionalMassProps::Mass(additional_mass),
wake_up,
)
}
/// Sets the rigid-body's additional mass-properties.
///
/// This is only the "additional" mass-properties because the total mass-properties of the
/// rigid-body is equal to the sum of this additional mass-properties and the mass computed from
/// the colliders (with non-zero densities) attached to this rigid-body.
///
/// That total mass-properties (which include the attached colliders’ contributions)
/// will be updated at the name physics step, or can be updated manually with
/// [`Self::recompute_mass_properties_from_colliders`].
///
/// This will override any previous mass-properties set by [`Self::set_additional_mass`],
/// [`Self::set_additional_mass_properties`], [`RigidBodyBuilder::additional_mass`], or
/// [`RigidBodyBuilder::additional_mass_properties`] for this rigid-body.
///
/// If `wake_up` is `true` then the rigid-body will be woken up if it was
/// put to sleep because it did not move for a while.
#[inline]
pub fn set_additional_mass_properties(&mut self, props: MassProperties, wake_up: bool) {
self.do_set_additional_mass_properties(
RigidBodyAdditionalMassProps::MassProps(props),
wake_up,
)
}
fn do_set_additional_mass_properties(
&mut self,
props: RigidBodyAdditionalMassProps,
wake_up: bool,
) {
let new_mprops = Some(Box::new(props));
if self.mprops.additional_local_mprops != new_mprops {
self.changes.insert(RigidBodyChanges::LOCAL_MASS_PROPERTIES);
self.mprops.additional_local_mprops = new_mprops;
if self.is_dynamic() && wake_up {
self.wake_up(true);
}
}
}
/// The handles of colliders attached to this rigid body.
pub fn colliders(&self) -> &[ColliderHandle] {
&self.colliders.0[..]
}
/// Is this rigid body dynamic?
///
/// A dynamic body can move freely and is affected by forces.
pub fn is_dynamic(&self) -> bool {
self.body_type == RigidBodyType::Dynamic
}
/// Is this rigid body kinematic?
///
/// A kinematic body can move freely but is not affected by forces.
pub fn is_kinematic(&self) -> bool {
self.body_type.is_kinematic()
}
/// Is this rigid body fixed?
///
/// A fixed body cannot move and is not affected by forces.
pub fn is_fixed(&self) -> bool {
self.body_type == RigidBodyType::Fixed
}
/// The mass of this rigid body.
///
/// Returns zero if this rigid body has an infinite mass.
pub fn mass(&self) -> Real {
self.mprops.local_mprops.mass()
}
/// The predicted position of this rigid-body.
///
/// If this rigid-body is kinematic this value is set by the `set_next_kinematic_position`
/// method and is used for estimating the kinematic body velocity at the next timestep.
/// For non-kinematic bodies, this value is currently unspecified.
pub fn next_position(&self) -> &Isometry<Real> {
&self.pos.next_position
}
/// The scale factor applied to the gravity affecting this rigid-body.
pub fn gravity_scale(&self) -> Real {
self.forces.gravity_scale
}
/// Sets the gravity scale facter for this rigid-body.
pub fn set_gravity_scale(&mut self, scale: Real, wake_up: bool) {
if self.forces.gravity_scale != scale {
if wake_up && self.activation.sleeping {
self.changes.insert(RigidBodyChanges::SLEEP);
self.activation.sleeping = false;
}
self.forces.gravity_scale = scale;
}
}
/// The dominance group of this rigid-body.
pub fn dominance_group(&self) -> i8 {
self.dominance.0
}
/// The dominance group of this rigid-body.
pub fn set_dominance_group(&mut self, dominance: i8) {
if self.dominance.0 != dominance {
self.changes.insert(RigidBodyChanges::DOMINANCE);
self.dominance.0 = dominance
}
}
/// Adds a collider to this rigid-body.
pub(crate) fn add_collider_internal(
&mut self,
co_handle: ColliderHandle,
co_parent: &ColliderParent,
co_pos: &mut ColliderPosition,
co_shape: &ColliderShape,
co_mprops: &ColliderMassProps,
) {
self.colliders.attach_collider(
&mut self.changes,
&mut self.ccd,
&mut self.mprops,
&self.pos,
co_handle,
co_pos,
co_parent,
co_shape,
co_mprops,
)
}
/// Removes a collider from this rigid-body.
pub(crate) fn remove_collider_internal(&mut self, handle: ColliderHandle) {
if let Some(i) = self.colliders.0.iter().position(|e| *e == handle) {
self.changes.set(RigidBodyChanges::COLLIDERS, true);
self.colliders.0.swap_remove(i);
}
}
/// Put this rigid body to sleep.
///
/// A sleeping body no longer moves and is no longer simulated by the physics engine unless
/// it is waken up. It can be woken manually with `self.wake_up` or automatically due to
/// external forces like contacts.
pub fn sleep(&mut self) {
self.activation.sleep();
self.vels = RigidBodyVelocity::zero();
}
/// Wakes up this rigid body if it is sleeping.
///
/// If `strong` is `true` then it is assured that the rigid-body will
/// remain awake during multiple subsequent timesteps.
pub fn wake_up(&mut self, strong: bool) {
if self.activation.sleeping {
self.changes.insert(RigidBodyChanges::SLEEP);
}
self.activation.wake_up(strong);
}
/// Is this rigid body sleeping?
pub fn is_sleeping(&self) -> bool {
// TODO: should we:
// - return false for fixed bodies.
// - return true for non-sleeping dynamic bodies.
// - return true only for kinematic bodies with non-zero velocity?
self.activation.sleeping
}
/// Is the velocity of this body not zero?
pub fn is_moving(&self) -> bool {
!self.vels.linvel.is_zero() || !self.vels.angvel.is_zero()
}
/// The linear and angular velocity of this rigid-body.
pub fn vels(&self) -> &RigidBodyVelocity {
&self.vels
}
/// The linear velocity of this rigid-body.
pub fn linvel(&self) -> &Vector<Real> {
&self.vels.linvel
}
/// The angular velocity of this rigid-body.
#[cfg(feature = "dim2")]
pub fn angvel(&self) -> Real {
self.vels.angvel
}
/// The angular velocity of this rigid-body.
#[cfg(feature = "dim3")]
pub fn angvel(&self) -> &Vector<Real> {
&self.vels.angvel
}
/// Set both the angular and linear velocity of this rigid-body.
///
/// If `wake_up` is `true` then the rigid-body will be woken up if it was
/// put to sleep because it did not move for a while.
pub fn set_vels(&mut self, vels: RigidBodyVelocity, wake_up: bool) {
self.set_linvel(vels.linvel, wake_up);
self.set_angvel(vels.angvel, wake_up);
}
/// The linear velocity of this rigid-body.
///
/// If `wake_up` is `true` then the rigid-body will be woken up if it was
/// put to sleep because it did not move for a while.
pub fn set_linvel(&mut self, linvel: Vector<Real>, wake_up: bool) {
if self.vels.linvel != linvel {
match self.body_type {
RigidBodyType::Dynamic => {
self.vels.linvel = linvel;
if wake_up {
self.wake_up(true)
}
}
RigidBodyType::KinematicVelocityBased => {
self.vels.linvel = linvel;
}
RigidBodyType::Fixed | RigidBodyType::KinematicPositionBased => {}
}
}
}
/// The angular velocity of this rigid-body.
///
/// If `wake_up` is `true` then the rigid-body will be woken up if it was
/// put to sleep because it did not move for a while.
#[cfg(feature = "dim2")]
pub fn set_angvel(&mut self, angvel: Real, wake_up: bool) {
if self.vels.angvel != angvel {
match self.body_type {
RigidBodyType::Dynamic => {
self.vels.angvel = angvel;
if wake_up {
self.wake_up(true)
}
}
RigidBodyType::KinematicVelocityBased => {
self.vels.angvel = angvel;
}
RigidBodyType::Fixed | RigidBodyType::KinematicPositionBased => {}
}
}
}
/// The angular velocity of this rigid-body.
///
/// If `wake_up` is `true` then the rigid-body will be woken up if it was
/// put to sleep because it did not move for a while.
#[cfg(feature = "dim3")]
pub fn set_angvel(&mut self, angvel: Vector<Real>, wake_up: bool) {
if self.vels.angvel != angvel {
match self.body_type {
RigidBodyType::Dynamic => {
self.vels.angvel = angvel;
if wake_up {
self.wake_up(true)
}
}
RigidBodyType::KinematicVelocityBased => {
self.vels.angvel = angvel;
}
RigidBodyType::Fixed | RigidBodyType::KinematicPositionBased => {}
}
}
}
/// The world-space position of this rigid-body.
#[inline]
pub fn position(&self) -> &Isometry<Real> {
&self.pos.position
}
/// The translational part of this rigid-body's position.
#[inline]
pub fn translation(&self) -> &Vector<Real> {
&self.pos.position.translation.vector
}
/// Sets the translational part of this rigid-body's position.
#[inline]
pub fn set_translation(&mut self, translation: Vector<Real>, wake_up: bool) {
if self.pos.position.translation.vector != translation
|| self.pos.next_position.translation.vector != translation
{
self.changes.insert(RigidBodyChanges::POSITION);
self.pos.position.translation.vector = translation;
self.pos.next_position.translation.vector = translation;
// Update the world mass-properties so torque application remains valid.
self.update_world_mass_properties();
// TODO: Do we really need to check that the body isn't dynamic?
if wake_up && self.is_dynamic() {
self.wake_up(true)
}
}
}
/// The rotational part of this rigid-body's position.
#[inline]
pub fn rotation(&self) -> &Rotation<Real> {
&self.pos.position.rotation
}
/// Sets the rotational part of this rigid-body's position.
#[inline]
pub fn set_rotation(&mut self, rotation: Rotation<Real>, wake_up: bool) {
if self.pos.position.rotation != rotation || self.pos.next_position.rotation != rotation {
self.changes.insert(RigidBodyChanges::POSITION);
self.pos.position.rotation = rotation;
self.pos.next_position.rotation = rotation;
// Update the world mass-properties so torque application remains valid.
self.update_world_mass_properties();
// TODO: Do we really need to check that the body isn't dynamic?
if wake_up && self.is_dynamic() {
self.wake_up(true)
}
}
}
/// Sets the position and `next_kinematic_position` of this rigid body.
///
/// This will teleport the rigid-body to the specified position/orientation,
/// completely ignoring any physics rule. If this body is kinematic, this will
/// also set the next kinematic position to the same value, effectively
/// resetting to zero the next interpolated velocity of the kinematic body.
///
/// If `wake_up` is `true` then the rigid-body will be woken up if it was
/// put to sleep because it did not move for a while.
pub fn set_position(&mut self, pos: Isometry<Real>, wake_up: bool) {
if self.pos.position != pos || self.pos.next_position != pos {
self.changes.insert(RigidBodyChanges::POSITION);
self.pos.position = pos;
self.pos.next_position = pos;
// Update the world mass-properties so torque application remains valid.
self.update_world_mass_properties();
// TODO: Do we really need to check that the body isn't dynamic?
if wake_up && self.is_dynamic() {
self.wake_up(true)
}
}
}
/// If this rigid body is kinematic, sets its future orientation after the next timestep integration.
pub fn set_next_kinematic_rotation(&mut self, rotation: Rotation<Real>) {
if self.is_kinematic() {
self.pos.next_position.rotation = rotation;
}
}
/// If this rigid body is kinematic, sets its future translation after the next timestep integration.
pub fn set_next_kinematic_translation(&mut self, translation: Vector<Real>) {
if self.is_kinematic() {
self.pos.next_position.translation = translation.into();
}
}
/// If this rigid body is kinematic, sets its future position (translation and orientation) after
/// the next timestep integration.
pub fn set_next_kinematic_position(&mut self, pos: Isometry<Real>) {
if self.is_kinematic() {
self.pos.next_position = pos;
}
}
/// Predicts the next position of this rigid-body, by integrating its velocity and forces
/// by a time of `dt`.
pub(crate) fn predict_position_using_velocity_and_forces_with_max_dist(
&self,
dt: Real,
max_dist: Real,
) -> Isometry<Real> {
let new_vels = self.forces.integrate(dt, &self.vels, &self.mprops);
// Compute the clamped dt such that the body doesn’t travel more than `max_dist`.
let linvel_norm = new_vels.linvel.norm();
let clamped_linvel = linvel_norm.min(max_dist * crate::utils::inv(dt));
let clamped_dt = dt * clamped_linvel * crate::utils::inv(linvel_norm);
new_vels.integrate(
clamped_dt,
&self.pos.position,
&self.mprops.local_mprops.local_com,
)
}
/// Predicts the next position of this rigid-body, by integrating its velocity and forces
/// by a time of `dt`.
pub fn predict_position_using_velocity_and_forces(&self, dt: Real) -> Isometry<Real> {
self.pos
.integrate_forces_and_velocities(dt, &self.forces, &self.vels, &self.mprops)
}
/// Predicts the next position of this rigid-body, by integrating only its velocity
/// by a time of `dt`.
///
/// The forces that were applied to this rigid-body since the last physics step will
/// be ignored by this function. Use [`Self::predict_position_using_velocity_and_forces`]
/// instead to take forces into account.
pub fn predict_position_using_velocity(&self, dt: Real) -> Isometry<Real> {
self.vels
.integrate(dt, &self.pos.position, &self.mprops.local_mprops.local_com)
}
pub(crate) fn update_world_mass_properties(&mut self) {
self.mprops.update_world_mass_properties(&self.pos.position);
}
}
/// ## Applying forces and torques
impl RigidBody {
/// Resets to zero all the constant (linear) forces manually applied to this rigid-body.
pub fn reset_forces(&mut self, wake_up: bool) {
if !self.forces.user_force.is_zero() {
self.forces.user_force = na::zero();
if wake_up {
self.wake_up(true);
}
}
}
/// Resets to zero all the constant torques manually applied to this rigid-body.
pub fn reset_torques(&mut self, wake_up: bool) {
if !self.forces.user_torque.is_zero() {
self.forces.user_torque = na::zero();
if wake_up {
self.wake_up(true);
}
}
}
/// Adds to this rigid-body a constant force applied at its center-of-mass.ç
///
/// This does nothing on non-dynamic bodies.
pub fn add_force(&mut self, force: Vector<Real>, wake_up: bool) {
if !force.is_zero() && self.body_type == RigidBodyType::Dynamic {
self.forces.user_force += force;
if wake_up {
self.wake_up(true);
}
}
}
/// Adds to this rigid-body a constant torque at its center-of-mass.
///
/// This does nothing on non-dynamic bodies.
#[cfg(feature = "dim2")]
pub fn add_torque(&mut self, torque: Real, wake_up: bool) {
if !torque.is_zero() && self.body_type == RigidBodyType::Dynamic {
self.forces.user_torque += torque;
if wake_up {
self.wake_up(true);
}
}
}
/// Adds to this rigid-body a constant torque at its center-of-mass.
///
/// This does nothing on non-dynamic bodies.
#[cfg(feature = "dim3")]
pub fn add_torque(&mut self, torque: Vector<Real>, wake_up: bool) {
if !torque.is_zero() && self.body_type == RigidBodyType::Dynamic {
self.forces.user_torque += torque;
if wake_up {
self.wake_up(true);
}
}
}
/// Adds to this rigid-body a constant force at the given world-space point of this rigid-body.
///
/// This does nothing on non-dynamic bodies.
pub fn add_force_at_point(&mut self, force: Vector<Real>, point: Point<Real>, wake_up: bool) {
if !force.is_zero() && self.body_type == RigidBodyType::Dynamic {
self.forces.user_force += force;
self.forces.user_torque += (point - self.mprops.world_com).gcross(force);
if wake_up {
self.wake_up(true);
}
}
}
}
/// ## Applying impulses and angular impulses
impl RigidBody {
/// Applies an impulse at the center-of-mass of this rigid-body.
/// The impulse is applied right away, changing the linear velocity.
/// This does nothing on non-dynamic bodies.
#[profiling::function]
pub fn apply_impulse(&mut self, impulse: Vector<Real>, wake_up: bool) {
if !impulse.is_zero() && self.body_type == RigidBodyType::Dynamic {
self.vels.linvel += impulse.component_mul(&self.mprops.effective_inv_mass);
if wake_up {
self.wake_up(true);
}
}
}
/// Applies an angular impulse at the center-of-mass of this rigid-body.
/// The impulse is applied right away, changing the angular velocity.
/// This does nothing on non-dynamic bodies.
#[cfg(feature = "dim2")]
#[profiling::function]
pub fn apply_torque_impulse(&mut self, torque_impulse: Real, wake_up: bool) {
if !torque_impulse.is_zero() && self.body_type == RigidBodyType::Dynamic {
self.vels.angvel += self.mprops.effective_world_inv_inertia_sqrt
* (self.mprops.effective_world_inv_inertia_sqrt * torque_impulse);
if wake_up {
self.wake_up(true);
}
}
}
/// Applies an angular impulse at the center-of-mass of this rigid-body.
/// The impulse is applied right away, changing the angular velocity.
/// This does nothing on non-dynamic bodies.
#[cfg(feature = "dim3")]
#[profiling::function]
pub fn apply_torque_impulse(&mut self, torque_impulse: Vector<Real>, wake_up: bool) {
if !torque_impulse.is_zero() && self.body_type == RigidBodyType::Dynamic {
self.vels.angvel += self.mprops.effective_world_inv_inertia_sqrt
* (self.mprops.effective_world_inv_inertia_sqrt * torque_impulse);
if wake_up {
self.wake_up(true);
}
}
}
/// Applies an impulse at the given world-space point of this rigid-body.
/// The impulse is applied right away, changing the linear and/or angular velocities.
/// This does nothing on non-dynamic bodies.
pub fn apply_impulse_at_point(
&mut self,
impulse: Vector<Real>,
point: Point<Real>,
wake_up: bool,
) {
let torque_impulse = (point - self.mprops.world_com).gcross(impulse);
self.apply_impulse(impulse, wake_up);
self.apply_torque_impulse(torque_impulse, wake_up);
}
/// Retrieves the constant force(s) that the user has added to the body.
///
/// Returns zero if the rigid-body isn’t dynamic.
pub fn user_force(&self) -> Vector<Real> {
if self.body_type == RigidBodyType::Dynamic {
self.forces.user_force
} else {
Vector::zeros()
}
}
/// Retrieves the constant torque(s) that the user has added to the body.
///
/// Returns zero if the rigid-body isn’t dynamic.
pub fn user_torque(&self) -> AngVector<Real> {
if self.body_type == RigidBodyType::Dynamic {
self.forces.user_torque
} else {
AngVector::zero()
}
}
}
impl RigidBody {
/// The velocity of the given world-space point on this rigid-body.
pub fn velocity_at_point(&self, point: &Point<Real>) -> Vector<Real> {
self.vels.velocity_at_point(point, &self.mprops.world_com)
}
/// The kinetic energy of this body.
pub fn kinetic_energy(&self) -> Real {
self.vels.kinetic_energy(&self.mprops)
}
/// The potential energy of this body in a gravity field.
pub fn gravitational_potential_energy(&self, dt: Real, gravity: Vector<Real>) -> Real {
let world_com = self
.mprops
.local_mprops
.world_com(&self.pos.position)
.coords;
// Project position back along velocity vector one half-step (leap-frog)
// to sync up the potential energy with the kinetic energy:
let world_com = world_com - self.vels.linvel * (dt / 2.0);
-self.mass() * self.forces.gravity_scale * gravity.dot(&world_com)
}
}
/// A builder for rigid-bodies.
#[derive(Clone, Debug, PartialEq)]
#[must_use = "Builder functions return the updated builder"]
pub struct RigidBodyBuilder {
/// The initial position of the rigid-body to be built.
pub position: Isometry<Real>,
/// The linear velocity of the rigid-body to be built.
pub linvel: Vector<Real>,
/// The angular velocity of the rigid-body to be built.
pub angvel: AngVector<Real>,
/// The scale factor applied to the gravity affecting the rigid-body to be built, `1.0` by default.
pub gravity_scale: Real,
/// Damping factor for gradually slowing down the translational motion of the rigid-body, `0.0` by default.
pub linear_damping: Real,
/// Damping factor for gradually slowing down the angular motion of the rigid-body, `0.0` by default.
pub angular_damping: Real,
/// The type of rigid-body being constructed.
pub body_type: RigidBodyType,
mprops_flags: LockedAxes,
/// The additional mass-properties of the rigid-body being built. See [`RigidBodyBuilder::additional_mass_properties`] for more information.
additional_mass_properties: RigidBodyAdditionalMassProps,
/// Whether the rigid-body to be created can sleep if it reaches a dynamic equilibrium.
pub can_sleep: bool,
/// Whether the rigid-body is to be created asleep.
pub sleeping: bool,
/// Whether Continuous Collision-Detection is enabled for the rigid-body to be built.
///
/// CCD prevents tunneling, but may still allow limited interpenetration of colliders.
pub ccd_enabled: bool,
/// The maximum prediction distance Soft Continuous Collision-Detection.
///
/// When set to 0, soft CCD is disabled. Soft-CCD helps prevent tunneling especially of
/// slow-but-thin to moderately fast objects. The soft CCD prediction distance indicates how
/// far in the object’s path the CCD algorithm is allowed to inspect. Large values can impact
/// performance badly by increasing the work needed from the broad-phase.
///
/// It is a generally cheaper variant of regular CCD (that can be enabled with
/// [`RigidBodyBuilder::ccd_enabled`] since it relies on predictive constraints instead of
/// shape-cast and substeps.
pub soft_ccd_prediction: Real,
/// The dominance group of the rigid-body to be built.
pub dominance_group: i8,
/// Will the rigid-body being built be enabled?
pub enabled: bool,
/// An arbitrary user-defined 128-bit integer associated to the rigid-bodies built by this builder.
pub user_data: u128,
/// The additional number of solver iterations run for this rigid-body and
/// everything interacting with it.
///
/// See [`RigidBody::set_additional_solver_iterations`] for additional information.
pub additional_solver_iterations: usize,
}
impl Default for RigidBodyBuilder {
fn default() -> Self {
Self::dynamic()
}
}
impl RigidBodyBuilder {
/// Initialize a new builder for a rigid body which is either fixed, dynamic, or kinematic.
pub fn new(body_type: RigidBodyType) -> Self {
Self {
position: Isometry::identity(),
linvel: Vector::zeros(),
angvel: na::zero(),
gravity_scale: 1.0,
linear_damping: 0.0,
angular_damping: 0.0,
body_type,
mprops_flags: LockedAxes::empty(),
additional_mass_properties: RigidBodyAdditionalMassProps::default(),
can_sleep: true,
sleeping: false,
ccd_enabled: false,
soft_ccd_prediction: 0.0,
dominance_group: 0,
enabled: true,
user_data: 0,
additional_solver_iterations: 0,
}
}
/// Initializes the builder of a new fixed rigid body.
#[deprecated(note = "use `RigidBodyBuilder::fixed()` instead")]
pub fn new_static() -> Self {
Self::fixed()
}
/// Initializes the builder of a new velocity-based kinematic rigid body.
#[deprecated(note = "use `RigidBodyBuilder::kinematic_velocity_based()` instead")]
pub fn new_kinematic_velocity_based() -> Self {
Self::kinematic_velocity_based()
}
/// Initializes the builder of a new position-based kinematic rigid body.
#[deprecated(note = "use `RigidBodyBuilder::kinematic_position_based()` instead")]
pub fn new_kinematic_position_based() -> Self {
Self::kinematic_position_based()
}
/// Initializes the builder of a new fixed rigid body.
pub fn fixed() -> Self {
Self::new(RigidBodyType::Fixed)
}
/// Initializes the builder of a new velocity-based kinematic rigid body.
pub fn kinematic_velocity_based() -> Self {
Self::new(RigidBodyType::KinematicVelocityBased)
}
/// Initializes the builder of a new position-based kinematic rigid body.
pub fn kinematic_position_based() -> Self {
Self::new(RigidBodyType::KinematicPositionBased)
}
/// Initializes the builder of a new dynamic rigid body.
pub fn dynamic() -> Self {
Self::new(RigidBodyType::Dynamic)
}
/// Sets the additional number of solver iterations run for this rigid-body and
/// everything interacting with it.
///
/// See [`RigidBody::set_additional_solver_iterations`] for additional information.
pub fn additional_solver_iterations(mut self, additional_iterations: usize) -> Self {
self.additional_solver_iterations = additional_iterations;
self
}
/// Sets the scale applied to the gravity force affecting the rigid-body to be created.
pub fn gravity_scale(mut self, scale_factor: Real) -> Self {
self.gravity_scale = scale_factor;
self
}
/// Sets the dominance group of this rigid-body.
pub fn dominance_group(mut self, group: i8) -> Self {
self.dominance_group = group;
self
}
/// Sets the initial translation of the rigid-body to be created.
pub fn translation(mut self, translation: Vector<Real>) -> Self {
self.position.translation.vector = translation;
self
}
/// Sets the initial orientation of the rigid-body to be created.
pub fn rotation(mut self, angle: AngVector<Real>) -> Self {
self.position.rotation = Rotation::new(angle);
self
}
/// Sets the initial position (translation and orientation) of the rigid-body to be created.
pub fn position(mut self, pos: Isometry<Real>) -> Self {
self.position = pos;
self
}
/// An arbitrary user-defined 128-bit integer associated to the rigid-bodies built by this builder.
pub fn user_data(mut self, data: u128) -> Self {
self.user_data = data;
self
}
/// Sets the additional mass-properties of the rigid-body being built.
///
/// This will be overridden by a call to [`Self::additional_mass`] so it only makes sense to call
/// either [`Self::additional_mass`] or [`Self::additional_mass_properties`].
///
/// Note that "additional" means that the final mass-properties of the rigid-bodies depends
/// on the initial mass-properties of the rigid-body (set by this method)
/// to which is added the contributions of all the colliders with non-zero density
/// attached to this rigid-body.
///
/// Therefore, if you want your provided mass-properties to be the final
/// mass-properties of your rigid-body, don't attach colliders to it, or
/// only attach colliders with densities equal to zero.
pub fn additional_mass_properties(mut self, mprops: MassProperties) -> Self {
self.additional_mass_properties = RigidBodyAdditionalMassProps::MassProps(mprops);
self
}
/// Sets the additional mass of the rigid-body being built.
///
/// This will be overridden by a call to [`Self::additional_mass_properties`] so it only makes
/// sense to call either [`Self::additional_mass`] or [`Self::additional_mass_properties`].
///
/// This is only the "additional" mass because the total mass of the rigid-body is
/// equal to the sum of this additional mass and the mass computed from the colliders
/// (with non-zero densities) attached to this rigid-body.
///
/// The total angular inertia of the rigid-body will be scaled automatically based on this
/// additional mass. If this scaling effect isn’t desired, use [`Self::additional_mass_properties`]
/// instead of this method.
///
/// # Parameters
/// * `mass`- The mass that will be added to the created rigid-body.
pub fn additional_mass(mut self, mass: Real) -> Self {
self.additional_mass_properties = RigidBodyAdditionalMassProps::Mass(mass);
self
}
/// Sets the axes along which this rigid-body cannot translate or rotate.
pub fn locked_axes(mut self, locked_axes: LockedAxes) -> Self {
self.mprops_flags = locked_axes;
self
}
/// Prevents this rigid-body from translating because of forces.
pub fn lock_translations(mut self) -> Self {
self.mprops_flags.set(LockedAxes::TRANSLATION_LOCKED, true);
self
}
/// Only allow translations of this rigid-body around specific coordinate axes.
pub fn enabled_translations(
mut self,
allow_translations_x: bool,
allow_translations_y: bool,
#[cfg(feature = "dim3")] allow_translations_z: bool,
) -> Self {
self.mprops_flags
.set(LockedAxes::TRANSLATION_LOCKED_X, !allow_translations_x);
self.mprops_flags
.set(LockedAxes::TRANSLATION_LOCKED_Y, !allow_translations_y);
#[cfg(feature = "dim3")]
self.mprops_flags
.set(LockedAxes::TRANSLATION_LOCKED_Z, !allow_translations_z);
self
}
#[deprecated(note = "Use `enabled_translations` instead")]
/// Only allow translations of this rigid-body around specific coordinate axes.
pub fn restrict_translations(
self,
allow_translations_x: bool,
allow_translations_y: bool,
#[cfg(feature = "dim3")] allow_translations_z: bool,
) -> Self {
self.enabled_translations(
allow_translations_x,
allow_translations_y,
#[cfg(feature = "dim3")]
allow_translations_z,
)
}
/// Prevents this rigid-body from rotating because of forces.
pub fn lock_rotations(mut self) -> Self {
self.mprops_flags.set(LockedAxes::ROTATION_LOCKED_X, true);
self.mprops_flags.set(LockedAxes::ROTATION_LOCKED_Y, true);
self.mprops_flags.set(LockedAxes::ROTATION_LOCKED_Z, true);
self
}
/// Only allow rotations of this rigid-body around specific coordinate axes.
#[cfg(feature = "dim3")]
pub fn enabled_rotations(
mut self,
allow_rotations_x: bool,
allow_rotations_y: bool,
allow_rotations_z: bool,
) -> Self {
self.mprops_flags
.set(LockedAxes::ROTATION_LOCKED_X, !allow_rotations_x);
self.mprops_flags
.set(LockedAxes::ROTATION_LOCKED_Y, !allow_rotations_y);
self.mprops_flags
.set(LockedAxes::ROTATION_LOCKED_Z, !allow_rotations_z);
self
}
/// Locks or unlocks rotations of this rigid-body along each cartesian axes.
#[deprecated(note = "Use `enabled_rotations` instead")]
#[cfg(feature = "dim3")]
pub fn restrict_rotations(
self,
allow_rotations_x: bool,
allow_rotations_y: bool,
allow_rotations_z: bool,
) -> Self {
self.enabled_rotations(allow_rotations_x, allow_rotations_y, allow_rotations_z)
}
/// Sets the damping factor for the linear part of the rigid-body motion.
///
/// The higher the linear damping factor is, the more quickly the rigid-body
/// will slow-down its translational movement.
pub fn linear_damping(mut self, factor: Real) -> Self {
self.linear_damping = factor;
self
}
/// Sets the damping factor for the angular part of the rigid-body motion.
///
/// The higher the angular damping factor is, the more quickly the rigid-body
/// will slow-down its rotational movement.
pub fn angular_damping(mut self, factor: Real) -> Self {
self.angular_damping = factor;
self
}
/// Sets the initial linear velocity of the rigid-body to be created.
pub fn linvel(mut self, linvel: Vector<Real>) -> Self {
self.linvel = linvel;
self
}
/// Sets the initial angular velocity of the rigid-body to be created.
pub fn angvel(mut self, angvel: AngVector<Real>) -> Self {
self.angvel = angvel;
self
}
/// Sets whether the rigid-body to be created can sleep if it reaches a dynamic equilibrium.
pub fn can_sleep(mut self, can_sleep: bool) -> Self {
self.can_sleep = can_sleep;
self
}
/// Sets whether Continuous Collision-Detection is enabled for this rigid-body.
///
/// CCD prevents tunneling, but may still allow limited interpenetration of colliders.
pub fn ccd_enabled(mut self, enabled: bool) -> Self {
self.ccd_enabled = enabled;
self
}
/// Sets the maximum prediction distance Soft Continuous Collision-Detection.
///
/// When set to 0, soft-CCD is disabled. Soft-CCD helps prevent tunneling especially of
/// slow-but-thin to moderately fast objects. The soft CCD prediction distance indicates how
/// far in the object’s path the CCD algorithm is allowed to inspect. Large values can impact
/// performance badly by increasing the work needed from the broad-phase.
///
/// It is a generally cheaper variant of regular CCD (that can be enabled with
/// [`RigidBodyBuilder::ccd_enabled`] since it relies on predictive constraints instead of
/// shape-cast and substeps.
pub fn soft_ccd_prediction(mut self, prediction_distance: Real) -> Self {
self.soft_ccd_prediction = prediction_distance;
self
}
/// Sets whether the rigid-body is to be created asleep.
pub fn sleeping(mut self, sleeping: bool) -> Self {
self.sleeping = sleeping;
self
}
/// Enable or disable the rigid-body after its creation.
pub fn enabled(mut self, enabled: bool) -> Self {
self.enabled = enabled;
self
}
/// Build a new rigid-body with the parameters configured with this builder.
pub fn build(&self) -> RigidBody {
let mut rb = RigidBody::new();
rb.pos.next_position = self.position;
rb.pos.position = self.position;
rb.vels.linvel = self.linvel;
rb.vels.angvel = self.angvel;
rb.body_type = self.body_type;
rb.user_data = self.user_data;
rb.additional_solver_iterations = self.additional_solver_iterations;
if self.additional_mass_properties
!= RigidBodyAdditionalMassProps::MassProps(MassProperties::zero())
&& self.additional_mass_properties != RigidBodyAdditionalMassProps::Mass(0.0)
{
rb.mprops.additional_local_mprops = Some(Box::new(self.additional_mass_properties));
}
rb.mprops.flags = self.mprops_flags;
rb.damping.linear_damping = self.linear_damping;
rb.damping.angular_damping = self.angular_damping;
rb.forces.gravity_scale = self.gravity_scale;
rb.dominance = RigidBodyDominance(self.dominance_group);
rb.enabled = self.enabled;
rb.enable_ccd(self.ccd_enabled);
rb.set_soft_ccd_prediction(self.soft_ccd_prediction);
if self.can_sleep && self.sleeping {
rb.sleep();
}
if !self.can_sleep {
rb.activation.normalized_linear_threshold = -1.0;
rb.activation.angular_threshold = -1.0;
}
rb
}
}
impl From<RigidBodyBuilder> for RigidBody {
fn from(val: RigidBodyBuilder) -> RigidBody {
val.build()
}
}