rapier2d/dynamics/solver/contact_constraint/
one_body_constraint.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
use super::{OneBodyConstraintElement, OneBodyConstraintNormalPart};
use crate::math::{Point, Real, Vector, DIM, MAX_MANIFOLD_POINTS};
#[cfg(feature = "dim2")]
use crate::utils::SimdBasis;
use crate::utils::{self, SimdAngularInertia, SimdCross, SimdDot, SimdRealCopy};
use na::Matrix2;
use parry::math::Isometry;

use crate::dynamics::integration_parameters::BLOCK_SOLVER_ENABLED;
use crate::dynamics::solver::solver_body::SolverBody;
use crate::dynamics::solver::SolverVel;
use crate::dynamics::{IntegrationParameters, MultibodyJointSet, RigidBodySet, RigidBodyVelocity};
use crate::geometry::{ContactManifold, ContactManifoldIndex};

// TODO: move this struct somewhere else.
#[derive(Copy, Clone, Debug)]
pub struct ContactPointInfos<N: SimdRealCopy> {
    pub tangent_vel: Vector<N>,
    pub local_p1: Point<N>,
    pub local_p2: Point<N>,
    pub dist: N,
    pub normal_rhs_wo_bias: N,
}

impl<N: SimdRealCopy> Default for ContactPointInfos<N> {
    fn default() -> Self {
        Self {
            tangent_vel: Vector::zeros(),
            local_p1: Point::origin(),
            local_p2: Point::origin(),
            dist: N::zero(),
            normal_rhs_wo_bias: N::zero(),
        }
    }
}

#[derive(Copy, Clone, Debug)]
pub(crate) struct OneBodyConstraintBuilder {
    // PERF: only store what’s necessary for the bias updates instead of the complete solver body.
    pub rb1: SolverBody,
    pub vels1: RigidBodyVelocity,
    pub infos: [ContactPointInfos<Real>; MAX_MANIFOLD_POINTS],
}

impl OneBodyConstraintBuilder {
    pub fn invalid() -> Self {
        Self {
            rb1: SolverBody::default(),
            vels1: RigidBodyVelocity::zero(),
            infos: [ContactPointInfos::default(); MAX_MANIFOLD_POINTS],
        }
    }

    pub fn generate(
        manifold_id: ContactManifoldIndex,
        manifold: &ContactManifold,
        bodies: &RigidBodySet,
        out_builders: &mut [OneBodyConstraintBuilder],
        out_constraints: &mut [OneBodyConstraint],
    ) {
        let mut handle1 = manifold.data.rigid_body1;
        let mut handle2 = manifold.data.rigid_body2;
        let flipped = manifold.data.relative_dominance < 0;

        let (force_dir1, flipped_multiplier) = if flipped {
            std::mem::swap(&mut handle1, &mut handle2);
            (manifold.data.normal, -1.0)
        } else {
            (-manifold.data.normal, 1.0)
        };

        let (vels1, world_com1) = if let Some(handle1) = handle1 {
            let rb1 = &bodies[handle1];
            (rb1.vels, rb1.mprops.world_com)
        } else {
            (RigidBodyVelocity::zero(), Point::origin())
        };

        let rb1 = handle1
            .map(|h| SolverBody::from(&bodies[h]))
            .unwrap_or_default();

        let rb2 = &bodies[handle2.unwrap()];
        let vels2 = &rb2.vels;
        let mprops2 = &rb2.mprops;

        #[cfg(feature = "dim2")]
        let tangents1 = force_dir1.orthonormal_basis();
        #[cfg(feature = "dim3")]
        let tangents1 =
            super::compute_tangent_contact_directions(&force_dir1, &vels1.linvel, &vels2.linvel);

        let solver_vel2 = rb2.ids.active_set_offset;

        for (l, manifold_points) in manifold
            .data
            .solver_contacts
            .chunks(MAX_MANIFOLD_POINTS)
            .enumerate()
        {
            let builder = &mut out_builders[l];
            let constraint = &mut out_constraints[l];

            builder.rb1 = rb1;
            builder.vels1 = vels1;

            constraint.dir1 = force_dir1;
            constraint.im2 = mprops2.effective_inv_mass;
            constraint.solver_vel2 = solver_vel2;
            constraint.manifold_id = manifold_id;
            constraint.num_contacts = manifold_points.len() as u8;
            #[cfg(feature = "dim3")]
            {
                constraint.tangent1 = tangents1[0];
            }

            for k in 0..manifold_points.len() {
                let manifold_point = &manifold_points[k];

                let dp2 = manifold_point.point - mprops2.world_com;
                let dp1 = manifold_point.point - world_com1;
                let vel1 = vels1.linvel + vels1.angvel.gcross(dp1);
                let vel2 = vels2.linvel + vels2.angvel.gcross(dp2);

                constraint.limit = manifold_point.friction;
                constraint.manifold_contact_id[k] = manifold_point.contact_id;

                // Normal part.
                let normal_rhs_wo_bias;
                {
                    let gcross2 = mprops2
                        .effective_world_inv_inertia_sqrt
                        .transform_vector(dp2.gcross(-force_dir1));

                    let projected_lin_mass =
                        force_dir1.dot(&mprops2.effective_inv_mass.component_mul(&force_dir1));
                    let projected_ang_mass = gcross2.gdot(gcross2);

                    let projected_mass = utils::inv(projected_lin_mass + projected_ang_mass);

                    let is_bouncy = manifold_point.is_bouncy() as u32 as Real;

                    let proj_vel1 = vel1.dot(&force_dir1);
                    let proj_vel2 = vel2.dot(&force_dir1);
                    let dvel = proj_vel1 - proj_vel2;
                    // NOTE: we add proj_vel1 since it’s not accessible through solver_vel.
                    normal_rhs_wo_bias =
                        proj_vel1 + (is_bouncy * manifold_point.restitution) * dvel;

                    constraint.elements[k].normal_part = OneBodyConstraintNormalPart {
                        gcross2,
                        rhs: na::zero(),
                        rhs_wo_bias: na::zero(),
                        impulse: manifold_point.warmstart_impulse,
                        impulse_accumulator: na::zero(),
                        r: projected_mass,
                        r_mat_elts: [0.0; 2],
                    };
                }

                // Tangent parts.
                {
                    constraint.elements[k].tangent_part.impulse =
                        manifold_point.warmstart_tangent_impulse;

                    for j in 0..DIM - 1 {
                        let gcross2 = mprops2
                            .effective_world_inv_inertia_sqrt
                            .transform_vector(dp2.gcross(-tangents1[j]));
                        let r = tangents1[j]
                            .dot(&mprops2.effective_inv_mass.component_mul(&tangents1[j]))
                            + gcross2.gdot(gcross2);
                        let rhs_wo_bias = (vel1
                            + flipped_multiplier * manifold_point.tangent_velocity)
                            .dot(&tangents1[j]);

                        constraint.elements[k].tangent_part.gcross2[j] = gcross2;
                        constraint.elements[k].tangent_part.rhs_wo_bias[j] = rhs_wo_bias;
                        constraint.elements[k].tangent_part.rhs[j] = rhs_wo_bias;
                        constraint.elements[k].tangent_part.r[j] = if cfg!(feature = "dim2") {
                            utils::inv(r)
                        } else {
                            r
                        };
                    }

                    #[cfg(feature = "dim3")]
                    {
                        constraint.elements[k].tangent_part.r[2] = 2.0
                            * constraint.elements[k].tangent_part.gcross2[0]
                                .gdot(constraint.elements[k].tangent_part.gcross2[1]);
                    }
                }

                // Builder.
                {
                    let local_p1 = rb1.position.inverse_transform_point(&manifold_point.point);
                    let local_p2 = rb2
                        .pos
                        .position
                        .inverse_transform_point(&manifold_point.point);
                    let infos = ContactPointInfos {
                        local_p1,
                        local_p2,
                        tangent_vel: flipped_multiplier * manifold_point.tangent_velocity,
                        dist: manifold_point.dist,
                        normal_rhs_wo_bias,
                    };

                    builder.infos[k] = infos;
                }
            }

            if BLOCK_SOLVER_ENABLED {
                // Coupling between consecutive pairs.
                for k in 0..manifold_points.len() / 2 {
                    let k0 = k * 2;
                    let k1 = k * 2 + 1;

                    let mut r_mat = Matrix2::zeros();
                    let r0 = constraint.elements[k0].normal_part.r;
                    let r1 = constraint.elements[k1].normal_part.r;
                    r_mat.m12 = force_dir1
                        .dot(&mprops2.effective_inv_mass.component_mul(&force_dir1))
                        + constraint.elements[k0]
                            .normal_part
                            .gcross2
                            .gdot(constraint.elements[k1].normal_part.gcross2);
                    r_mat.m21 = r_mat.m12;
                    r_mat.m11 = utils::inv(r0);
                    r_mat.m22 = utils::inv(r1);

                    if let Some(inv) = r_mat.try_inverse() {
                        constraint.elements[k0].normal_part.r_mat_elts = [inv.m11, inv.m22];
                        constraint.elements[k1].normal_part.r_mat_elts = [inv.m12, r_mat.m12];
                    } else {
                        // If inversion failed, the contacts are redundant.
                        // Ignore the one with the smallest depth (it is too late to
                        // have the constraint removed from the constraint set, so just
                        // set the mass (r) matrix elements to 0.
                        constraint.elements[k0].normal_part.r_mat_elts =
                            if manifold_points[k0].dist <= manifold_points[k1].dist {
                                [r0, 0.0]
                            } else {
                                [0.0, r1]
                            };
                        constraint.elements[k1].normal_part.r_mat_elts = [0.0; 2];
                    }
                }
            }
        }
    }

    pub fn update(
        &self,
        params: &IntegrationParameters,
        solved_dt: Real,
        bodies: &[SolverBody],
        _multibodies: &MultibodyJointSet,
        constraint: &mut OneBodyConstraint,
    ) {
        let rb2 = &bodies[constraint.solver_vel2];
        self.update_with_positions(params, solved_dt, &rb2.position, constraint)
    }

    // TODO: this code is SOOOO similar to TwoBodyConstraint::update.
    //       In fact the only differences are types and the `rb1` and ignoring its ccd thickness.
    pub fn update_with_positions(
        &self,
        params: &IntegrationParameters,
        solved_dt: Real,
        rb2_pos: &Isometry<Real>,
        constraint: &mut OneBodyConstraint,
    ) {
        let cfm_factor = params.contact_cfm_factor();
        let inv_dt = params.inv_dt();
        let erp_inv_dt = params.contact_erp_inv_dt();

        let all_infos = &self.infos[..constraint.num_contacts as usize];
        let all_elements = &mut constraint.elements[..constraint.num_contacts as usize];
        let rb1 = &self.rb1;
        // Integrate the velocity of the static rigid-body, if it’s kinematic.
        let new_pos1 = self
            .vels1
            .integrate(solved_dt, &rb1.position, &rb1.local_com);

        #[cfg(feature = "dim2")]
        let tangents1 = constraint.dir1.orthonormal_basis();
        #[cfg(feature = "dim3")]
        let tangents1 = [
            constraint.tangent1,
            constraint.dir1.cross(&constraint.tangent1),
        ];

        for (info, element) in all_infos.iter().zip(all_elements.iter_mut()) {
            // NOTE: the tangent velocity is equivalent to an additional movement of the first body’s surface.
            let p1 = new_pos1 * info.local_p1 + info.tangent_vel * solved_dt;
            let p2 = rb2_pos * info.local_p2;
            let dist = info.dist + (p1 - p2).dot(&constraint.dir1);

            // Normal part.
            {
                let rhs_wo_bias = info.normal_rhs_wo_bias + dist.max(0.0) * inv_dt;
                let rhs_bias = (erp_inv_dt * (dist + params.allowed_linear_error()))
                    .clamp(-params.max_corrective_velocity(), 0.0);
                let new_rhs = rhs_wo_bias + rhs_bias;

                element.normal_part.rhs_wo_bias = rhs_wo_bias;
                element.normal_part.rhs = new_rhs;
                element.normal_part.impulse_accumulator += element.normal_part.impulse;
                element.normal_part.impulse *= params.warmstart_coefficient;
            }

            // Tangent part.
            {
                element.tangent_part.impulse_accumulator += element.tangent_part.impulse;
                element.tangent_part.impulse *= params.warmstart_coefficient;

                for j in 0..DIM - 1 {
                    let bias = (p1 - p2).dot(&tangents1[j]) * inv_dt;
                    element.tangent_part.rhs[j] = element.tangent_part.rhs_wo_bias[j] + bias;
                }
            }
        }

        constraint.cfm_factor = cfm_factor;
    }
}

#[derive(Copy, Clone, Debug)]
pub(crate) struct OneBodyConstraint {
    pub solver_vel2: usize,
    pub dir1: Vector<Real>, // Non-penetration force direction for the first body.
    #[cfg(feature = "dim3")]
    pub tangent1: Vector<Real>, // One of the friction force directions.
    pub im2: Vector<Real>,
    pub cfm_factor: Real,
    pub limit: Real,
    pub elements: [OneBodyConstraintElement<Real>; MAX_MANIFOLD_POINTS],

    pub manifold_id: ContactManifoldIndex,
    pub manifold_contact_id: [u8; MAX_MANIFOLD_POINTS],
    pub num_contacts: u8,
}

impl OneBodyConstraint {
    pub fn invalid() -> Self {
        Self {
            solver_vel2: usize::MAX,
            dir1: Vector::zeros(),
            #[cfg(feature = "dim3")]
            tangent1: Vector::zeros(),
            im2: Vector::zeros(),
            cfm_factor: 0.0,
            limit: 0.0,
            elements: [OneBodyConstraintElement::zero(); MAX_MANIFOLD_POINTS],
            manifold_id: ContactManifoldIndex::MAX,
            manifold_contact_id: [u8::MAX; MAX_MANIFOLD_POINTS],
            num_contacts: u8::MAX,
        }
    }

    pub fn warmstart(&mut self, solver_vels: &mut [SolverVel<Real>]) {
        let mut solver_vel2 = solver_vels[self.solver_vel2];

        OneBodyConstraintElement::warmstart_group(
            &mut self.elements[..self.num_contacts as usize],
            &self.dir1,
            #[cfg(feature = "dim3")]
            &self.tangent1,
            &self.im2,
            &mut solver_vel2,
        );

        solver_vels[self.solver_vel2] = solver_vel2;
    }

    pub fn solve(
        &mut self,
        solver_vels: &mut [SolverVel<Real>],
        solve_normal: bool,
        solve_friction: bool,
    ) {
        let mut solver_vel2 = solver_vels[self.solver_vel2];

        OneBodyConstraintElement::solve_group(
            self.cfm_factor,
            &mut self.elements[..self.num_contacts as usize],
            &self.dir1,
            #[cfg(feature = "dim3")]
            &self.tangent1,
            &self.im2,
            self.limit,
            &mut solver_vel2,
            solve_normal,
            solve_friction,
        );

        solver_vels[self.solver_vel2] = solver_vel2;
    }

    // FIXME: duplicated code. This is exactly the same as in the two-body velocity constraint.
    pub fn writeback_impulses(&self, manifolds_all: &mut [&mut ContactManifold]) {
        let manifold = &mut manifolds_all[self.manifold_id];

        for k in 0..self.num_contacts as usize {
            let contact_id = self.manifold_contact_id[k];
            let active_contact = &mut manifold.points[contact_id as usize];

            active_contact.data.warmstart_impulse = self.elements[k].normal_part.impulse;
            active_contact.data.warmstart_tangent_impulse = self.elements[k].tangent_part.impulse;
            active_contact.data.impulse = self.elements[k].normal_part.total_impulse();
            active_contact.data.tangent_impulse = self.elements[k].tangent_part.total_impulse();
        }
    }

    pub fn remove_cfm_and_bias_from_rhs(&mut self) {
        self.cfm_factor = 1.0;
        for elt in &mut self.elements {
            elt.normal_part.rhs = elt.normal_part.rhs_wo_bias;
            elt.tangent_part.rhs = elt.tangent_part.rhs_wo_bias;
        }
    }
}