rapier2d/geometry/collider.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
use crate::dynamics::{CoefficientCombineRule, MassProperties, RigidBodyHandle};
use crate::geometry::{
ActiveCollisionTypes, BroadPhaseProxyIndex, ColliderBroadPhaseData, ColliderChanges,
ColliderFlags, ColliderMassProps, ColliderMaterial, ColliderParent, ColliderPosition,
ColliderShape, ColliderType, InteractionGroups, MeshConverter, MeshConverterError, SharedShape,
};
use crate::math::{AngVector, Isometry, Point, Real, Rotation, Vector, DIM};
use crate::parry::transformation::vhacd::VHACDParameters;
use crate::pipeline::{ActiveEvents, ActiveHooks};
use crate::prelude::ColliderEnabled;
use na::Unit;
use parry::bounding_volume::{Aabb, BoundingVolume};
use parry::shape::{Shape, TriMeshBuilderError, TriMeshFlags};
#[cfg(feature = "dim3")]
use crate::geometry::HeightFieldFlags;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone, Debug)]
/// A geometric entity that can be attached to a body so it can be affected by contacts and proximity queries.
///
/// To build a new collider, use the [`ColliderBuilder`] structure.
pub struct Collider {
pub(crate) coll_type: ColliderType,
pub(crate) shape: ColliderShape,
pub(crate) mprops: ColliderMassProps,
pub(crate) changes: ColliderChanges,
pub(crate) parent: Option<ColliderParent>,
pub(crate) pos: ColliderPosition,
pub(crate) material: ColliderMaterial,
pub(crate) flags: ColliderFlags,
pub(crate) bf_data: ColliderBroadPhaseData,
contact_skin: Real,
contact_force_event_threshold: Real,
/// User-defined data associated to this collider.
pub user_data: u128,
}
impl Collider {
pub(crate) fn reset_internal_references(&mut self) {
self.bf_data.proxy_index = crate::INVALID_U32;
self.changes = ColliderChanges::all();
}
pub(crate) fn effective_contact_force_event_threshold(&self) -> Real {
if self
.flags
.active_events
.contains(ActiveEvents::CONTACT_FORCE_EVENTS)
{
self.contact_force_event_threshold
} else {
Real::MAX
}
}
/// An internal index associated to this collider by the broad-phase algorithm.
pub fn internal_broad_phase_proxy_index(&self) -> BroadPhaseProxyIndex {
self.bf_data.proxy_index
}
/// Sets the internal index associated to this collider by the broad-phase algorithm.
///
/// This must **not** be called, unless you are implementing your own custom broad-phase
/// that require storing an index in the collider struct.
/// Modifying that index outside of a custom broad-phase code will most certainly break
/// the physics engine.
pub fn set_internal_broad_phase_proxy_index(&mut self, id: BroadPhaseProxyIndex) {
self.bf_data.proxy_index = id;
}
/// The rigid body this collider is attached to.
pub fn parent(&self) -> Option<RigidBodyHandle> {
self.parent.map(|parent| parent.handle)
}
/// Is this collider a sensor?
pub fn is_sensor(&self) -> bool {
self.coll_type.is_sensor()
}
/// Copy all the characteristics from `other` to `self`.
///
/// If you have a mutable reference to a collider `collider: &mut Collider`, attempting to
/// assign it a whole new collider instance, e.g., `*collider = ColliderBuilder::ball(0.5).build()`,
/// will crash due to some internal indices being overwritten. Instead, use
/// `collider.copy_from(&ColliderBuilder::ball(0.5).build())`.
///
/// This method will allow you to set most characteristics of this collider from another
/// collider instance without causing any breakage.
///
/// This method **cannot** be used for reparenting a collider. Therefore, the parent of the
/// `other` (if any), as well as its relative position to that parent will not be copied into
/// `self`.
///
/// The pose of `other` will only copied into `self` if `self` doesn’t have a parent (if it has
/// a parent, its position is directly controlled by the parent rigid-body).
pub fn copy_from(&mut self, other: &Collider) {
// NOTE: we deconstruct the collider struct to be sure we don’t forget to
// add some copies here if we add more field to Collider in the future.
let Collider {
coll_type,
shape,
mprops,
changes: _changes, // Will be set to ALL.
parent: _parent, // This function cannot be used to reparent the collider.
pos,
material,
flags,
bf_data: _bf_data, // Internal ids must not be overwritten.
contact_force_event_threshold,
user_data,
contact_skin,
} = other;
if self.parent.is_none() {
self.pos = *pos;
}
self.coll_type = *coll_type;
self.shape = shape.clone();
self.mprops = mprops.clone();
self.material = *material;
self.contact_force_event_threshold = *contact_force_event_threshold;
self.user_data = *user_data;
self.flags = *flags;
self.changes = ColliderChanges::all();
self.contact_skin = *contact_skin;
}
/// The physics hooks enabled for this collider.
pub fn active_hooks(&self) -> ActiveHooks {
self.flags.active_hooks
}
/// Sets the physics hooks enabled for this collider.
pub fn set_active_hooks(&mut self, active_hooks: ActiveHooks) {
self.flags.active_hooks = active_hooks;
}
/// The events enabled for this collider.
pub fn active_events(&self) -> ActiveEvents {
self.flags.active_events
}
/// Sets the events enabled for this collider.
pub fn set_active_events(&mut self, active_events: ActiveEvents) {
self.flags.active_events = active_events;
}
/// The collision types enabled for this collider.
pub fn active_collision_types(&self) -> ActiveCollisionTypes {
self.flags.active_collision_types
}
/// Sets the collision types enabled for this collider.
pub fn set_active_collision_types(&mut self, active_collision_types: ActiveCollisionTypes) {
self.flags.active_collision_types = active_collision_types;
}
/// The contact skin of this collider.
///
/// See the documentation of [`ColliderBuilder::contact_skin`] for details.
pub fn contact_skin(&self) -> Real {
self.contact_skin
}
/// Sets the contact skin of this collider.
///
/// See the documentation of [`ColliderBuilder::contact_skin`] for details.
pub fn set_contact_skin(&mut self, skin_thickness: Real) {
self.contact_skin = skin_thickness;
}
/// The friction coefficient of this collider.
pub fn friction(&self) -> Real {
self.material.friction
}
/// Sets the friction coefficient of this collider.
pub fn set_friction(&mut self, coefficient: Real) {
self.material.friction = coefficient
}
/// The combine rule used by this collider to combine its friction
/// coefficient with the friction coefficient of the other collider it
/// is in contact with.
pub fn friction_combine_rule(&self) -> CoefficientCombineRule {
self.material.friction_combine_rule
}
/// Sets the combine rule used by this collider to combine its friction
/// coefficient with the friction coefficient of the other collider it
/// is in contact with.
pub fn set_friction_combine_rule(&mut self, rule: CoefficientCombineRule) {
self.material.friction_combine_rule = rule;
}
/// The restitution coefficient of this collider.
pub fn restitution(&self) -> Real {
self.material.restitution
}
/// Sets the restitution coefficient of this collider.
pub fn set_restitution(&mut self, coefficient: Real) {
self.material.restitution = coefficient
}
/// The combine rule used by this collider to combine its restitution
/// coefficient with the restitution coefficient of the other collider it
/// is in contact with.
pub fn restitution_combine_rule(&self) -> CoefficientCombineRule {
self.material.restitution_combine_rule
}
/// Sets the combine rule used by this collider to combine its restitution
/// coefficient with the restitution coefficient of the other collider it
/// is in contact with.
pub fn set_restitution_combine_rule(&mut self, rule: CoefficientCombineRule) {
self.material.restitution_combine_rule = rule;
}
/// Sets the total force magnitude beyond which a contact force event can be emitted.
pub fn set_contact_force_event_threshold(&mut self, threshold: Real) {
self.contact_force_event_threshold = threshold;
}
/// Sets whether or not this is a sensor collider.
pub fn set_sensor(&mut self, is_sensor: bool) {
if is_sensor != self.is_sensor() {
self.changes.insert(ColliderChanges::TYPE);
self.coll_type = if is_sensor {
ColliderType::Sensor
} else {
ColliderType::Solid
};
}
}
/// Is this collider enabled?
pub fn is_enabled(&self) -> bool {
matches!(self.flags.enabled, ColliderEnabled::Enabled)
}
/// Sets whether or not this collider is enabled.
pub fn set_enabled(&mut self, enabled: bool) {
match self.flags.enabled {
ColliderEnabled::Enabled | ColliderEnabled::DisabledByParent => {
if !enabled {
self.changes.insert(ColliderChanges::ENABLED_OR_DISABLED);
self.flags.enabled = ColliderEnabled::Disabled;
}
}
ColliderEnabled::Disabled => {
if enabled {
self.changes.insert(ColliderChanges::ENABLED_OR_DISABLED);
self.flags.enabled = ColliderEnabled::Enabled;
}
}
}
}
/// Sets the translational part of this collider's position.
pub fn set_translation(&mut self, translation: Vector<Real>) {
self.changes.insert(ColliderChanges::POSITION);
self.pos.0.translation.vector = translation;
}
/// Sets the rotational part of this collider's position.
pub fn set_rotation(&mut self, rotation: Rotation<Real>) {
self.changes.insert(ColliderChanges::POSITION);
self.pos.0.rotation = rotation;
}
/// Sets the position of this collider.
pub fn set_position(&mut self, position: Isometry<Real>) {
self.changes.insert(ColliderChanges::POSITION);
self.pos.0 = position;
}
/// The world-space position of this collider.
pub fn position(&self) -> &Isometry<Real> {
&self.pos
}
/// The translational part of this collider's position.
pub fn translation(&self) -> &Vector<Real> {
&self.pos.0.translation.vector
}
/// The rotational part of this collider's position.
pub fn rotation(&self) -> &Rotation<Real> {
&self.pos.0.rotation
}
/// The position of this collider with respect to the body it is attached to.
pub fn position_wrt_parent(&self) -> Option<&Isometry<Real>> {
self.parent.as_ref().map(|p| &p.pos_wrt_parent)
}
/// Sets the translational part of this collider's translation relative to its parent rigid-body.
pub fn set_translation_wrt_parent(&mut self, translation: Vector<Real>) {
if let Some(parent) = self.parent.as_mut() {
self.changes.insert(ColliderChanges::PARENT);
parent.pos_wrt_parent.translation.vector = translation;
}
}
/// Sets the rotational part of this collider's rotation relative to its parent rigid-body.
pub fn set_rotation_wrt_parent(&mut self, rotation: AngVector<Real>) {
if let Some(parent) = self.parent.as_mut() {
self.changes.insert(ColliderChanges::PARENT);
parent.pos_wrt_parent.rotation = Rotation::new(rotation);
}
}
/// Sets the position of this collider with respect to its parent rigid-body.
///
/// Does nothing if the collider is not attached to a rigid-body.
pub fn set_position_wrt_parent(&mut self, pos_wrt_parent: Isometry<Real>) {
if let Some(parent) = self.parent.as_mut() {
self.changes.insert(ColliderChanges::PARENT);
parent.pos_wrt_parent = pos_wrt_parent;
}
}
/// The collision groups used by this collider.
pub fn collision_groups(&self) -> InteractionGroups {
self.flags.collision_groups
}
/// Sets the collision groups of this collider.
pub fn set_collision_groups(&mut self, groups: InteractionGroups) {
if self.flags.collision_groups != groups {
self.changes.insert(ColliderChanges::GROUPS);
self.flags.collision_groups = groups;
}
}
/// The solver groups used by this collider.
pub fn solver_groups(&self) -> InteractionGroups {
self.flags.solver_groups
}
/// Sets the solver groups of this collider.
pub fn set_solver_groups(&mut self, groups: InteractionGroups) {
if self.flags.solver_groups != groups {
self.changes.insert(ColliderChanges::GROUPS);
self.flags.solver_groups = groups;
}
}
/// The material (friction and restitution properties) of this collider.
pub fn material(&self) -> &ColliderMaterial {
&self.material
}
/// The volume (or surface in 2D) of this collider.
pub fn volume(&self) -> Real {
self.shape.mass_properties(1.0).mass()
}
/// The density of this collider.
pub fn density(&self) -> Real {
match &self.mprops {
ColliderMassProps::Density(density) => *density,
ColliderMassProps::Mass(mass) => {
let inv_volume = self.shape.mass_properties(1.0).inv_mass;
mass * inv_volume
}
ColliderMassProps::MassProperties(mprops) => {
let inv_volume = self.shape.mass_properties(1.0).inv_mass;
mprops.mass() * inv_volume
}
}
}
/// The mass of this collider.
pub fn mass(&self) -> Real {
match &self.mprops {
ColliderMassProps::Density(density) => self.shape.mass_properties(*density).mass(),
ColliderMassProps::Mass(mass) => *mass,
ColliderMassProps::MassProperties(mprops) => mprops.mass(),
}
}
/// Sets the uniform density of this collider.
///
/// This will override any previous mass-properties set by [`Self::set_density`],
/// [`Self::set_mass`], [`Self::set_mass_properties`], [`ColliderBuilder::density`],
/// [`ColliderBuilder::mass`], or [`ColliderBuilder::mass_properties`]
/// for this collider.
///
/// The mass and angular inertia of this collider will be computed automatically based on its
/// shape.
pub fn set_density(&mut self, density: Real) {
self.do_set_mass_properties(ColliderMassProps::Density(density));
}
/// Sets the mass of this collider.
///
/// This will override any previous mass-properties set by [`Self::set_density`],
/// [`Self::set_mass`], [`Self::set_mass_properties`], [`ColliderBuilder::density`],
/// [`ColliderBuilder::mass`], or [`ColliderBuilder::mass_properties`]
/// for this collider.
///
/// The angular inertia of this collider will be computed automatically based on its shape
/// and this mass value.
pub fn set_mass(&mut self, mass: Real) {
self.do_set_mass_properties(ColliderMassProps::Mass(mass));
}
/// Sets the mass properties of this collider.
///
/// This will override any previous mass-properties set by [`Self::set_density`],
/// [`Self::set_mass`], [`Self::set_mass_properties`], [`ColliderBuilder::density`],
/// [`ColliderBuilder::mass`], or [`ColliderBuilder::mass_properties`]
/// for this collider.
pub fn set_mass_properties(&mut self, mass_properties: MassProperties) {
self.do_set_mass_properties(ColliderMassProps::MassProperties(Box::new(mass_properties)))
}
fn do_set_mass_properties(&mut self, mprops: ColliderMassProps) {
if mprops != self.mprops {
self.changes |= ColliderChanges::LOCAL_MASS_PROPERTIES;
self.mprops = mprops;
}
}
/// The geometric shape of this collider.
pub fn shape(&self) -> &dyn Shape {
self.shape.as_ref()
}
/// A mutable reference to the geometric shape of this collider.
///
/// If that shape is shared by multiple colliders, it will be
/// cloned first so that `self` contains a unique copy of that
/// shape that you can modify.
pub fn shape_mut(&mut self) -> &mut dyn Shape {
self.changes.insert(ColliderChanges::SHAPE);
self.shape.make_mut()
}
/// Sets the shape of this collider.
pub fn set_shape(&mut self, shape: SharedShape) {
self.changes.insert(ColliderChanges::SHAPE);
self.shape = shape;
}
/// Retrieve the SharedShape. Also see the `shape()` function
pub fn shared_shape(&self) -> &SharedShape {
&self.shape
}
/// Compute the axis-aligned bounding box of this collider.
///
/// This AABB doesn’t take into account the collider’s contact skin.
/// [`Collider::contact_skin`].
pub fn compute_aabb(&self) -> Aabb {
self.shape.compute_aabb(&self.pos)
}
/// Compute the axis-aligned bounding box of this collider, taking into account the
/// [`Collider::contact_skin`] and prediction distance.
pub fn compute_collision_aabb(&self, prediction: Real) -> Aabb {
self.shape
.compute_aabb(&self.pos)
.loosened(self.contact_skin + prediction)
}
/// Compute the axis-aligned bounding box of this collider moving from its current position
/// to the given `next_position`
pub fn compute_swept_aabb(&self, next_position: &Isometry<Real>) -> Aabb {
self.shape.compute_swept_aabb(&self.pos, next_position)
}
/// Compute the local-space mass properties of this collider.
pub fn mass_properties(&self) -> MassProperties {
self.mprops.mass_properties(&*self.shape)
}
/// The total force magnitude beyond which a contact force event can be emitted.
pub fn contact_force_event_threshold(&self) -> Real {
self.contact_force_event_threshold
}
}
/// A structure responsible for building a new collider.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[must_use = "Builder functions return the updated builder"]
pub struct ColliderBuilder {
/// The shape of the collider to be built.
pub shape: SharedShape,
/// Controls the way the collider’s mass-properties are computed.
pub mass_properties: ColliderMassProps,
/// The friction coefficient of the collider to be built.
pub friction: Real,
/// The rule used to combine two friction coefficients.
pub friction_combine_rule: CoefficientCombineRule,
/// The restitution coefficient of the collider to be built.
pub restitution: Real,
/// The rule used to combine two restitution coefficients.
pub restitution_combine_rule: CoefficientCombineRule,
/// The position of this collider.
pub position: Isometry<Real>,
/// Is this collider a sensor?
pub is_sensor: bool,
/// Contact pairs enabled for this collider.
pub active_collision_types: ActiveCollisionTypes,
/// Physics hooks enabled for this collider.
pub active_hooks: ActiveHooks,
/// Events enabled for this collider.
pub active_events: ActiveEvents,
/// The user-data of the collider being built.
pub user_data: u128,
/// The collision groups for the collider being built.
pub collision_groups: InteractionGroups,
/// The solver groups for the collider being built.
pub solver_groups: InteractionGroups,
/// Will the collider being built be enabled?
pub enabled: bool,
/// The total force magnitude beyond which a contact force event can be emitted.
pub contact_force_event_threshold: Real,
/// An extra thickness around the collider shape to keep them further apart when colliding.
pub contact_skin: Real,
}
impl Default for ColliderBuilder {
fn default() -> Self {
Self::ball(0.5)
}
}
impl ColliderBuilder {
/// Initialize a new collider builder with the given shape.
pub fn new(shape: SharedShape) -> Self {
Self {
shape,
mass_properties: ColliderMassProps::default(),
friction: Self::default_friction(),
restitution: 0.0,
position: Isometry::identity(),
is_sensor: false,
user_data: 0,
collision_groups: InteractionGroups::all(),
solver_groups: InteractionGroups::all(),
friction_combine_rule: CoefficientCombineRule::Average,
restitution_combine_rule: CoefficientCombineRule::Average,
active_collision_types: ActiveCollisionTypes::default(),
active_hooks: ActiveHooks::empty(),
active_events: ActiveEvents::empty(),
enabled: true,
contact_force_event_threshold: 0.0,
contact_skin: 0.0,
}
}
/// Initialize a new collider builder with a compound shape.
pub fn compound(shapes: Vec<(Isometry<Real>, SharedShape)>) -> Self {
Self::new(SharedShape::compound(shapes))
}
/// Initialize a new collider builder with a ball shape defined by its radius.
pub fn ball(radius: Real) -> Self {
Self::new(SharedShape::ball(radius))
}
/// Initialize a new collider build with a half-space shape defined by the outward normal
/// of its planar boundary.
pub fn halfspace(outward_normal: Unit<Vector<Real>>) -> Self {
Self::new(SharedShape::halfspace(outward_normal))
}
/// Initialize a new collider builder with a cylindrical shape defined by its half-height
/// (along the Y axis) and its radius.
#[cfg(feature = "dim3")]
pub fn cylinder(half_height: Real, radius: Real) -> Self {
Self::new(SharedShape::cylinder(half_height, radius))
}
/// Initialize a new collider builder with a rounded cylindrical shape defined by its half-height
/// (along the Y axis), its radius, and its roundedness (the radius of the sphere used for
/// dilating the cylinder).
#[cfg(feature = "dim3")]
pub fn round_cylinder(half_height: Real, radius: Real, border_radius: Real) -> Self {
Self::new(SharedShape::round_cylinder(
half_height,
radius,
border_radius,
))
}
/// Initialize a new collider builder with a cone shape defined by its half-height
/// (along the Y axis) and its basis radius.
#[cfg(feature = "dim3")]
pub fn cone(half_height: Real, radius: Real) -> Self {
Self::new(SharedShape::cone(half_height, radius))
}
/// Initialize a new collider builder with a rounded cone shape defined by its half-height
/// (along the Y axis), its radius, and its roundedness (the radius of the sphere used for
/// dilating the cylinder).
#[cfg(feature = "dim3")]
pub fn round_cone(half_height: Real, radius: Real, border_radius: Real) -> Self {
Self::new(SharedShape::round_cone(half_height, radius, border_radius))
}
/// Initialize a new collider builder with a cuboid shape defined by its half-extents.
#[cfg(feature = "dim2")]
pub fn cuboid(hx: Real, hy: Real) -> Self {
Self::new(SharedShape::cuboid(hx, hy))
}
/// Initialize a new collider builder with a round cuboid shape defined by its half-extents
/// and border radius.
#[cfg(feature = "dim2")]
pub fn round_cuboid(hx: Real, hy: Real, border_radius: Real) -> Self {
Self::new(SharedShape::round_cuboid(hx, hy, border_radius))
}
/// Initialize a new collider builder with a capsule defined from its endpoints.
///
/// See also [`ColliderBuilder::capsule_x`], [`ColliderBuilder::capsule_y`],
/// (and `ColliderBuilder::capsule_z` in 3D only)
/// for a simpler way to build capsules with common
/// orientations.
pub fn capsule_from_endpoints(a: Point<Real>, b: Point<Real>, radius: Real) -> Self {
Self::new(SharedShape::capsule(a, b, radius))
}
/// Initialize a new collider builder with a capsule shape aligned with the `x` axis.
pub fn capsule_x(half_height: Real, radius: Real) -> Self {
Self::new(SharedShape::capsule_x(half_height, radius))
}
/// Initialize a new collider builder with a capsule shape aligned with the `y` axis.
pub fn capsule_y(half_height: Real, radius: Real) -> Self {
Self::new(SharedShape::capsule_y(half_height, radius))
}
/// Initialize a new collider builder with a capsule shape aligned with the `z` axis.
#[cfg(feature = "dim3")]
pub fn capsule_z(half_height: Real, radius: Real) -> Self {
Self::new(SharedShape::capsule_z(half_height, radius))
}
/// Initialize a new collider builder with a cuboid shape defined by its half-extents.
#[cfg(feature = "dim3")]
pub fn cuboid(hx: Real, hy: Real, hz: Real) -> Self {
Self::new(SharedShape::cuboid(hx, hy, hz))
}
/// Initialize a new collider builder with a round cuboid shape defined by its half-extents
/// and border radius.
#[cfg(feature = "dim3")]
pub fn round_cuboid(hx: Real, hy: Real, hz: Real, border_radius: Real) -> Self {
Self::new(SharedShape::round_cuboid(hx, hy, hz, border_radius))
}
/// Initializes a collider builder with a segment shape.
pub fn segment(a: Point<Real>, b: Point<Real>) -> Self {
Self::new(SharedShape::segment(a, b))
}
/// Initializes a collider builder with a triangle shape.
pub fn triangle(a: Point<Real>, b: Point<Real>, c: Point<Real>) -> Self {
Self::new(SharedShape::triangle(a, b, c))
}
/// Initializes a collider builder with a triangle shape with round corners.
pub fn round_triangle(
a: Point<Real>,
b: Point<Real>,
c: Point<Real>,
border_radius: Real,
) -> Self {
Self::new(SharedShape::round_triangle(a, b, c, border_radius))
}
/// Initializes a collider builder with a polyline shape defined by its vertex and index buffers.
pub fn polyline(vertices: Vec<Point<Real>>, indices: Option<Vec<[u32; 2]>>) -> Self {
Self::new(SharedShape::polyline(vertices, indices))
}
/// Initializes a collider builder with a triangle mesh shape defined by its vertex and index buffers.
pub fn trimesh(
vertices: Vec<Point<Real>>,
indices: Vec<[u32; 3]>,
) -> Result<Self, TriMeshBuilderError> {
Ok(Self::new(SharedShape::trimesh(vertices, indices)?))
}
/// Initializes a collider builder with a triangle mesh shape defined by its vertex and index buffers and
/// flags controlling its pre-processing.
pub fn trimesh_with_flags(
vertices: Vec<Point<Real>>,
indices: Vec<[u32; 3]>,
flags: TriMeshFlags,
) -> Result<Self, TriMeshBuilderError> {
Ok(Self::new(SharedShape::trimesh_with_flags(
vertices, indices, flags,
)?))
}
/// Initializes a collider builder with a shape converted from the given triangle mesh index
/// and vertex buffer.
///
/// All the conversion variants could be achieved with other constructors of [`ColliderBuilder`]
/// but having this specified by an enum can occasionally be easier or more flexible (determined
/// at runtime).
pub fn converted_trimesh(
vertices: Vec<Point<Real>>,
indices: Vec<[u32; 3]>,
converter: MeshConverter,
) -> Result<Self, MeshConverterError> {
let (shape, pose) = converter.convert(vertices, indices)?;
Ok(Self::new(shape).position(pose))
}
/// Initializes a collider builder with a compound shape obtained from the decomposition of
/// the given trimesh (in 3D) or polyline (in 2D) into convex parts.
pub fn convex_decomposition(vertices: &[Point<Real>], indices: &[[u32; DIM]]) -> Self {
Self::new(SharedShape::convex_decomposition(vertices, indices))
}
/// Initializes a collider builder with a compound shape obtained from the decomposition of
/// the given trimesh (in 3D) or polyline (in 2D) into convex parts dilated with round corners.
pub fn round_convex_decomposition(
vertices: &[Point<Real>],
indices: &[[u32; DIM]],
border_radius: Real,
) -> Self {
Self::new(SharedShape::round_convex_decomposition(
vertices,
indices,
border_radius,
))
}
/// Initializes a collider builder with a compound shape obtained from the decomposition of
/// the given trimesh (in 3D) or polyline (in 2D) into convex parts.
pub fn convex_decomposition_with_params(
vertices: &[Point<Real>],
indices: &[[u32; DIM]],
params: &VHACDParameters,
) -> Self {
Self::new(SharedShape::convex_decomposition_with_params(
vertices, indices, params,
))
}
/// Initializes a collider builder with a compound shape obtained from the decomposition of
/// the given trimesh (in 3D) or polyline (in 2D) into convex parts dilated with round corners.
pub fn round_convex_decomposition_with_params(
vertices: &[Point<Real>],
indices: &[[u32; DIM]],
params: &VHACDParameters,
border_radius: Real,
) -> Self {
Self::new(SharedShape::round_convex_decomposition_with_params(
vertices,
indices,
params,
border_radius,
))
}
/// Initializes a new collider builder with a 2D convex polygon or 3D convex polyhedron
/// obtained after computing the convex-hull of the given points.
pub fn convex_hull(points: &[Point<Real>]) -> Option<Self> {
SharedShape::convex_hull(points).map(Self::new)
}
/// Initializes a new collider builder with a round 2D convex polygon or 3D convex polyhedron
/// obtained after computing the convex-hull of the given points. The shape is dilated
/// by a sphere of radius `border_radius`.
pub fn round_convex_hull(points: &[Point<Real>], border_radius: Real) -> Option<Self> {
SharedShape::round_convex_hull(points, border_radius).map(Self::new)
}
/// Creates a new collider builder that is a convex polygon formed by the
/// given polyline assumed to be convex (no convex-hull will be automatically
/// computed).
#[cfg(feature = "dim2")]
pub fn convex_polyline(points: Vec<Point<Real>>) -> Option<Self> {
SharedShape::convex_polyline(points).map(Self::new)
}
/// Creates a new collider builder that is a round convex polygon formed by the
/// given polyline assumed to be convex (no convex-hull will be automatically
/// computed). The polygon shape is dilated by a sphere of radius `border_radius`.
#[cfg(feature = "dim2")]
pub fn round_convex_polyline(points: Vec<Point<Real>>, border_radius: Real) -> Option<Self> {
SharedShape::round_convex_polyline(points, border_radius).map(Self::new)
}
/// Creates a new collider builder that is a convex polyhedron formed by the
/// given triangle-mesh assumed to be convex (no convex-hull will be automatically
/// computed).
#[cfg(feature = "dim3")]
pub fn convex_mesh(points: Vec<Point<Real>>, indices: &[[u32; 3]]) -> Option<Self> {
SharedShape::convex_mesh(points, indices).map(Self::new)
}
/// Creates a new collider builder that is a round convex polyhedron formed by the
/// given triangle-mesh assumed to be convex (no convex-hull will be automatically
/// computed). The triangle mesh shape is dilated by a sphere of radius `border_radius`.
#[cfg(feature = "dim3")]
pub fn round_convex_mesh(
points: Vec<Point<Real>>,
indices: &[[u32; 3]],
border_radius: Real,
) -> Option<Self> {
SharedShape::round_convex_mesh(points, indices, border_radius).map(Self::new)
}
/// Initializes a collider builder with a heightfield shape defined by its set of height and a scale
/// factor along each coordinate axis.
#[cfg(feature = "dim2")]
pub fn heightfield(heights: na::DVector<Real>, scale: Vector<Real>) -> Self {
Self::new(SharedShape::heightfield(heights, scale))
}
/// Initializes a collider builder with a heightfield shape defined by its set of height and a scale
/// factor along each coordinate axis.
#[cfg(feature = "dim3")]
pub fn heightfield(heights: na::DMatrix<Real>, scale: Vector<Real>) -> Self {
Self::new(SharedShape::heightfield(heights, scale))
}
/// Initializes a collider builder with a heightfield shape defined by its set of height and a scale
/// factor along each coordinate axis.
#[cfg(feature = "dim3")]
pub fn heightfield_with_flags(
heights: na::DMatrix<Real>,
scale: Vector<Real>,
flags: HeightFieldFlags,
) -> Self {
Self::new(SharedShape::heightfield_with_flags(heights, scale, flags))
}
/// The default friction coefficient used by the collider builder.
pub fn default_friction() -> Real {
0.5
}
/// The default density used by the collider builder.
pub fn default_density() -> Real {
100.0
}
/// Sets an arbitrary user-defined 128-bit integer associated to the colliders built by this builder.
pub fn user_data(mut self, data: u128) -> Self {
self.user_data = data;
self
}
/// Sets the collision groups used by this collider.
///
/// Two colliders will interact iff. their collision groups are compatible.
/// See [InteractionGroups::test] for details.
pub fn collision_groups(mut self, groups: InteractionGroups) -> Self {
self.collision_groups = groups;
self
}
/// Sets the solver groups used by this collider.
///
/// Forces between two colliders in contact will be computed iff their solver groups are
/// compatible. See [InteractionGroups::test] for details.
pub fn solver_groups(mut self, groups: InteractionGroups) -> Self {
self.solver_groups = groups;
self
}
/// Sets whether or not the collider built by this builder is a sensor.
pub fn sensor(mut self, is_sensor: bool) -> Self {
self.is_sensor = is_sensor;
self
}
/// The set of physics hooks enabled for this collider.
pub fn active_hooks(mut self, active_hooks: ActiveHooks) -> Self {
self.active_hooks = active_hooks;
self
}
/// The set of events enabled for this collider.
pub fn active_events(mut self, active_events: ActiveEvents) -> Self {
self.active_events = active_events;
self
}
/// The set of active collision types for this collider.
pub fn active_collision_types(mut self, active_collision_types: ActiveCollisionTypes) -> Self {
self.active_collision_types = active_collision_types;
self
}
/// Sets the friction coefficient of the collider this builder will build.
pub fn friction(mut self, friction: Real) -> Self {
self.friction = friction;
self
}
/// Sets the rule to be used to combine two friction coefficients in a contact.
pub fn friction_combine_rule(mut self, rule: CoefficientCombineRule) -> Self {
self.friction_combine_rule = rule;
self
}
/// Sets the restitution coefficient of the collider this builder will build.
pub fn restitution(mut self, restitution: Real) -> Self {
self.restitution = restitution;
self
}
/// Sets the rule to be used to combine two restitution coefficients in a contact.
pub fn restitution_combine_rule(mut self, rule: CoefficientCombineRule) -> Self {
self.restitution_combine_rule = rule;
self
}
/// Sets the uniform density of the collider this builder will build.
///
/// This will be overridden by a call to [`Self::mass`] or [`Self::mass_properties`] so it only
/// makes sense to call either [`Self::density`] or [`Self::mass`] or [`Self::mass_properties`].
///
/// The mass and angular inertia of this collider will be computed automatically based on its
/// shape.
pub fn density(mut self, density: Real) -> Self {
self.mass_properties = ColliderMassProps::Density(density);
self
}
/// Sets the mass of the collider this builder will build.
///
/// This will be overridden by a call to [`Self::density`] or [`Self::mass_properties`] so it only
/// makes sense to call either [`Self::density`] or [`Self::mass`] or [`Self::mass_properties`].
///
/// The angular inertia of this collider will be computed automatically based on its shape
/// and this mass value.
pub fn mass(mut self, mass: Real) -> Self {
self.mass_properties = ColliderMassProps::Mass(mass);
self
}
/// Sets the mass properties of the collider this builder will build.
///
/// This will be overridden by a call to [`Self::density`] or [`Self::mass`] so it only
/// makes sense to call either [`Self::density`] or [`Self::mass`] or [`Self::mass_properties`].
pub fn mass_properties(mut self, mass_properties: MassProperties) -> Self {
self.mass_properties = ColliderMassProps::MassProperties(Box::new(mass_properties));
self
}
/// Sets the total force magnitude beyond which a contact force event can be emitted.
pub fn contact_force_event_threshold(mut self, threshold: Real) -> Self {
self.contact_force_event_threshold = threshold;
self
}
/// Sets the initial translation of the collider to be created.
///
/// If the collider will be attached to a rigid-body, this sets the translation relative to the
/// rigid-body it will be attached to.
pub fn translation(mut self, translation: Vector<Real>) -> Self {
self.position.translation.vector = translation;
self
}
/// Sets the initial orientation of the collider to be created.
///
/// If the collider will be attached to a rigid-body, this sets the orientation relative to the
/// rigid-body it will be attached to.
pub fn rotation(mut self, angle: AngVector<Real>) -> Self {
self.position.rotation = Rotation::new(angle);
self
}
/// Sets the initial position (translation and orientation) of the collider to be created.
///
/// If the collider will be attached to a rigid-body, this sets the position relative
/// to the rigid-body it will be attached to.
pub fn position(mut self, pos: Isometry<Real>) -> Self {
self.position = pos;
self
}
/// Sets the initial position (translation and orientation) of the collider to be created,
/// relative to the rigid-body it is attached to.
#[deprecated(note = "Use `.position` instead.")]
pub fn position_wrt_parent(mut self, pos: Isometry<Real>) -> Self {
self.position = pos;
self
}
/// Set the position of this collider in the local-space of the rigid-body it is attached to.
#[deprecated(note = "Use `.position` instead.")]
pub fn delta(mut self, delta: Isometry<Real>) -> Self {
self.position = delta;
self
}
/// Sets the contact skin of the collider.
///
/// The contact skin acts as if the collider was enlarged with a skin of width `skin_thickness`
/// around it, keeping objects further apart when colliding.
///
/// A non-zero contact skin can increase performance, and in some cases, stability. However
/// it creates a small gap between colliding object (equal to the sum of their skin). If the
/// skin is sufficiently small, this might not be visually significant or can be hidden by the
/// rendering assets.
pub fn contact_skin(mut self, skin_thickness: Real) -> Self {
self.contact_skin = skin_thickness;
self
}
/// Enable or disable the collider after its creation.
pub fn enabled(mut self, enabled: bool) -> Self {
self.enabled = enabled;
self
}
/// Builds a new collider attached to the given rigid-body.
pub fn build(&self) -> Collider {
let shape = self.shape.clone();
let material = ColliderMaterial {
friction: self.friction,
restitution: self.restitution,
friction_combine_rule: self.friction_combine_rule,
restitution_combine_rule: self.restitution_combine_rule,
};
let flags = ColliderFlags {
collision_groups: self.collision_groups,
solver_groups: self.solver_groups,
active_collision_types: self.active_collision_types,
active_hooks: self.active_hooks,
active_events: self.active_events,
enabled: if self.enabled {
ColliderEnabled::Enabled
} else {
ColliderEnabled::Disabled
},
};
let changes = ColliderChanges::all();
let pos = ColliderPosition(self.position);
let bf_data = ColliderBroadPhaseData::default();
let coll_type = if self.is_sensor {
ColliderType::Sensor
} else {
ColliderType::Solid
};
Collider {
shape,
mprops: self.mass_properties.clone(),
material,
parent: None,
changes,
pos,
bf_data,
flags,
coll_type,
contact_force_event_threshold: self.contact_force_event_threshold,
contact_skin: self.contact_skin,
user_data: self.user_data,
}
}
}
impl From<ColliderBuilder> for Collider {
fn from(val: ColliderBuilder) -> Collider {
val.build()
}
}