rapier2d/pipeline/query_pipeline/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
pub mod generators;
use crate::dynamics::RigidBodyHandle;
use crate::geometry::{
Aabb, Collider, ColliderHandle, InteractionGroups, PointProjection, Qbvh, Ray, RayIntersection,
};
use crate::math::{Isometry, Point, Real, Vector};
use crate::{dynamics::RigidBodySet, geometry::ColliderSet};
use parry::partitioning::{QbvhDataGenerator, QbvhUpdateWorkspace};
use parry::query::details::{
NonlinearTOICompositeShapeShapeBestFirstVisitor, NormalConstraints,
PointCompositeShapeProjBestFirstVisitor, PointCompositeShapeProjWithFeatureBestFirstVisitor,
RayCompositeShapeToiAndNormalBestFirstVisitor, RayCompositeShapeToiBestFirstVisitor,
ShapeCastOptions, TOICompositeShapeShapeBestFirstVisitor,
};
use parry::query::visitors::{
BoundingVolumeIntersectionsVisitor, PointIntersectionsVisitor, RayIntersectionsVisitor,
};
use parry::query::{DefaultQueryDispatcher, NonlinearRigidMotion, QueryDispatcher, ShapeCastHit};
use parry::shape::{FeatureId, Shape, TypedSimdCompositeShape};
use std::sync::Arc;
/// A pipeline for performing queries on all the colliders of a scene.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone)]
pub struct QueryPipeline {
#[cfg_attr(
feature = "serde-serialize",
serde(skip, default = "crate::geometry::default_query_dispatcher")
)]
query_dispatcher: Arc<dyn QueryDispatcher>,
qbvh: Qbvh<ColliderHandle>,
dilation_factor: Real,
#[cfg_attr(feature = "serde-serialize", serde(skip))]
workspace: QbvhUpdateWorkspace,
}
struct QueryPipelineAsCompositeShape<'a> {
query_pipeline: &'a QueryPipeline,
bodies: &'a RigidBodySet,
colliders: &'a ColliderSet,
filter: QueryFilter<'a>,
}
bitflags::bitflags! {
#[derive(Copy, Clone, PartialEq, Eq, Debug, Default)]
/// Flags for excluding whole sets of colliders from a scene query.
pub struct QueryFilterFlags: u32 {
/// Exclude from the query any collider attached to a fixed rigid-body and colliders with no rigid-body attached.
const EXCLUDE_FIXED = 1 << 0;
/// Exclude from the query any collider attached to a kinematic rigid-body.
const EXCLUDE_KINEMATIC = 1 << 1;
/// Exclude from the query any collider attached to a dynamic rigid-body.
const EXCLUDE_DYNAMIC = 1 << 2;
/// Exclude from the query any collider that is a sensor.
const EXCLUDE_SENSORS = 1 << 3;
/// Exclude from the query any collider that is not a sensor.
const EXCLUDE_SOLIDS = 1 << 4;
/// Excludes all colliders not attached to a dynamic rigid-body.
const ONLY_DYNAMIC = Self::EXCLUDE_FIXED.bits() | Self::EXCLUDE_KINEMATIC.bits();
/// Excludes all colliders not attached to a kinematic rigid-body.
const ONLY_KINEMATIC = Self::EXCLUDE_DYNAMIC.bits() | Self::EXCLUDE_FIXED.bits();
/// Exclude all colliders attached to a non-fixed rigid-body
/// (this will not exclude colliders not attached to any rigid-body).
const ONLY_FIXED = Self::EXCLUDE_DYNAMIC.bits() | Self::EXCLUDE_KINEMATIC.bits();
}
}
impl QueryFilterFlags {
/// Tests if the given collider should be taken into account by a scene query, based
/// on the flags on `self`.
#[inline]
pub fn test(&self, bodies: &RigidBodySet, collider: &Collider) -> bool {
if self.is_empty() {
// No filter.
return true;
}
if (self.contains(QueryFilterFlags::EXCLUDE_SENSORS) && collider.is_sensor())
|| (self.contains(QueryFilterFlags::EXCLUDE_SOLIDS) && !collider.is_sensor())
{
return false;
}
if self.contains(QueryFilterFlags::EXCLUDE_FIXED) && collider.parent.is_none() {
return false;
}
if let Some(parent) = collider.parent.and_then(|p| bodies.get(p.handle)) {
let parent_type = parent.body_type();
if (self.contains(QueryFilterFlags::EXCLUDE_FIXED) && parent_type.is_fixed())
|| (self.contains(QueryFilterFlags::EXCLUDE_KINEMATIC)
&& parent_type.is_kinematic())
|| (self.contains(QueryFilterFlags::EXCLUDE_DYNAMIC) && parent_type.is_dynamic())
{
return false;
}
}
true
}
}
/// A filter that describes what collider should be included or excluded from a scene query.
#[derive(Copy, Clone, Default)]
pub struct QueryFilter<'a> {
/// Flags indicating what particular type of colliders should be excluded from the scene query.
pub flags: QueryFilterFlags,
/// If set, only colliders with collision groups compatible with this one will
/// be included in the scene query.
pub groups: Option<InteractionGroups>,
/// If set, this collider will be excluded from the scene query.
pub exclude_collider: Option<ColliderHandle>,
/// If set, any collider attached to this rigid-body will be excluded from the scene query.
pub exclude_rigid_body: Option<RigidBodyHandle>,
/// If set, any collider for which this closure returns false will be excluded from the scene query.
#[allow(clippy::type_complexity)] // Type doesn’t look really complex?
pub predicate: Option<&'a dyn Fn(ColliderHandle, &Collider) -> bool>,
}
impl QueryFilter<'_> {
/// Applies the filters described by `self` to a collider to determine if it has to be
/// included in a scene query (`true`) or not (`false`).
#[inline]
pub fn test(&self, bodies: &RigidBodySet, handle: ColliderHandle, collider: &Collider) -> bool {
self.exclude_collider != Some(handle)
&& (self.exclude_rigid_body.is_none() // NOTE: deal with the `None` case separately otherwise the next test is incorrect if the collider’s parent is `None` too.
|| self.exclude_rigid_body != collider.parent.map(|p| p.handle))
&& self
.groups
.map(|grps| collider.flags.collision_groups.test(grps))
.unwrap_or(true)
&& self.flags.test(bodies, collider)
&& self.predicate.map(|f| f(handle, collider)).unwrap_or(true)
}
}
impl From<QueryFilterFlags> for QueryFilter<'_> {
fn from(flags: QueryFilterFlags) -> Self {
Self {
flags,
..QueryFilter::default()
}
}
}
impl From<InteractionGroups> for QueryFilter<'_> {
fn from(groups: InteractionGroups) -> Self {
Self {
groups: Some(groups),
..QueryFilter::default()
}
}
}
impl<'a> QueryFilter<'a> {
/// A query filter that doesn’t exclude any collider.
pub fn new() -> Self {
Self::default()
}
/// Exclude from the query any collider attached to a fixed rigid-body and colliders with no rigid-body attached.
pub fn exclude_fixed() -> Self {
QueryFilterFlags::EXCLUDE_FIXED.into()
}
/// Exclude from the query any collider attached to a kinematic rigid-body.
pub fn exclude_kinematic() -> Self {
QueryFilterFlags::EXCLUDE_KINEMATIC.into()
}
/// Exclude from the query any collider attached to a dynamic rigid-body.
pub fn exclude_dynamic() -> Self {
QueryFilterFlags::EXCLUDE_DYNAMIC.into()
}
/// Excludes all colliders not attached to a dynamic rigid-body.
pub fn only_dynamic() -> Self {
QueryFilterFlags::ONLY_DYNAMIC.into()
}
/// Excludes all colliders not attached to a kinematic rigid-body.
pub fn only_kinematic() -> Self {
QueryFilterFlags::ONLY_KINEMATIC.into()
}
/// Exclude all colliders attached to a non-fixed rigid-body
/// (this will not exclude colliders not attached to any rigid-body).
pub fn only_fixed() -> Self {
QueryFilterFlags::ONLY_FIXED.into()
}
/// Exclude from the query any collider that is a sensor.
pub fn exclude_sensors(mut self) -> Self {
self.flags |= QueryFilterFlags::EXCLUDE_SENSORS;
self
}
/// Exclude from the query any collider that is not a sensor.
pub fn exclude_solids(mut self) -> Self {
self.flags |= QueryFilterFlags::EXCLUDE_SOLIDS;
self
}
/// Only colliders with collision groups compatible with this one will
/// be included in the scene query.
pub fn groups(mut self, groups: InteractionGroups) -> Self {
self.groups = Some(groups);
self
}
/// Set the collider that will be excluded from the scene query.
pub fn exclude_collider(mut self, collider: ColliderHandle) -> Self {
self.exclude_collider = Some(collider);
self
}
/// Set the rigid-body that will be excluded from the scene query.
pub fn exclude_rigid_body(mut self, rigid_body: RigidBodyHandle) -> Self {
self.exclude_rigid_body = Some(rigid_body);
self
}
/// Set the predicate to apply a custom collider filtering during the scene query.
pub fn predicate(mut self, predicate: &'a impl Fn(ColliderHandle, &Collider) -> bool) -> Self {
self.predicate = Some(predicate);
self
}
}
impl TypedSimdCompositeShape for QueryPipelineAsCompositeShape<'_> {
type PartShape = dyn Shape;
type PartNormalConstraints = dyn NormalConstraints;
type PartId = ColliderHandle;
fn map_typed_part_at(
&self,
shape_id: Self::PartId,
mut f: impl FnMut(
Option<&Isometry<Real>>,
&Self::PartShape,
Option<&Self::PartNormalConstraints>,
),
) {
if let Some(co) = self.colliders.get(shape_id) {
if self.filter.test(self.bodies, shape_id, co) {
f(Some(&co.pos), &*co.shape, None)
}
}
}
fn map_untyped_part_at(
&self,
shape_id: Self::PartId,
f: impl FnMut(Option<&Isometry<Real>>, &Self::PartShape, Option<&dyn NormalConstraints>),
) {
self.map_typed_part_at(shape_id, f);
}
fn typed_qbvh(&self) -> &Qbvh<ColliderHandle> {
&self.query_pipeline.qbvh
}
}
impl Default for QueryPipeline {
fn default() -> Self {
Self::new()
}
}
impl QueryPipeline {
/// Initializes an empty query pipeline.
pub fn new() -> Self {
Self::with_query_dispatcher(DefaultQueryDispatcher)
}
fn as_composite_shape<'a>(
&'a self,
bodies: &'a RigidBodySet,
colliders: &'a ColliderSet,
filter: QueryFilter<'a>,
) -> QueryPipelineAsCompositeShape<'a> {
QueryPipelineAsCompositeShape {
query_pipeline: self,
bodies,
colliders,
filter,
}
}
/// Initializes an empty query pipeline with a custom `QueryDispatcher`.
///
/// Use this constructor in order to use a custom `QueryDispatcher` that is
/// aware of your own user-defined shapes.
pub fn with_query_dispatcher<D>(d: D) -> Self
where
D: 'static + QueryDispatcher,
{
Self {
query_dispatcher: Arc::new(d),
qbvh: Qbvh::new(),
dilation_factor: 0.01,
workspace: QbvhUpdateWorkspace::default(),
}
}
/// The query dispatcher used by this query pipeline for running scene queries.
pub fn query_dispatcher(&self) -> &dyn QueryDispatcher {
&*self.query_dispatcher
}
/// Update the query pipeline incrementally, avoiding a complete rebuild of its
/// internal data-structure.
#[profiling::function]
pub fn update_incremental(
&mut self,
colliders: &ColliderSet,
modified_colliders: &[ColliderHandle],
removed_colliders: &[ColliderHandle],
refit_and_rebalance: bool,
) {
// We remove first. This is needed to avoid the ABA problem: if a collider was removed
// and another added right after with the same handle index, we can remove first, and
// then update the new one (but only if its actually exists, to address the case where
// a collider was added/modified and then removed during the same frame).
for removed in removed_colliders {
self.qbvh.remove(*removed);
}
for modified in modified_colliders {
// Check that the collider still exists as it may have been removed.
if colliders.contains(*modified) {
self.qbvh.pre_update_or_insert(*modified);
}
}
if refit_and_rebalance {
let _ = self.qbvh.refit(0.0, &mut self.workspace, |handle| {
colliders[*handle].compute_aabb()
});
self.qbvh.rebalance(0.0, &mut self.workspace);
}
}
/// Update the acceleration structure on the query pipeline.
///
/// Uses [`generators::CurrentAabb`] to update.
pub fn update(&mut self, colliders: &ColliderSet) {
self.update_with_generator(generators::CurrentAabb { colliders })
}
/// Update the acceleration structure on the query pipeline using a custom collider bounding
/// volume generator.
///
/// See [`generators`] for available generators.
#[profiling::function]
pub fn update_with_generator(&mut self, mode: impl QbvhDataGenerator<ColliderHandle>) {
self.qbvh.clear_and_rebuild(mode, self.dilation_factor);
}
/// Find the closest intersection between a ray and a set of colliders.
///
/// # Parameters
/// * `colliders` - The set of colliders taking part in this pipeline.
/// * `ray`: the ray to cast.
/// * `max_toi`: the maximum time-of-impact that can be reported by this cast. This effectively
/// limits the length of the ray to `ray.dir.norm() * max_toi`. Use `Real::MAX` for an unbounded ray.
/// * `solid`: if this is `true` an impact at time 0.0 (i.e. at the ray origin) is returned if
/// it starts inside of a shape. If this `false` then the ray will hit the shape's boundary
/// even if its starts inside of it.
/// * `filter`: set of rules used to determine which collider is taken into account by this scene query.
#[profiling::function]
pub fn cast_ray(
&self,
bodies: &RigidBodySet,
colliders: &ColliderSet,
ray: &Ray,
max_toi: Real,
solid: bool,
filter: QueryFilter,
) -> Option<(ColliderHandle, Real)> {
let pipeline_shape = self.as_composite_shape(bodies, colliders, filter);
let mut visitor =
RayCompositeShapeToiBestFirstVisitor::new(&pipeline_shape, ray, max_toi, solid);
self.qbvh.traverse_best_first(&mut visitor).map(|h| h.1)
}
/// Find the closest intersection between a ray and a set of colliders.
///
/// # Parameters
/// * `colliders` - The set of colliders taking part in this pipeline.
/// * `ray`: the ray to cast.
/// * `max_toi`: the maximum time-of-impact that can be reported by this cast. This effectively
/// limits the length of the ray to `ray.dir.norm() * max_toi`. Use `Real::MAX` for an unbounded ray.
/// * `solid`: if this is `true` an impact at time 0.0 (i.e. at the ray origin) is returned if
/// it starts inside of a shape. If this `false` then the ray will hit the shape's boundary
/// even if its starts inside of it.
/// * `filter`: set of rules used to determine which collider is taken into account by this scene query.
#[profiling::function]
pub fn cast_ray_and_get_normal(
&self,
bodies: &RigidBodySet,
colliders: &ColliderSet,
ray: &Ray,
max_toi: Real,
solid: bool,
filter: QueryFilter,
) -> Option<(ColliderHandle, RayIntersection)> {
let pipeline_shape = self.as_composite_shape(bodies, colliders, filter);
let mut visitor = RayCompositeShapeToiAndNormalBestFirstVisitor::new(
&pipeline_shape,
ray,
max_toi,
solid,
);
self.qbvh.traverse_best_first(&mut visitor).map(|h| h.1)
}
/// Find the all intersections between a ray and a set of colliders and passes them to a callback.
///
/// # Parameters
/// * `colliders` - The set of colliders taking part in this pipeline.
/// * `ray`: the ray to cast.
/// * `max_toi`: the maximum time-of-impact that can be reported by this cast. This effectively
/// limits the length of the ray to `ray.dir.norm() * max_toi`. Use `Real::MAX` for an unbounded ray.
/// * `solid`: if this is `true` an impact at time 0.0 (i.e. at the ray origin) is returned if
/// it starts inside of a shape. If this `false` then the ray will hit the shape's boundary
/// even if its starts inside of it.
/// * `filter`: set of rules used to determine which collider is taken into account by this scene query.
/// * `callback`: function executed on each collider for which a ray intersection has been found.
/// There is no guarantees on the order the results will be yielded. If this callback returns `false`,
/// this method will exit early, ignore any further raycast.
#[profiling::function]
pub fn intersections_with_ray<'a>(
&self,
bodies: &'a RigidBodySet,
colliders: &'a ColliderSet,
ray: &Ray,
max_toi: Real,
solid: bool,
filter: QueryFilter,
mut callback: impl FnMut(ColliderHandle, RayIntersection) -> bool,
) {
let mut leaf_callback = &mut |handle: &ColliderHandle| {
if let Some(co) = colliders.get(*handle) {
if filter.test(bodies, *handle, co) {
if let Some(hit) = co
.shape
.cast_ray_and_get_normal(&co.pos, ray, max_toi, solid)
{
return callback(*handle, hit);
}
}
}
true
};
let mut visitor = RayIntersectionsVisitor::new(ray, max_toi, &mut leaf_callback);
self.qbvh.traverse_depth_first(&mut visitor);
}
/// Gets the handle of up to one collider intersecting the given shape.
///
/// # Parameters
/// * `colliders` - The set of colliders taking part in this pipeline.
/// * `shape_pos` - The position of the shape used for the intersection test.
/// * `shape` - The shape used for the intersection test.
/// * `filter`: set of rules used to determine which collider is taken into account by this scene query.
#[profiling::function]
pub fn intersection_with_shape(
&self,
bodies: &RigidBodySet,
colliders: &ColliderSet,
shape_pos: &Isometry<Real>,
shape: &dyn Shape,
filter: QueryFilter,
) -> Option<ColliderHandle> {
let pipeline_shape = self.as_composite_shape(bodies, colliders, filter);
// TODO: replace this with IntersectionCompositeShapeShapeVisitor when it
// can return the shape part id.
let mut visitor = parry::query::details::IntersectionCompositeShapeShapeVisitor::new(
&*self.query_dispatcher,
shape_pos,
&pipeline_shape,
shape,
);
self.qbvh.traverse_depth_first(&mut visitor);
visitor.found_intersection
}
/// Find the projection of a point on the closest collider.
///
/// # Parameters
/// * `colliders` - The set of colliders taking part in this pipeline.
/// * `point` - The point to project.
/// * `solid` - If this is set to `true` then the collider shapes are considered to
/// be plain (if the point is located inside of a plain shape, its projection is the point
/// itself). If it is set to `false` the collider shapes are considered to be hollow
/// (if the point is located inside of an hollow shape, it is projected on the shape's
/// boundary).
/// * `filter`: set of rules used to determine which collider is taken into account by this scene query.
#[profiling::function]
pub fn project_point(
&self,
bodies: &RigidBodySet,
colliders: &ColliderSet,
point: &Point<Real>,
solid: bool,
filter: QueryFilter,
) -> Option<(ColliderHandle, PointProjection)> {
let pipeline_shape = self.as_composite_shape(bodies, colliders, filter);
let mut visitor =
PointCompositeShapeProjBestFirstVisitor::new(&pipeline_shape, point, solid);
self.qbvh
.traverse_best_first(&mut visitor)
.map(|h| (h.1 .1, h.1 .0))
}
/// Find all the colliders containing the given point.
///
/// # Parameters
/// * `colliders` - The set of colliders taking part in this pipeline.
/// * `point` - The point used for the containment test.
/// * `filter`: set of rules used to determine which collider is taken into account by this scene query.
/// * `callback` - A function called with each collider with a shape
/// containing the `point`.
#[profiling::function]
pub fn intersections_with_point(
&self,
bodies: &RigidBodySet,
colliders: &ColliderSet,
point: &Point<Real>,
filter: QueryFilter,
mut callback: impl FnMut(ColliderHandle) -> bool,
) {
let mut leaf_callback = &mut |handle: &ColliderHandle| {
if let Some(co) = colliders.get(*handle) {
if filter.test(bodies, *handle, co) && co.shape.contains_point(&co.pos, point) {
return callback(*handle);
}
}
true
};
let mut visitor = PointIntersectionsVisitor::new(point, &mut leaf_callback);
self.qbvh.traverse_depth_first(&mut visitor);
}
/// Find the projection of a point on the closest collider.
///
/// The results include the ID of the feature hit by the point.
///
/// # Parameters
/// * `colliders` - The set of colliders taking part in this pipeline.
/// * `point` - The point to project.
/// * `solid` - If this is set to `true` then the collider shapes are considered to
/// be plain (if the point is located inside of a plain shape, its projection is the point
/// itself). If it is set to `false` the collider shapes are considered to be hollow
/// (if the point is located inside of an hollow shape, it is projected on the shape's
/// boundary).
/// * `filter`: set of rules used to determine which collider is taken into account by this scene query.
#[profiling::function]
pub fn project_point_and_get_feature(
&self,
bodies: &RigidBodySet,
colliders: &ColliderSet,
point: &Point<Real>,
filter: QueryFilter,
) -> Option<(ColliderHandle, PointProjection, FeatureId)> {
let pipeline_shape = self.as_composite_shape(bodies, colliders, filter);
let mut visitor =
PointCompositeShapeProjWithFeatureBestFirstVisitor::new(&pipeline_shape, point, false);
self.qbvh
.traverse_best_first(&mut visitor)
.map(|h| (h.1 .1 .0, h.1 .0, h.1 .1 .1))
}
/// Finds all handles of all the colliders with an [`Aabb`] intersecting the given [`Aabb`].
#[profiling::function]
pub fn colliders_with_aabb_intersecting_aabb(
&self,
aabb: &Aabb,
mut callback: impl FnMut(&ColliderHandle) -> bool,
) {
let mut visitor = BoundingVolumeIntersectionsVisitor::new(aabb, &mut callback);
self.qbvh.traverse_depth_first(&mut visitor);
}
/// Casts a shape at a constant linear velocity and retrieve the first collider it hits.
///
/// This is similar to ray-casting except that we are casting a whole shape instead of just a
/// point (the ray origin). In the resulting `TOI`, witness and normal 1 refer to the world
/// collider, and are in world space.
///
/// # Parameters
/// * `colliders` - The set of colliders taking part in this pipeline.
/// * `shape_pos` - The initial position of the shape to cast.
/// * `shape_vel` - The constant velocity of the shape to cast (i.e. the cast direction).
/// * `shape` - The shape to cast.
/// * `max_toi` - The maximum time-of-impact that can be reported by this cast. This effectively
/// limits the distance traveled by the shape to `shape_vel.norm() * maxToi`.
/// * `stop_at_penetration` - If set to `false`, the linear shape-cast won’t immediately stop if
/// the shape is penetrating another shape at its starting point **and** its trajectory is such
/// that it’s on a path to exit that penetration state.
/// * `filter`: set of rules used to determine which collider is taken into account by this scene query.
#[profiling::function]
pub fn cast_shape(
&self,
bodies: &RigidBodySet,
colliders: &ColliderSet,
shape_pos: &Isometry<Real>,
shape_vel: &Vector<Real>,
shape: &dyn Shape,
options: ShapeCastOptions,
filter: QueryFilter,
) -> Option<(ColliderHandle, ShapeCastHit)> {
let pipeline_shape = self.as_composite_shape(bodies, colliders, filter);
let mut visitor = TOICompositeShapeShapeBestFirstVisitor::new(
&*self.query_dispatcher,
shape_pos,
shape_vel,
&pipeline_shape,
shape,
options,
);
self.qbvh.traverse_best_first(&mut visitor).map(|h| h.1)
}
/// Casts a shape with an arbitrary continuous motion and retrieve the first collider it hits.
///
/// In the resulting `TOI`, witness and normal 1 refer to the world collider, and are in world
/// space.
///
/// # Parameters
/// * `colliders` - The set of colliders taking part in this pipeline.
/// * `shape_motion` - The motion of the shape.
/// * `shape` - The shape to cast.
/// * `start_time` - The starting time of the interval where the motion takes place.
/// * `end_time` - The end time of the interval where the motion takes place.
/// * `stop_at_penetration` - If the casted shape starts in a penetration state with any
/// collider, two results are possible. If `stop_at_penetration` is `true` then, the
/// result will have a `toi` equal to `start_time`. If `stop_at_penetration` is `false`
/// then the nonlinear shape-casting will see if further motion with respect to the penetration normal
/// would result in tunnelling. If it does not (i.e. we have a separating velocity along
/// that normal) then the nonlinear shape-casting will attempt to find another impact,
/// at a time `> start_time` that could result in tunnelling.
/// * `filter`: set of rules used to determine which collider is taken into account by this scene query.
#[profiling::function]
pub fn nonlinear_cast_shape(
&self,
bodies: &RigidBodySet,
colliders: &ColliderSet,
shape_motion: &NonlinearRigidMotion,
shape: &dyn Shape,
start_time: Real,
end_time: Real,
stop_at_penetration: bool,
filter: QueryFilter,
) -> Option<(ColliderHandle, ShapeCastHit)> {
let pipeline_shape = self.as_composite_shape(bodies, colliders, filter);
let pipeline_motion = NonlinearRigidMotion::identity();
let mut visitor = NonlinearTOICompositeShapeShapeBestFirstVisitor::new(
&*self.query_dispatcher,
&pipeline_motion,
&pipeline_shape,
shape_motion,
shape,
start_time,
end_time,
stop_at_penetration,
);
self.qbvh.traverse_best_first(&mut visitor).map(|h| h.1)
}
/// Retrieve all the colliders intersecting the given shape.
///
/// # Parameters
/// * `colliders` - The set of colliders taking part in this pipeline.
/// * `shapePos` - The position of the shape to test.
/// * `shapeRot` - The orientation of the shape to test.
/// * `shape` - The shape to test.
/// * `filter`: set of rules used to determine which collider is taken into account by this scene query.
/// * `callback` - A function called with the handles of each collider intersecting the `shape`.
#[profiling::function]
pub fn intersections_with_shape(
&self,
bodies: &RigidBodySet,
colliders: &ColliderSet,
shape_pos: &Isometry<Real>,
shape: &dyn Shape,
filter: QueryFilter,
mut callback: impl FnMut(ColliderHandle) -> bool,
) {
let dispatcher = &*self.query_dispatcher;
let inv_shape_pos = shape_pos.inverse();
let mut leaf_callback = &mut |handle: &ColliderHandle| {
if let Some(co) = colliders.get(*handle) {
if filter.test(bodies, *handle, co) {
let pos12 = inv_shape_pos * co.pos.as_ref();
if dispatcher.intersection_test(&pos12, shape, &*co.shape) == Ok(true) {
return callback(*handle);
}
}
}
true
};
let shape_aabb = shape.compute_aabb(shape_pos);
let mut visitor = BoundingVolumeIntersectionsVisitor::new(&shape_aabb, &mut leaf_callback);
self.qbvh.traverse_depth_first(&mut visitor);
}
}