rapier3d/control/pid_controller.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
use crate::dynamics::{AxesMask, RigidBody, RigidBodyPosition, RigidBodyVelocity};
use crate::math::{Isometry, Point, Real, Rotation, Vector};
use parry::math::AngVector;
/// A Proportional-Derivative (PD) controller.
///
/// This is useful for controlling a rigid-body at the velocity level so it matches a target
/// pose.
///
/// This is a [PID controller](https://en.wikipedia.org/wiki/Proportional%E2%80%93integral%E2%80%93derivative_controller)
/// without the Integral part to keep the API immutable, while having a behaviour generally
/// sufficient for games.
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct PdController {
/// The Proportional gain applied to the instantaneous linear position errors.
///
/// This is usually set to a multiple of the inverse of simulation step time
/// (e.g. `60` if the delta-time is `1.0 / 60.0`).
pub lin_kp: Vector<Real>,
/// The Derivative gain applied to the instantaneous linear velocity errors.
///
/// This is usually set to a value in `[0.0, 1.0]` where `0.0` implies no damping
/// (no correction of velocity errors) and `1.0` implies complete damping (velocity errors
/// are corrected in a single simulation step).
pub lin_kd: Vector<Real>,
/// The Proportional gain applied to the instantaneous angular position errors.
///
/// This is usually set to a multiple of the inverse of simulation step time
/// (e.g. `60` if the delta-time is `1.0 / 60.0`).
pub ang_kp: AngVector<Real>,
/// The Derivative gain applied to the instantaneous angular velocity errors.
///
/// This is usually set to a value in `[0.0, 1.0]` where `0.0` implies no damping
/// (no correction of velocity errors) and `1.0` implies complete damping (velocity errors
/// are corrected in a single simulation step).
pub ang_kd: AngVector<Real>,
/// The axes affected by this controller.
///
/// Only coordinate axes with a bit flags set to `true` will be taken into
/// account when calculating the errors and corrections.
pub axes: AxesMask,
}
impl Default for PdController {
fn default() -> Self {
Self::new(60.0, 0.8, AxesMask::all())
}
}
/// A Proportional-Integral-Derivative (PID) controller.
///
/// For video games, the Proportional-Derivative [`PdController`] is generally sufficient and
/// offers an immutable API.
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct PidController {
/// The Proportional-Derivative (PD) part of this PID controller.
pub pd: PdController,
/// The translational error accumulated through time for the Integral part of the PID controller.
pub lin_integral: Vector<Real>,
/// The angular error accumulated through time for the Integral part of the PID controller.
pub ang_integral: AngVector<Real>,
/// The linear gain applied to the Integral part of the PID controller.
pub lin_ki: Vector<Real>,
/// The angular gain applied to the Integral part of the PID controller.
pub ang_ki: AngVector<Real>,
}
impl Default for PidController {
fn default() -> Self {
Self::new(60.0, 1.0, 0.8, AxesMask::all())
}
}
/// Position or velocity errors measured for PID control.
pub struct PdErrors {
/// The linear (translational) part of the error.
pub linear: Vector<Real>,
/// The angular (rotational) part of the error.
pub angular: AngVector<Real>,
}
impl From<RigidBodyVelocity> for PdErrors {
fn from(vels: RigidBodyVelocity) -> Self {
Self {
linear: vels.linvel,
angular: vels.angvel,
}
}
}
impl PdController {
/// Initialized the PD controller with uniform gain.
///
/// The same gain are applied on all axes. To configure per-axes gains, construct
/// the [`PdController`] by setting its fields explicitly instead.
///
/// Only the axes specified in `axes` will be enabled (but the gain values are set
/// on all axes regardless).
pub fn new(kp: Real, kd: Real, axes: AxesMask) -> PdController {
#[cfg(feature = "dim2")]
return Self {
lin_kp: Vector::repeat(kp),
lin_kd: Vector::repeat(kd),
ang_kp: kp,
ang_kd: kd,
axes,
};
#[cfg(feature = "dim3")]
return Self {
lin_kp: Vector::repeat(kp),
lin_kd: Vector::repeat(kd),
ang_kp: AngVector::repeat(kp),
ang_kd: AngVector::repeat(kd),
axes,
};
}
/// Calculates the linear correction from positional and velocity errors calculated automatically
/// from a rigid-body and the desired positions/velocities.
///
/// The unit of the returned value depends on the gain values. In general, `kd` is proportional to
/// the inverse of the simulation step so the returned value is a linear rigid-body velocity
/// change.
pub fn linear_rigid_body_correction(
&self,
rb: &RigidBody,
target_pos: Point<Real>,
target_linvel: Vector<Real>,
) -> Vector<Real> {
self.rigid_body_correction(
rb,
Isometry::from(target_pos),
RigidBodyVelocity {
linvel: target_linvel,
#[allow(clippy::clone_on_copy)]
angvel: rb.angvel().clone(),
},
)
.linvel
}
/// Calculates the angular correction from positional and velocity errors calculated automatically
/// from a rigid-body and the desired positions/velocities.
///
/// The unit of the returned value depends on the gain values. In general, `kd` is proportional to
/// the inverse of the simulation step so the returned value is an angular rigid-body velocity
/// change.
pub fn angular_rigid_body_correction(
&self,
rb: &RigidBody,
target_rot: Rotation<Real>,
target_angvel: AngVector<Real>,
) -> AngVector<Real> {
self.rigid_body_correction(
rb,
Isometry::from_parts(na::one(), target_rot),
RigidBodyVelocity {
linvel: *rb.linvel(),
angvel: target_angvel,
},
)
.angvel
}
/// Calculates the linear and angular correction from positional and velocity errors calculated
/// automatically from a rigid-body and the desired poses/velocities.
///
/// The unit of the returned value depends on the gain values. In general, `kd` is proportional to
/// the inverse of the simulation step so the returned value is a rigid-body velocity
/// change.
pub fn rigid_body_correction(
&self,
rb: &RigidBody,
target_pose: Isometry<Real>,
target_vels: RigidBodyVelocity,
) -> RigidBodyVelocity {
let pose_errors = RigidBodyPosition {
position: rb.pos.position,
next_position: target_pose,
}
.pose_errors(rb.local_center_of_mass());
let vels_errors = target_vels - rb.vels;
self.correction(&pose_errors, &vels_errors.into())
}
/// Mask where each component is 1.0 or 0.0 depending on whether
/// the corresponding linear axis is enabled.
fn lin_mask(&self) -> Vector<Real> {
#[cfg(feature = "dim2")]
return Vector::new(
self.axes.contains(AxesMask::LIN_X) as u32 as Real,
self.axes.contains(AxesMask::LIN_Y) as u32 as Real,
);
#[cfg(feature = "dim3")]
return Vector::new(
self.axes.contains(AxesMask::LIN_X) as u32 as Real,
self.axes.contains(AxesMask::LIN_Y) as u32 as Real,
self.axes.contains(AxesMask::LIN_Z) as u32 as Real,
);
}
/// Mask where each component is 1.0 or 0.0 depending on whether
/// the corresponding angular axis is enabled.
fn ang_mask(&self) -> AngVector<Real> {
#[cfg(feature = "dim2")]
return self.axes.contains(AxesMask::ANG_Z) as u32 as Real;
#[cfg(feature = "dim3")]
return Vector::new(
self.axes.contains(AxesMask::ANG_X) as u32 as Real,
self.axes.contains(AxesMask::ANG_Y) as u32 as Real,
self.axes.contains(AxesMask::ANG_Z) as u32 as Real,
);
}
/// Calculates the linear and angular correction from the given positional and velocity errors.
///
/// The unit of the returned value depends on the gain values. In general, `kd` is proportional to
/// the inverse of the simulation step so the returned value is a rigid-body velocity
/// change.
pub fn correction(&self, pose_errors: &PdErrors, vel_errors: &PdErrors) -> RigidBodyVelocity {
let lin_mask = self.lin_mask();
let ang_mask = self.ang_mask();
RigidBodyVelocity {
linvel: (pose_errors.linear.component_mul(&self.lin_kp)
+ vel_errors.linear.component_mul(&self.lin_kd))
.component_mul(&lin_mask),
#[cfg(feature = "dim2")]
angvel: (pose_errors.angular * self.ang_kp + vel_errors.angular * self.ang_kd)
* ang_mask,
#[cfg(feature = "dim3")]
angvel: (pose_errors.angular.component_mul(&self.ang_kp)
+ vel_errors.angular.component_mul(&self.ang_kd))
.component_mul(&ang_mask),
}
}
}
impl PidController {
/// Initialized the PDI controller with uniform gain.
///
/// The same gain are applied on all axes. To configure per-axes gains, construct
/// the [`PidController`] by setting its fields explicitly instead.
///
/// Only the axes specified in `axes` will be enabled (but the gain values are set
/// on all axes regardless).
pub fn new(kp: Real, ki: Real, kd: Real, axes: AxesMask) -> PidController {
#[cfg(feature = "dim2")]
return Self {
pd: PdController::new(kp, kd, axes),
lin_integral: na::zero(),
ang_integral: na::zero(),
lin_ki: Vector::repeat(ki),
ang_ki: ki,
};
#[cfg(feature = "dim3")]
return Self {
pd: PdController::new(kp, kd, axes),
lin_integral: na::zero(),
ang_integral: na::zero(),
lin_ki: Vector::repeat(ki),
ang_ki: AngVector::repeat(ki),
};
}
/// Set the axes errors and corrections are computed for.
///
/// This doesn’t modify any of the gains.
pub fn set_axes(&mut self, axes: AxesMask) {
self.pd.axes = axes;
}
/// Get the axes errors and corrections are computed for.
pub fn axes(&self) -> AxesMask {
self.pd.axes
}
/// Resets to zero the accumulated linear and angular errors used by
/// the Integral part of the controller.
pub fn reset_integrals(&mut self) {
self.lin_integral = na::zero();
self.ang_integral = na::zero();
}
/// Calculates the linear correction from positional and velocity errors calculated automatically
/// from a rigid-body and the desired positions/velocities.
///
/// The unit of the returned value depends on the gain values. In general, `kd` is proportional to
/// the inverse of the simulation step so the returned value is a linear rigid-body velocity
/// change.
///
/// This method is mutable because of the need to update the accumulated positional
/// errors for the Integral part of this controller. Prefer the [`PdController`] instead if
/// an immutable API is needed.
pub fn linear_rigid_body_correction(
&mut self,
dt: Real,
rb: &RigidBody,
target_pos: Point<Real>,
target_linvel: Vector<Real>,
) -> Vector<Real> {
self.rigid_body_correction(
dt,
rb,
Isometry::from(target_pos),
RigidBodyVelocity {
linvel: target_linvel,
#[allow(clippy::clone_on_copy)]
angvel: rb.angvel().clone(),
},
)
.linvel
}
/// Calculates the angular correction from positional and velocity errors calculated automatically
/// from a rigid-body and the desired positions/velocities.
///
/// The unit of the returned value depends on the gain values. In general, `kd` is proportional to
/// the inverse of the simulation step so the returned value is an angular rigid-body velocity
/// change.
///
/// This method is mutable because of the need to update the accumulated positional
/// errors for the Integral part of this controller. Prefer the [`PdController`] instead if
/// an immutable API is needed.
pub fn angular_rigid_body_correction(
&mut self,
dt: Real,
rb: &RigidBody,
target_rot: Rotation<Real>,
target_angvel: AngVector<Real>,
) -> AngVector<Real> {
self.rigid_body_correction(
dt,
rb,
Isometry::from_parts(na::one(), target_rot),
RigidBodyVelocity {
linvel: *rb.linvel(),
#[allow(clippy::clone_on_copy)]
angvel: target_angvel.clone(),
},
)
.angvel
}
/// Calculates the linear and angular correction from positional and velocity errors calculated
/// automatically from a rigid-body and the desired poses/velocities.
///
/// The unit of the returned value depends on the gain values. In general, `kd` is proportional to
/// the inverse of the simulation step so the returned value is a rigid-body velocity
/// change.
///
/// This method is mutable because of the need to update the accumulated positional
/// errors for the Integral part of this controller. Prefer the [`PdController`] instead if
/// an immutable API is needed.
pub fn rigid_body_correction(
&mut self,
dt: Real,
rb: &RigidBody,
target_pose: Isometry<Real>,
target_vels: RigidBodyVelocity,
) -> RigidBodyVelocity {
let pose_errors = RigidBodyPosition {
position: rb.pos.position,
next_position: target_pose,
}
.pose_errors(rb.local_center_of_mass());
let vels_errors = target_vels - rb.vels;
self.correction(dt, &pose_errors, &vels_errors.into())
}
/// Calculates the linear and angular correction from the given positional and velocity errors.
///
/// The unit of the returned value depends on the gain values. In general, `kd` is proportional to
/// the inverse of the simulation step so the returned value is a rigid-body velocity
/// change.
///
/// This method is mutable because of the need to update the accumulated positional
/// errors for the Integral part of this controller. Prefer the [`PdController`] instead if
/// an immutable API is needed.
pub fn correction(
&mut self,
dt: Real,
pose_errors: &PdErrors,
vel_errors: &PdErrors,
) -> RigidBodyVelocity {
self.lin_integral += pose_errors.linear * dt;
self.ang_integral += pose_errors.angular * dt;
let lin_mask = self.pd.lin_mask();
let ang_mask = self.pd.ang_mask();
RigidBodyVelocity {
linvel: (pose_errors.linear.component_mul(&self.pd.lin_kp)
+ vel_errors.linear.component_mul(&self.pd.lin_kd)
+ self.lin_integral.component_mul(&self.lin_ki))
.component_mul(&lin_mask),
#[cfg(feature = "dim2")]
angvel: (pose_errors.angular * self.pd.ang_kp
+ vel_errors.angular * self.pd.ang_kd
+ self.ang_integral * self.ang_ki)
* ang_mask,
#[cfg(feature = "dim3")]
angvel: (pose_errors.angular.component_mul(&self.pd.ang_kp)
+ vel_errors.angular.component_mul(&self.pd.ang_kd)
+ self.ang_integral.component_mul(&self.ang_ki))
.component_mul(&ang_mask),
}
}
}