rapier3d/control/
ray_cast_vehicle_controller.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
//! A vehicle controller based on ray-casting, ported and modified from Bullet’s `btRaycastVehicle`.

use crate::dynamics::{RigidBody, RigidBodyHandle, RigidBodySet};
use crate::geometry::{ColliderHandle, ColliderSet, Ray};
use crate::math::{Point, Real, Rotation, Vector};
use crate::pipeline::{QueryFilter, QueryPipeline};
use crate::utils::{SimdCross, SimdDot};

/// A character controller to simulate vehicles using ray-casting for the wheels.
pub struct DynamicRayCastVehicleController {
    wheels: Vec<Wheel>,
    forward_ws: Vec<Vector<Real>>,
    axle: Vec<Vector<Real>>,
    /// The current forward speed of the vehicle.
    pub current_vehicle_speed: Real,

    /// Handle of the vehicle’s chassis.
    pub chassis: RigidBodyHandle,
    /// The chassis’ local _up_ direction (`0 = x, 1 = y, 2 = z`)
    pub index_up_axis: usize,
    /// The chassis’ local _forward_ direction (`0 = x, 1 = y, 2 = z`)
    pub index_forward_axis: usize,
}

#[derive(Copy, Clone, Debug, PartialEq)]
/// Parameters affecting the physical behavior of a wheel.
pub struct WheelTuning {
    /// The suspension stiffness.
    ///
    /// Increase this value if the suspension appears to not push the vehicle strong enough.
    pub suspension_stiffness: Real,
    /// The suspension’s damping when it is being compressed.
    pub suspension_compression: Real,
    /// The suspension’s damping when it is being released.
    ///
    /// Increase this value if the suspension appears to overshoot.
    pub suspension_damping: Real,
    /// The maximum distance the suspension can travel before and after its resting length.
    pub max_suspension_travel: Real,
    /// The multiplier of friction between a tire and the collider it's on top of.
    pub side_friction_stiffness: Real,
    /// Parameter controlling how much traction the tire has.
    ///
    /// The larger the value, the more instantaneous braking will happen (with the risk of
    /// causing the vehicle to flip if it’s too strong).
    pub friction_slip: Real,
    /// The maximum force applied by the suspension.
    pub max_suspension_force: Real,
}

impl Default for WheelTuning {
    fn default() -> Self {
        Self {
            suspension_stiffness: 5.88,
            suspension_compression: 0.83,
            suspension_damping: 0.88,
            max_suspension_travel: 5.0,
            side_friction_stiffness: 1.0,
            friction_slip: 10.5,
            max_suspension_force: 6000.0,
        }
    }
}

/// Objects used to initialize a wheel.
struct WheelDesc {
    /// The position of the wheel, relative to the chassis.
    pub chassis_connection_cs: Point<Real>,
    /// The direction of the wheel’s suspension, relative to the chassis.
    ///
    /// The ray-casting will happen following this direction to detect the ground.
    pub direction_cs: Vector<Real>,
    /// The wheel’s axle axis, relative to the chassis.
    pub axle_cs: Vector<Real>,
    /// The rest length of the wheel’s suspension spring.
    pub suspension_rest_length: Real,
    /// The maximum distance the suspension can travel before and after its resting length.
    pub max_suspension_travel: Real,
    /// The wheel’s radius.
    pub radius: Real,

    /// The suspension stiffness.
    ///
    /// Increase this value if the suspension appears to not push the vehicle strong enough.
    pub suspension_stiffness: Real,
    /// The suspension’s damping when it is being compressed.
    pub damping_compression: Real,
    /// The suspension’s damping when it is being released.
    ///
    /// Increase this value if the suspension appears to overshoot.
    pub damping_relaxation: Real,
    /// Parameter controlling how much traction the tire has.
    ///
    /// The larger the value, the more instantaneous braking will happen (with the risk of
    /// causing the vehicle to flip if it’s too strong).
    pub friction_slip: Real,
    /// The maximum force applied by the suspension.
    pub max_suspension_force: Real,
    /// The multiplier of friction between a tire and the collider it's on top of.
    pub side_friction_stiffness: Real,
}

#[derive(Copy, Clone, Debug, PartialEq)]
/// A wheel attached to a vehicle.
pub struct Wheel {
    raycast_info: RayCastInfo,

    center: Point<Real>,
    wheel_direction_ws: Vector<Real>,
    wheel_axle_ws: Vector<Real>,

    /// The position of the wheel, relative to the chassis.
    pub chassis_connection_point_cs: Point<Real>,
    /// The direction of the wheel’s suspension, relative to the chassis.
    ///
    /// The ray-casting will happen following this direction to detect the ground.
    pub direction_cs: Vector<Real>,
    /// The wheel’s axle axis, relative to the chassis.
    pub axle_cs: Vector<Real>,
    /// The rest length of the wheel’s suspension spring.
    pub suspension_rest_length: Real,
    /// The maximum distance the suspension can travel before and after its resting length.
    pub max_suspension_travel: Real,
    /// The wheel’s radius.
    pub radius: Real,
    /// The suspension stiffness.
    ///
    /// Increase this value if the suspension appears to not push the vehicle strong enough.
    pub suspension_stiffness: Real,
    /// The suspension’s damping when it is being compressed.
    pub damping_compression: Real,
    /// The suspension’s damping when it is being released.
    ///
    /// Increase this value if the suspension appears to overshoot.
    pub damping_relaxation: Real,
    /// Parameter controlling how much traction the tire has.
    ///
    /// The larger the value, the more instantaneous braking will happen (with the risk of
    /// causing the vehicle to flip if it’s too strong).
    pub friction_slip: Real,
    /// The multiplier of friction between a tire and the collider it's on top of.
    pub side_friction_stiffness: Real,
    /// The wheel’s current rotation on its axle.
    pub rotation: Real,
    delta_rotation: Real,
    roll_influence: Real, // TODO: make this public?
    /// The maximum force applied by the suspension.
    pub max_suspension_force: Real,

    /// The forward impulses applied by the wheel on the chassis.
    pub forward_impulse: Real,
    /// The side impulses applied by the wheel on the chassis.
    pub side_impulse: Real,

    /// The steering angle for this wheel.
    pub steering: Real,
    /// The forward force applied by this wheel on the chassis.
    pub engine_force: Real,
    /// The maximum amount of braking impulse applied to slow down the vehicle.
    pub brake: Real,

    clipped_inv_contact_dot_suspension: Real,
    suspension_relative_velocity: Real,
    /// The force applied by the suspension.
    pub wheel_suspension_force: Real,
    skid_info: Real,
}

impl Wheel {
    fn new(info: WheelDesc) -> Self {
        Self {
            raycast_info: RayCastInfo::default(),
            suspension_rest_length: info.suspension_rest_length,
            max_suspension_travel: info.max_suspension_travel,
            radius: info.radius,
            suspension_stiffness: info.suspension_stiffness,
            damping_compression: info.damping_compression,
            damping_relaxation: info.damping_relaxation,
            chassis_connection_point_cs: info.chassis_connection_cs,
            direction_cs: info.direction_cs,
            axle_cs: info.axle_cs,
            wheel_direction_ws: info.direction_cs,
            wheel_axle_ws: info.axle_cs,
            center: Point::origin(),
            friction_slip: info.friction_slip,
            steering: 0.0,
            engine_force: 0.0,
            rotation: 0.0,
            delta_rotation: 0.0,
            brake: 0.0,
            roll_influence: 0.1,
            clipped_inv_contact_dot_suspension: 0.0,
            suspension_relative_velocity: 0.0,
            wheel_suspension_force: 0.0,
            max_suspension_force: info.max_suspension_force,
            skid_info: 0.0,
            side_impulse: 0.0,
            forward_impulse: 0.0,
            side_friction_stiffness: info.side_friction_stiffness,
        }
    }

    /// Information about suspension and the ground obtained from the ray-casting
    /// for this wheel.
    pub fn raycast_info(&self) -> &RayCastInfo {
        &self.raycast_info
    }

    /// The world-space center of the wheel.
    pub fn center(&self) -> Point<Real> {
        self.center
    }

    /// The world-space direction of the wheel’s suspension.
    pub fn suspension(&self) -> Vector<Real> {
        self.wheel_direction_ws
    }

    /// The world-space direction of the wheel’s axle.
    pub fn axle(&self) -> Vector<Real> {
        self.wheel_axle_ws
    }
}

/// Information about suspension and the ground obtained from the ray-casting
/// to simulate a wheel’s suspension.
#[derive(Copy, Clone, Debug, PartialEq, Default)]
pub struct RayCastInfo {
    /// The (world-space) contact normal between the wheel and the floor.
    pub contact_normal_ws: Vector<Real>,
    /// The (world-space) point hit by the wheel’s ray-cast.
    pub contact_point_ws: Point<Real>,
    /// The suspension length for the wheel.
    pub suspension_length: Real,
    /// The (world-space) starting point of the ray-cast.
    pub hard_point_ws: Point<Real>,
    /// Is the wheel in contact with the ground?
    pub is_in_contact: bool,
    /// The collider hit by the ray-cast.
    pub ground_object: Option<ColliderHandle>,
}

impl DynamicRayCastVehicleController {
    /// Creates a new vehicle represented by the given rigid-body.
    ///
    /// Wheels have to be attached afterwards calling [`Self::add_wheel`].
    pub fn new(chassis: RigidBodyHandle) -> Self {
        Self {
            wheels: vec![],
            forward_ws: vec![],
            axle: vec![],
            current_vehicle_speed: 0.0,
            chassis,
            index_up_axis: 1,
            index_forward_axis: 0,
        }
    }

    //
    // basically most of the code is general for 2 or 4 wheel vehicles, but some of it needs to be reviewed
    //
    /// Adds a wheel to this vehicle.
    pub fn add_wheel(
        &mut self,
        chassis_connection_cs: Point<Real>,
        direction_cs: Vector<Real>,
        axle_cs: Vector<Real>,
        suspension_rest_length: Real,
        radius: Real,
        tuning: &WheelTuning,
    ) -> &mut Wheel {
        let ci = WheelDesc {
            chassis_connection_cs,
            direction_cs,
            axle_cs,
            suspension_rest_length,
            radius,
            suspension_stiffness: tuning.suspension_stiffness,
            damping_compression: tuning.suspension_compression,
            damping_relaxation: tuning.suspension_damping,
            friction_slip: tuning.friction_slip,
            max_suspension_travel: tuning.max_suspension_travel,
            max_suspension_force: tuning.max_suspension_force,
            side_friction_stiffness: tuning.side_friction_stiffness,
        };

        let wheel_id = self.wheels.len();
        self.wheels.push(Wheel::new(ci));

        &mut self.wheels[wheel_id]
    }

    #[cfg(feature = "dim2")]
    fn update_wheel_transform(&mut self, chassis: &RigidBody, wheel_index: usize) {
        self.update_wheel_transforms_ws(chassis, wheel_index);
        let wheel = &mut self.wheels[wheel_index];
        wheel.center = (wheel.raycast_info.hard_point_ws
            + wheel.wheel_direction_ws * wheel.raycast_info.suspension_length)
            .coords;
    }

    #[cfg(feature = "dim3")]
    fn update_wheel_transform(&mut self, chassis: &RigidBody, wheel_index: usize) {
        self.update_wheel_transforms_ws(chassis, wheel_index);
        let wheel = &mut self.wheels[wheel_index];

        let steering_orn = Rotation::new(-wheel.wheel_direction_ws * wheel.steering);
        wheel.wheel_axle_ws = steering_orn * (chassis.position() * wheel.axle_cs);
        wheel.center = wheel.raycast_info.hard_point_ws
            + wheel.wheel_direction_ws * wheel.raycast_info.suspension_length;
    }

    fn update_wheel_transforms_ws(&mut self, chassis: &RigidBody, wheel_id: usize) {
        let wheel = &mut self.wheels[wheel_id];
        wheel.raycast_info.is_in_contact = false;

        let chassis_transform = chassis.position();

        wheel.raycast_info.hard_point_ws = chassis_transform * wheel.chassis_connection_point_cs;
        wheel.wheel_direction_ws = chassis_transform * wheel.direction_cs;
        wheel.wheel_axle_ws = chassis_transform * wheel.axle_cs;
    }

    #[profiling::function]
    fn ray_cast(
        &mut self,
        bodies: &RigidBodySet,
        colliders: &ColliderSet,
        queries: &QueryPipeline,
        filter: QueryFilter,
        chassis: &RigidBody,
        wheel_id: usize,
    ) {
        let wheel = &mut self.wheels[wheel_id];
        let raylen = wheel.suspension_rest_length + wheel.radius;
        let rayvector = wheel.wheel_direction_ws * raylen;
        let source = wheel.raycast_info.hard_point_ws;
        wheel.raycast_info.contact_point_ws = source + rayvector;
        let ray = Ray::new(source, rayvector);
        let hit = queries.cast_ray_and_get_normal(bodies, colliders, &ray, 1.0, true, filter);

        wheel.raycast_info.ground_object = None;

        if let Some((collider_hit, mut hit)) = hit {
            if hit.time_of_impact == 0.0 {
                let collider = &colliders[collider_hit];
                let up_ray = Ray::new(source + rayvector, -rayvector);
                if let Some(hit2) =
                    collider
                        .shape
                        .cast_ray_and_get_normal(collider.position(), &up_ray, 1.0, false)
                {
                    hit.normal = -hit2.normal;
                }

                if hit.normal == Vector::zeros() {
                    // If the hit is still not defined, set the normal.
                    hit.normal = -wheel.wheel_direction_ws;
                }
            }

            wheel.raycast_info.contact_normal_ws = hit.normal;
            wheel.raycast_info.is_in_contact = true;
            wheel.raycast_info.ground_object = Some(collider_hit);

            let hit_distance = hit.time_of_impact * raylen;
            wheel.raycast_info.suspension_length = hit_distance - wheel.radius;

            // clamp on max suspension travel
            let min_suspension_length = wheel.suspension_rest_length - wheel.max_suspension_travel;
            let max_suspension_length = wheel.suspension_rest_length + wheel.max_suspension_travel;
            wheel.raycast_info.suspension_length = wheel
                .raycast_info
                .suspension_length
                .clamp(min_suspension_length, max_suspension_length);
            wheel.raycast_info.contact_point_ws = ray.point_at(hit.time_of_impact);

            let denominator = wheel
                .raycast_info
                .contact_normal_ws
                .dot(&wheel.wheel_direction_ws);
            let chassis_velocity_at_contact_point =
                chassis.velocity_at_point(&wheel.raycast_info.contact_point_ws);
            let proj_vel = wheel
                .raycast_info
                .contact_normal_ws
                .dot(&chassis_velocity_at_contact_point);

            if denominator >= -0.1 {
                wheel.suspension_relative_velocity = 0.0;
                wheel.clipped_inv_contact_dot_suspension = 1.0 / 0.1;
            } else {
                let inv = -1.0 / denominator;
                wheel.suspension_relative_velocity = proj_vel * inv;
                wheel.clipped_inv_contact_dot_suspension = inv;
            }
        } else {
            // No contact, put wheel info as in rest position
            wheel.raycast_info.suspension_length = wheel.suspension_rest_length;
            wheel.suspension_relative_velocity = 0.0;
            wheel.raycast_info.contact_normal_ws = -wheel.wheel_direction_ws;
            wheel.clipped_inv_contact_dot_suspension = 1.0;
        }
    }

    /// Updates the vehicle’s velocity based on its suspension, engine force, and brake.
    #[profiling::function]
    pub fn update_vehicle(
        &mut self,
        dt: Real,
        bodies: &mut RigidBodySet,
        colliders: &ColliderSet,
        queries: &QueryPipeline,
        filter: QueryFilter,
    ) {
        let num_wheels = self.wheels.len();
        let chassis = &bodies[self.chassis];

        for i in 0..num_wheels {
            self.update_wheel_transform(chassis, i);
        }

        self.current_vehicle_speed = chassis.linvel().norm();

        let forward_w = chassis.position() * Vector::ith(self.index_forward_axis, 1.0);

        if forward_w.dot(chassis.linvel()) < 0.0 {
            self.current_vehicle_speed *= -1.0;
        }

        //
        // simulate suspension
        //

        for wheel_id in 0..self.wheels.len() {
            self.ray_cast(bodies, colliders, queries, filter, chassis, wheel_id);
        }

        let chassis_mass = chassis.mass();
        self.update_suspension(chassis_mass);

        let chassis = bodies
            .get_mut_internal_with_modification_tracking(self.chassis)
            .unwrap();

        for wheel in &mut self.wheels {
            if wheel.engine_force > 0.0 {
                chassis.wake_up(true);
            }

            // apply suspension force
            let mut suspension_force = wheel.wheel_suspension_force;

            if suspension_force > wheel.max_suspension_force {
                suspension_force = wheel.max_suspension_force;
            }

            let impulse = wheel.raycast_info.contact_normal_ws * suspension_force * dt;
            chassis.apply_impulse_at_point(impulse, wheel.raycast_info.contact_point_ws, false);
        }

        self.update_friction(bodies, colliders, dt);

        let chassis = bodies
            .get_mut_internal_with_modification_tracking(self.chassis)
            .unwrap();

        for wheel in &mut self.wheels {
            let vel = chassis.velocity_at_point(&wheel.raycast_info.hard_point_ws);

            if wheel.raycast_info.is_in_contact {
                let mut fwd = chassis.position() * Vector::ith(self.index_forward_axis, 1.0);
                let proj = fwd.dot(&wheel.raycast_info.contact_normal_ws);
                fwd -= wheel.raycast_info.contact_normal_ws * proj;

                let proj2 = fwd.dot(&vel);

                wheel.delta_rotation = (proj2 * dt) / (wheel.radius);
                wheel.rotation += wheel.delta_rotation;
            } else {
                wheel.rotation += wheel.delta_rotation;
            }

            wheel.delta_rotation *= 0.99; //damping of rotation when not in contact
        }
    }

    /// Reference to all the wheels attached to this vehicle.
    pub fn wheels(&self) -> &[Wheel] {
        &self.wheels
    }

    /// Mutable reference to all the wheels attached to this vehicle.
    pub fn wheels_mut(&mut self) -> &mut [Wheel] {
        &mut self.wheels
    }

    fn update_suspension(&mut self, chassis_mass: Real) {
        for w_it in 0..self.wheels.len() {
            let wheels = &mut self.wheels[w_it];

            if wheels.raycast_info.is_in_contact {
                let mut force;
                //	Spring
                {
                    let rest_length = wheels.suspension_rest_length;
                    let current_length = wheels.raycast_info.suspension_length;
                    let length_diff = rest_length - current_length;

                    force = wheels.suspension_stiffness
                        * length_diff
                        * wheels.clipped_inv_contact_dot_suspension;
                }

                // Damper
                {
                    let projected_rel_vel = wheels.suspension_relative_velocity;
                    {
                        let susp_damping = if projected_rel_vel < 0.0 {
                            wheels.damping_compression
                        } else {
                            wheels.damping_relaxation
                        };
                        force -= susp_damping * projected_rel_vel;
                    }
                }

                // RESULT
                wheels.wheel_suspension_force = (force * chassis_mass).max(0.0);
            } else {
                wheels.wheel_suspension_force = 0.0;
            }
        }
    }

    #[profiling::function]
    fn update_friction(&mut self, bodies: &mut RigidBodySet, colliders: &ColliderSet, dt: Real) {
        let num_wheels = self.wheels.len();

        if num_wheels == 0 {
            return;
        }

        self.forward_ws.resize(num_wheels, Default::default());
        self.axle.resize(num_wheels, Default::default());

        let mut num_wheels_on_ground = 0;

        //TODO: collapse all those loops into one!
        for wheel in &mut self.wheels {
            let ground_object = wheel.raycast_info.ground_object;

            if ground_object.is_some() {
                num_wheels_on_ground += 1;
            }

            wheel.side_impulse = 0.0;
            wheel.forward_impulse = 0.0;
        }

        {
            for i in 0..num_wheels {
                let wheel = &mut self.wheels[i];
                let ground_object = wheel.raycast_info.ground_object;

                if ground_object.is_some() {
                    self.axle[i] = wheel.wheel_axle_ws;

                    let surf_normal_ws = wheel.raycast_info.contact_normal_ws;
                    let proj = self.axle[i].dot(&surf_normal_ws);
                    self.axle[i] -= surf_normal_ws * proj;
                    self.axle[i] = self.axle[i]
                        .try_normalize(1.0e-5)
                        .unwrap_or_else(Vector::zeros);
                    self.forward_ws[i] = surf_normal_ws
                        .cross(&self.axle[i])
                        .try_normalize(1.0e-5)
                        .unwrap_or_else(Vector::zeros);

                    if let Some(ground_body) = ground_object
                        .and_then(|h| colliders[h].parent())
                        .map(|h| &bodies[h])
                        .filter(|b| b.is_dynamic())
                    {
                        wheel.side_impulse = resolve_single_bilateral(
                            &bodies[self.chassis],
                            &wheel.raycast_info.contact_point_ws,
                            ground_body,
                            &wheel.raycast_info.contact_point_ws,
                            &self.axle[i],
                        );
                    } else {
                        wheel.side_impulse = resolve_single_unilateral(
                            &bodies[self.chassis],
                            &wheel.raycast_info.contact_point_ws,
                            &self.axle[i],
                        );
                    }

                    wheel.side_impulse *= wheel.side_friction_stiffness;
                }
            }
        }

        let side_factor = 1.0;
        let fwd_factor = 0.5;

        let mut sliding = false;
        {
            for wheel_id in 0..num_wheels {
                let wheel = &mut self.wheels[wheel_id];
                let ground_object = wheel.raycast_info.ground_object;

                let mut rolling_friction = 0.0;

                if ground_object.is_some() {
                    if wheel.engine_force != 0.0 {
                        rolling_friction = wheel.engine_force * dt;
                    } else {
                        let default_rolling_friction_impulse = 0.0;
                        let max_impulse = if wheel.brake != 0.0 {
                            wheel.brake
                        } else {
                            default_rolling_friction_impulse
                        };
                        let contact_pt = WheelContactPoint::new(
                            &bodies[self.chassis],
                            ground_object
                                .and_then(|h| colliders[h].parent())
                                .map(|h| &bodies[h]),
                            wheel.raycast_info.contact_point_ws,
                            self.forward_ws[wheel_id],
                            max_impulse,
                        );
                        assert!(num_wheels_on_ground > 0);
                        rolling_friction = contact_pt.calc_rolling_friction(num_wheels_on_ground);
                    }
                }

                //switch between active rolling (throttle), braking and non-active rolling friction (no throttle/break)

                wheel.forward_impulse = 0.0;
                wheel.skid_info = 1.0;

                if ground_object.is_some() {
                    let max_imp = wheel.wheel_suspension_force * dt * wheel.friction_slip;
                    let max_imp_side = max_imp;
                    let max_imp_squared = max_imp * max_imp_side;
                    assert!(max_imp_squared >= 0.0);

                    wheel.forward_impulse = rolling_friction;

                    let x = wheel.forward_impulse * fwd_factor;
                    let y = wheel.side_impulse * side_factor;

                    let impulse_squared = x * x + y * y;

                    if impulse_squared > max_imp_squared {
                        sliding = true;

                        let factor = max_imp * crate::utils::inv(impulse_squared.sqrt());
                        wheel.skid_info *= factor;
                    }
                }
            }
        }

        if sliding {
            for wheel in &mut self.wheels {
                if wheel.side_impulse != 0.0 && wheel.skid_info < 1.0 {
                    wheel.forward_impulse *= wheel.skid_info;
                    wheel.side_impulse *= wheel.skid_info;
                }
            }
        }

        // apply the impulses
        {
            let chassis = bodies
                .get_mut_internal_with_modification_tracking(self.chassis)
                .unwrap();

            for wheel_id in 0..num_wheels {
                let wheel = &self.wheels[wheel_id];
                let mut impulse_point = wheel.raycast_info.contact_point_ws;

                if wheel.forward_impulse != 0.0 {
                    chassis.apply_impulse_at_point(
                        self.forward_ws[wheel_id] * wheel.forward_impulse,
                        impulse_point,
                        false,
                    );
                }
                if wheel.side_impulse != 0.0 {
                    let side_impulse = self.axle[wheel_id] * wheel.side_impulse;

                    let v_chassis_world_up =
                        chassis.position().rotation * Vector::ith(self.index_up_axis, 1.0);
                    impulse_point -= v_chassis_world_up
                        * (v_chassis_world_up.dot(&(impulse_point - chassis.center_of_mass()))
                            * (1.0 - wheel.roll_influence));

                    chassis.apply_impulse_at_point(side_impulse, impulse_point, false);

                    // TODO: apply friction impulse on the ground
                    // let ground_object = self.wheels[wheel_id].raycast_info.ground_object;
                    // ground_object.apply_impulse_at_point(
                    //     -side_impulse,
                    //     wheels.raycast_info.contact_point_ws,
                    //     false,
                    // );
                }
            }
        }
    }
}

struct WheelContactPoint<'a> {
    body0: &'a RigidBody,
    body1: Option<&'a RigidBody>,
    friction_position_world: Point<Real>,
    friction_direction_world: Vector<Real>,
    jac_diag_ab_inv: Real,
    max_impulse: Real,
}

impl<'a> WheelContactPoint<'a> {
    pub fn new(
        body0: &'a RigidBody,
        body1: Option<&'a RigidBody>,
        friction_position_world: Point<Real>,
        friction_direction_world: Vector<Real>,
        max_impulse: Real,
    ) -> Self {
        fn impulse_denominator(body: &RigidBody, pos: &Point<Real>, n: &Vector<Real>) -> Real {
            let dpt = pos - body.center_of_mass();
            let gcross = dpt.gcross(*n);
            let v = (body.mprops.effective_world_inv_inertia_sqrt
                * (body.mprops.effective_world_inv_inertia_sqrt * gcross))
                .gcross(dpt);
            // TODO: take the effective inv mass into account instead of the inv_mass?
            body.mprops.local_mprops.inv_mass + n.dot(&v)
        }
        let denom0 =
            impulse_denominator(body0, &friction_position_world, &friction_direction_world);
        let denom1 = body1
            .map(|body1| {
                impulse_denominator(body1, &friction_position_world, &friction_direction_world)
            })
            .unwrap_or(0.0);
        let relaxation = 1.0;
        let jac_diag_ab_inv = relaxation / (denom0 + denom1);

        Self {
            body0,
            body1,
            friction_position_world,
            friction_direction_world,
            jac_diag_ab_inv,
            max_impulse,
        }
    }

    pub fn calc_rolling_friction(&self, num_wheels_on_ground: usize) -> Real {
        let contact_pos_world = self.friction_position_world;
        let max_impulse = self.max_impulse;

        let vel1 = self.body0.velocity_at_point(&contact_pos_world);
        let vel2 = self
            .body1
            .map(|b| b.velocity_at_point(&contact_pos_world))
            .unwrap_or_else(Vector::zeros);
        let vel = vel1 - vel2;
        let vrel = self.friction_direction_world.dot(&vel);

        // calculate friction that moves us to zero relative velocity
        (-vrel * self.jac_diag_ab_inv / (num_wheels_on_ground as Real))
            .clamp(-max_impulse, max_impulse)
    }
}

fn resolve_single_bilateral(
    body1: &RigidBody,
    pt1: &Point<Real>,
    body2: &RigidBody,
    pt2: &Point<Real>,
    normal: &Vector<Real>,
) -> Real {
    let vel1 = body1.velocity_at_point(pt1);
    let vel2 = body2.velocity_at_point(pt2);
    let dvel = vel1 - vel2;

    let dpt1 = pt1 - body1.center_of_mass();
    let dpt2 = pt2 - body2.center_of_mass();
    let aj = dpt1.gcross(*normal);
    let bj = dpt2.gcross(-*normal);
    let iaj = body1.mprops.effective_world_inv_inertia_sqrt * aj;
    let ibj = body2.mprops.effective_world_inv_inertia_sqrt * bj;

    // TODO: take the effective_inv_mass into account?
    let im1 = body1.mprops.local_mprops.inv_mass;
    let im2 = body2.mprops.local_mprops.inv_mass;

    let jac_diag_ab = im1 + im2 + iaj.gdot(iaj) + ibj.gdot(ibj);
    let jac_diag_ab_inv = crate::utils::inv(jac_diag_ab);
    let rel_vel = normal.dot(&dvel);

    //todo: move this into proper structure
    let contact_damping = 0.2;
    -contact_damping * rel_vel * jac_diag_ab_inv
}

fn resolve_single_unilateral(body1: &RigidBody, pt1: &Point<Real>, normal: &Vector<Real>) -> Real {
    let vel1 = body1.velocity_at_point(pt1);
    let dvel = vel1;
    let dpt1 = pt1 - body1.center_of_mass();
    let aj = dpt1.gcross(*normal);
    let iaj = body1.mprops.effective_world_inv_inertia_sqrt * aj;

    // TODO: take the effective_inv_mass into account?
    let im1 = body1.mprops.local_mprops.inv_mass;
    let jac_diag_ab = im1 + iaj.gdot(iaj);
    let jac_diag_ab_inv = crate::utils::inv(jac_diag_ab);
    let rel_vel = normal.dot(&dvel);

    //todo: move this into proper structure
    let contact_damping = 0.2;
    -contact_damping * rel_vel * jac_diag_ab_inv
}