rapier3d/data/graph.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
// This is basically a stripped down version of petgraph's UnGraph.
// - It is not generic with respect to the index type (we always use u32).
// - It preserves associated edge iteration order after Serialization/Deserialization.
// - It is always undirected.
//! A stripped-down version of petgraph's UnGraph.
use std::cmp::max;
use std::ops::{Index, IndexMut};
/// Node identifier.
#[derive(Copy, Clone, Default, PartialEq, PartialOrd, Eq, Ord, Hash, Debug)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct NodeIndex(u32);
impl NodeIndex {
#[inline]
pub fn new(x: u32) -> Self {
NodeIndex(x)
}
#[inline]
pub fn index(self) -> usize {
self.0 as usize
}
#[inline]
pub fn end() -> Self {
NodeIndex(crate::INVALID_U32)
}
fn _into_edge(self) -> EdgeIndex {
EdgeIndex(self.0)
}
}
impl From<u32> for NodeIndex {
fn from(ix: u32) -> Self {
NodeIndex(ix)
}
}
/// Edge identifier.
#[derive(Copy, Clone, Default, PartialEq, PartialOrd, Eq, Ord, Hash, Debug)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct EdgeIndex(u32);
impl EdgeIndex {
#[inline]
pub fn new(x: u32) -> Self {
EdgeIndex(x)
}
#[inline]
pub fn index(self) -> usize {
self.0 as usize
}
/// An invalid `EdgeIndex` used to denote absence of an edge, for example
/// to end an adjacency list.
#[inline]
pub fn end() -> Self {
EdgeIndex(crate::INVALID_U32)
}
fn _into_node(self) -> NodeIndex {
NodeIndex(self.0)
}
}
impl From<u32> for EdgeIndex {
fn from(ix: u32) -> Self {
EdgeIndex(ix)
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub enum Direction {
Outgoing = 0,
Incoming = 1,
}
impl Direction {
fn opposite(self) -> Direction {
match self {
Direction::Outgoing => Direction::Incoming,
Direction::Incoming => Direction::Outgoing,
}
}
}
const DIRECTIONS: [Direction; 2] = [Direction::Outgoing, Direction::Incoming];
/// The graph's node type.
#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct Node<N> {
/// Associated node data.
pub weight: N,
/// Next edge in outgoing and incoming edge lists.
next: [EdgeIndex; 2],
}
/// The graph's edge type.
#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct Edge<E> {
/// Associated edge data.
pub weight: E,
/// Next edge in outgoing and incoming edge lists.
next: [EdgeIndex; 2],
/// Start and End node index
node: [NodeIndex; 2],
}
impl<E> Edge<E> {
/// Return the source node index.
pub fn source(&self) -> NodeIndex {
self.node[0]
}
/// Return the target node index.
pub fn target(&self) -> NodeIndex {
self.node[1]
}
}
#[derive(Clone, Debug, Default)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct Graph<N, E> {
pub(crate) nodes: Vec<Node<N>>,
pub(crate) edges: Vec<Edge<E>>,
}
enum Pair<T> {
Both(T, T),
One(T),
None,
}
/// Get mutable references at index `a` and `b`.
fn index_twice<T>(arr: &mut [T], a: usize, b: usize) -> Pair<&mut T> {
if max(a, b) >= arr.len() {
Pair::None
} else if a == b {
Pair::One(&mut arr[max(a, b)])
} else {
// safe because a, b are in bounds and distinct
unsafe {
let ar = &mut *(arr.get_unchecked_mut(a) as *mut _);
let br = &mut *(arr.get_unchecked_mut(b) as *mut _);
Pair::Both(ar, br)
}
}
}
impl<N, E> Graph<N, E> {
/// Create a new `Graph` with estimated capacity.
pub fn with_capacity(nodes: usize, edges: usize) -> Self {
Graph {
nodes: Vec::with_capacity(nodes),
edges: Vec::with_capacity(edges),
}
}
/// Add a node (also called vertex) with associated data `weight` to the graph.
///
/// Computes in **O(1)** time.
///
/// Return the index of the new node.
///
/// **Panics** if the Graph is at the maximum number of nodes for its index
/// type (N/A if usize).
pub fn add_node(&mut self, weight: N) -> NodeIndex {
let node = Node {
weight,
next: [EdgeIndex::end(), EdgeIndex::end()],
};
assert!(self.nodes.len() != crate::INVALID_USIZE);
let node_idx = NodeIndex::new(self.nodes.len() as u32);
self.nodes.push(node);
node_idx
}
/// Access the weight for node `a`.
///
/// Also available with indexing syntax: `&graph[a]`.
pub fn node_weight(&self, a: NodeIndex) -> Option<&N> {
self.nodes.get(a.index()).map(|n| &n.weight)
}
/// Access the weight for edge `a`.
///
/// Also available with indexing syntax: `&graph[a]`.
pub fn edge_weight(&self, a: EdgeIndex) -> Option<&E> {
self.edges.get(a.index()).map(|e| &e.weight)
}
/// Access the weight for edge `a` mutably.
///
/// Also available with indexing syntax: `&mut graph[a]`.
pub fn edge_weight_mut(&mut self, a: EdgeIndex) -> Option<&mut E> {
self.edges.get_mut(a.index()).map(|e| &mut e.weight)
}
/// Add an edge from `a` to `b` to the graph, with its associated
/// data `weight`.
///
/// Return the index of the new edge.
///
/// Computes in **O(1)** time.
///
/// **Panics** if any of the nodes don't exist.<br>
/// **Panics** if the Graph is at the maximum number of edges for its index
/// type (N/A if usize).
///
/// **Note:** `Graph` allows adding parallel (“duplicate”) edges. If you want
/// to avoid this, use [`.update_edge(a, b, weight)`](#method.update_edge) instead.
pub fn add_edge(&mut self, a: NodeIndex, b: NodeIndex, weight: E) -> EdgeIndex {
assert!(self.edges.len() != crate::INVALID_USIZE);
let edge_idx = EdgeIndex::new(self.edges.len() as u32);
let mut edge = Edge {
weight,
node: [a, b],
next: [EdgeIndex::end(); 2],
};
match index_twice(&mut self.nodes, a.index(), b.index()) {
Pair::None => panic!("Graph::add_edge: node indices out of bounds"),
Pair::One(an) => {
edge.next = an.next;
an.next[0] = edge_idx;
an.next[1] = edge_idx;
}
Pair::Both(an, bn) => {
// a and b are different indices
edge.next = [an.next[0], bn.next[1]];
an.next[0] = edge_idx;
bn.next[1] = edge_idx;
}
}
self.edges.push(edge);
edge_idx
}
/// Access the source and target nodes for `e`.
pub fn edge_endpoints(&self, e: EdgeIndex) -> Option<(NodeIndex, NodeIndex)> {
self.edges
.get(e.index())
.map(|ed| (ed.source(), ed.target()))
}
/// Remove `a` from the graph if it exists, and return its weight.
/// If it doesn't exist in the graph, return `None`.
///
/// Apart from `a`, this invalidates the last node index in the graph
/// (that node will adopt the removed node index). Edge indices are
/// invalidated as they would be following the removal of each edge
/// with an endpoint in `a`.
///
/// Computes in **O(e')** time, where **e'** is the number of affected
/// edges, including *n* calls to `.remove_edge()` where *n* is the number
/// of edges with an endpoint in `a`, and including the edges with an
/// endpoint in the displaced node.
pub fn remove_node(&mut self, a: NodeIndex) -> Option<N> {
self.nodes.get(a.index())?;
for d in &DIRECTIONS {
let k = *d as usize;
// Remove all edges from and to this node.
loop {
let next = self.nodes[a.index()].next[k];
if next == EdgeIndex::end() {
break;
}
let ret = self.remove_edge(next);
debug_assert!(ret.is_some());
let _ = ret;
}
}
// Use swap_remove -- only the swapped-in node is going to change
// NodeIndex, so we only have to walk its edges and update them.
let node = self.nodes.swap_remove(a.index());
// Find the edge lists of the node that had to relocate.
// It may be that no node had to relocate, then we are done already.
let swap_edges = match self.nodes.get(a.index()) {
None => return Some(node.weight),
Some(ed) => ed.next,
};
// The swapped element's old index
let old_index = NodeIndex::new(self.nodes.len() as u32);
let new_index = a;
// Adjust the starts of the out edges, and ends of the in edges.
for &d in &DIRECTIONS {
let k = d as usize;
let mut edges = edges_walker_mut(&mut self.edges, swap_edges[k], d);
while let Some(curedge) = edges.next_edge() {
debug_assert!(curedge.node[k] == old_index);
curedge.node[k] = new_index;
}
}
Some(node.weight)
}
/// For edge `e` with endpoints `edge_node`, replace links to it,
/// with links to `edge_next`.
fn change_edge_links(
&mut self,
edge_node: [NodeIndex; 2],
e: EdgeIndex,
edge_next: [EdgeIndex; 2],
) {
for &d in &DIRECTIONS {
let k = d as usize;
let node = match self.nodes.get_mut(edge_node[k].index()) {
Some(r) => r,
None => {
debug_assert!(
false,
"Edge's endpoint dir={:?} index={:?} not found",
d, edge_node[k]
);
return;
}
};
let fst = node.next[k];
if fst == e {
//println!("Updating first edge 0 for node {}, set to {}", edge_node[0], edge_next[0]);
node.next[k] = edge_next[k];
} else {
let mut edges = edges_walker_mut(&mut self.edges, fst, d);
while let Some(curedge) = edges.next_edge() {
if curedge.next[k] == e {
curedge.next[k] = edge_next[k];
break; // the edge can only be present once in the list.
}
}
}
}
}
/// Remove an edge and return its edge weight, or `None` if it didn't exist.
///
/// Apart from `e`, this invalidates the last edge index in the graph
/// (that edge will adopt the removed edge index).
///
/// Computes in **O(e')** time, where **e'** is the size of four particular edge lists, for
/// the vertices of `e` and the vertices of another affected edge.
pub fn remove_edge(&mut self, e: EdgeIndex) -> Option<E> {
// every edge is part of two lists,
// outgoing and incoming edges.
// Remove it from both
let (edge_node, edge_next) = match self.edges.get(e.index()) {
None => return None,
Some(x) => (x.node, x.next),
};
// Remove the edge from its in and out lists by replacing it with
// a link to the next in the list.
self.change_edge_links(edge_node, e, edge_next);
self.remove_edge_adjust_indices(e)
}
fn remove_edge_adjust_indices(&mut self, e: EdgeIndex) -> Option<E> {
// swap_remove the edge -- only the removed edge
// and the edge swapped into place are affected and need updating
// indices.
let edge = self.edges.swap_remove(e.index());
let swap = match self.edges.get(e.index()) {
// no element needed to be swapped.
None => return Some(edge.weight),
Some(ed) => ed.node,
};
let swapped_e = EdgeIndex::new(self.edges.len() as u32);
// Update the edge lists by replacing links to the old index by references to the new
// edge index.
self.change_edge_links(swap, swapped_e, [e, e]);
Some(edge.weight)
}
/// Return an iterator of all edges of `a`.
///
/// - `Directed`: Outgoing edges from `a`.
/// - `Undirected`: All edges connected to `a`.
///
/// Produces an empty iterator if the node doesn't exist.<br>
/// Iterator element type is `EdgeReference<E, Ix>`.
pub fn edges(&self, a: NodeIndex) -> Edges<E> {
self.edges_directed(a, Direction::Outgoing)
}
/// Return an iterator of all edges of `a`, in the specified direction.
///
/// - `Directed`, `Outgoing`: All edges from `a`.
/// - `Directed`, `Incoming`: All edges to `a`.
/// - `Undirected`, `Outgoing`: All edges connected to `a`, with `a` being the source of each
/// edge.
/// - `Undirected`, `Incoming`: All edges connected to `a`, with `a` being the target of each
/// edge.
///
/// Produces an empty iterator if the node `a` doesn't exist.<br>
/// Iterator element type is `EdgeReference<E, Ix>`.
pub fn edges_directed(&self, a: NodeIndex, dir: Direction) -> Edges<E> {
Edges {
skip_start: a,
edges: &self.edges,
direction: dir,
next: match self.nodes.get(a.index()) {
None => [EdgeIndex::end(), EdgeIndex::end()],
Some(n) => n.next,
},
}
}
/*
/// Return an iterator over all the edges connecting `a` and `b`.
///
/// - `Directed`: Outgoing edges from `a`.
/// - `Undirected`: All edges connected to `a`.
///
/// Iterator element type is `EdgeReference<E, Ix>`.
pub fn edges_connecting(&self, a: NodeIndex, b: NodeIndex) -> EdgesConnecting<E, Ty, Ix> {
EdgesConnecting {
target_node: b,
edges: self.edges_directed(a, Direction::Outgoing),
ty: PhantomData,
}
}
*/
/// Lookup an edge from `a` to `b`.
///
/// Computes in **O(e')** time, where **e'** is the number of edges
/// connected to `a` (and `b`, if the graph edges are undirected).
pub fn find_edge(&self, a: NodeIndex, b: NodeIndex) -> Option<EdgeIndex> {
self.find_edge_undirected(a, b).map(|(ix, _)| ix)
}
/// Lookup an edge between `a` and `b`, in either direction.
///
/// If the graph is undirected, then this is equivalent to `.find_edge()`.
///
/// Return the edge index and its directionality, with `Outgoing` meaning
/// from `a` to `b` and `Incoming` the reverse,
/// or `None` if the edge does not exist.
pub fn find_edge_undirected(
&self,
a: NodeIndex,
b: NodeIndex,
) -> Option<(EdgeIndex, Direction)> {
match self.nodes.get(a.index()) {
None => None,
Some(node) => self.find_edge_undirected_from_node(node, b),
}
}
fn find_edge_undirected_from_node(
&self,
node: &Node<N>,
b: NodeIndex,
) -> Option<(EdgeIndex, Direction)> {
for &d in &DIRECTIONS {
let k = d as usize;
let mut edix = node.next[k];
while let Some(edge) = self.edges.get(edix.index()) {
if edge.node[1 - k] == b {
return Some((edix, d));
}
edix = edge.next[k];
}
}
None
}
/// Access the internal node array.
pub fn raw_nodes(&self) -> &[Node<N>] {
&self.nodes
}
/// Access the internal edge array.
pub fn raw_edges(&self) -> &[Edge<E>] {
&self.edges
}
/// Accessor for data structure internals: the first edge in the given direction.
pub fn first_edge(&self, a: NodeIndex, dir: Direction) -> Option<EdgeIndex> {
match self.nodes.get(a.index()) {
None => None,
Some(node) => {
let edix = node.next[dir as usize];
if edix == EdgeIndex::end() {
None
} else {
Some(edix)
}
}
}
}
/// Accessor for data structure internals: the next edge for the given direction.
pub fn next_edge(&self, e: EdgeIndex, dir: Direction) -> Option<EdgeIndex> {
match self.edges.get(e.index()) {
None => None,
Some(node) => {
let edix = node.next[dir as usize];
if edix == EdgeIndex::end() {
None
} else {
Some(edix)
}
}
}
}
}
struct EdgesWalkerMut<'a, E: 'a> {
edges: &'a mut [Edge<E>],
next: EdgeIndex,
dir: Direction,
}
fn edges_walker_mut<E>(
edges: &mut [Edge<E>],
next: EdgeIndex,
dir: Direction,
) -> EdgesWalkerMut<E> {
EdgesWalkerMut { edges, next, dir }
}
impl<E> EdgesWalkerMut<'_, E> {
fn next_edge(&mut self) -> Option<&mut Edge<E>> {
self.next().map(|t| t.1)
}
fn next(&mut self) -> Option<(EdgeIndex, &mut Edge<E>)> {
let this_index = self.next;
let k = self.dir as usize;
match self.edges.get_mut(self.next.index()) {
None => None,
Some(edge) => {
self.next = edge.next[k];
Some((this_index, edge))
}
}
}
}
/// Iterator over the edges of from or to a node
pub struct Edges<'a, E: 'a> {
/// starting node to skip over
skip_start: NodeIndex,
edges: &'a [Edge<E>],
/// Next edge to visit.
next: [EdgeIndex; 2],
/// For directed graphs: the direction to iterate in
/// For undirected graphs: the direction of edges
direction: Direction,
}
impl<'a, E> Iterator for Edges<'a, E> {
type Item = EdgeReference<'a, E>;
fn next(&mut self) -> Option<Self::Item> {
// type direction | iterate over reverse
// |
// Directed Outgoing | outgoing no
// Directed Incoming | incoming no
// Undirected Outgoing | both incoming
// Undirected Incoming | both outgoing
// For iterate_over, "both" is represented as None.
// For reverse, "no" is represented as None.
let (iterate_over, _reverse) = (None, Some(self.direction.opposite()));
if iterate_over.unwrap_or(Direction::Outgoing) == Direction::Outgoing {
let i = self.next[0].index();
if let Some(Edge {
node: _node,
weight,
next,
}) = self.edges.get(i)
{
self.next[0] = next[0];
return Some(EdgeReference {
index: EdgeIndex(i as u32),
// node: if reverse == Some(Direction::Outgoing) {
// swap_pair(*node)
// } else {
// *node
// },
weight,
});
}
}
if iterate_over.unwrap_or(Direction::Incoming) == Direction::Incoming {
while let Some(Edge { node, weight, next }) = self.edges.get(self.next[1].index()) {
let edge_index = self.next[1];
self.next[1] = next[1];
// In any of the "both" situations, self-loops would be iterated over twice.
// Skip them here.
if iterate_over.is_none() && node[0] == self.skip_start {
continue;
}
return Some(EdgeReference {
index: edge_index,
// node: if reverse == Some(Direction::Incoming) {
// swap_pair(*node)
// } else {
// *node
// },
weight,
});
}
}
None
}
}
// fn swap_pair<T>(mut x: [T; 2]) -> [T; 2] {
// x.swap(0, 1);
// x
// }
impl<E> Clone for Edges<'_, E> {
fn clone(&self) -> Self {
Edges {
skip_start: self.skip_start,
edges: self.edges,
next: self.next,
direction: self.direction,
}
}
}
/// Index the `Graph` by `NodeIndex` to access node weights.
///
/// **Panics** if the node doesn't exist.
impl<N, E> Index<NodeIndex> for Graph<N, E> {
type Output = N;
fn index(&self, index: NodeIndex) -> &N {
&self.nodes[index.index()].weight
}
}
/// Index the `Graph` by `NodeIndex` to access node weights.
///
/// **Panics** if the node doesn't exist.
impl<N, E> IndexMut<NodeIndex> for Graph<N, E> {
fn index_mut(&mut self, index: NodeIndex) -> &mut N {
&mut self.nodes[index.index()].weight
}
}
/// Index the `Graph` by `EdgeIndex` to access edge weights.
///
/// **Panics** if the edge doesn't exist.
impl<N, E> Index<EdgeIndex> for Graph<N, E> {
type Output = E;
fn index(&self, index: EdgeIndex) -> &E {
&self.edges[index.index()].weight
}
}
/// Index the `Graph` by `EdgeIndex` to access edge weights.
///
/// **Panics** if the edge doesn't exist.
impl<N, E> IndexMut<EdgeIndex> for Graph<N, E> {
fn index_mut(&mut self, index: EdgeIndex) -> &mut E {
&mut self.edges[index.index()].weight
}
}
/// Reference to a `Graph` edge.
#[derive(Debug)]
pub struct EdgeReference<'a, E: 'a> {
index: EdgeIndex,
// node: [NodeIndex; 2],
weight: &'a E,
}
impl<'a, E: 'a> EdgeReference<'a, E> {
#[inline]
pub fn id(&self) -> EdgeIndex {
self.index
}
#[inline]
pub fn weight(&self) -> &'a E {
self.weight
}
}
impl<E> Clone for EdgeReference<'_, E> {
fn clone(&self) -> Self {
*self
}
}
impl<E> Copy for EdgeReference<'_, E> {}
impl<E> PartialEq for EdgeReference<'_, E>
where
E: PartialEq,
{
fn eq(&self, rhs: &Self) -> bool {
self.index == rhs.index && self.weight == rhs.weight
}
}