rapier3d/data/
graph.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
// This is basically a stripped down version of petgraph's UnGraph.
// - It is not generic with respect to the index type (we always use u32).
// - It preserves associated edge iteration order after Serialization/Deserialization.
// - It is always undirected.
//! A stripped-down version of petgraph's UnGraph.

use std::cmp::max;
use std::ops::{Index, IndexMut};

/// Node identifier.
#[derive(Copy, Clone, Default, PartialEq, PartialOrd, Eq, Ord, Hash, Debug)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct NodeIndex(u32);

impl NodeIndex {
    #[inline]
    pub fn new(x: u32) -> Self {
        NodeIndex(x)
    }

    #[inline]
    pub fn index(self) -> usize {
        self.0 as usize
    }

    #[inline]
    pub fn end() -> Self {
        NodeIndex(crate::INVALID_U32)
    }

    fn _into_edge(self) -> EdgeIndex {
        EdgeIndex(self.0)
    }
}

impl From<u32> for NodeIndex {
    fn from(ix: u32) -> Self {
        NodeIndex(ix)
    }
}

/// Edge identifier.
#[derive(Copy, Clone, Default, PartialEq, PartialOrd, Eq, Ord, Hash, Debug)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct EdgeIndex(u32);

impl EdgeIndex {
    #[inline]
    pub fn new(x: u32) -> Self {
        EdgeIndex(x)
    }

    #[inline]
    pub fn index(self) -> usize {
        self.0 as usize
    }

    /// An invalid `EdgeIndex` used to denote absence of an edge, for example
    /// to end an adjacency list.
    #[inline]
    pub fn end() -> Self {
        EdgeIndex(crate::INVALID_U32)
    }

    fn _into_node(self) -> NodeIndex {
        NodeIndex(self.0)
    }
}

impl From<u32> for EdgeIndex {
    fn from(ix: u32) -> Self {
        EdgeIndex(ix)
    }
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub enum Direction {
    Outgoing = 0,
    Incoming = 1,
}

impl Direction {
    fn opposite(self) -> Direction {
        match self {
            Direction::Outgoing => Direction::Incoming,
            Direction::Incoming => Direction::Outgoing,
        }
    }
}

const DIRECTIONS: [Direction; 2] = [Direction::Outgoing, Direction::Incoming];

/// The graph's node type.
#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct Node<N> {
    /// Associated node data.
    pub weight: N,
    /// Next edge in outgoing and incoming edge lists.
    next: [EdgeIndex; 2],
}

/// The graph's edge type.
#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct Edge<E> {
    /// Associated edge data.
    pub weight: E,
    /// Next edge in outgoing and incoming edge lists.
    next: [EdgeIndex; 2],
    /// Start and End node index
    node: [NodeIndex; 2],
}

impl<E> Edge<E> {
    /// Return the source node index.
    pub fn source(&self) -> NodeIndex {
        self.node[0]
    }

    /// Return the target node index.
    pub fn target(&self) -> NodeIndex {
        self.node[1]
    }
}

#[derive(Clone, Debug, Default)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct Graph<N, E> {
    pub(crate) nodes: Vec<Node<N>>,
    pub(crate) edges: Vec<Edge<E>>,
}

enum Pair<T> {
    Both(T, T),
    One(T),
    None,
}

/// Get mutable references at index `a` and `b`.
fn index_twice<T>(arr: &mut [T], a: usize, b: usize) -> Pair<&mut T> {
    if max(a, b) >= arr.len() {
        Pair::None
    } else if a == b {
        Pair::One(&mut arr[max(a, b)])
    } else {
        // safe because a, b are in bounds and distinct
        unsafe {
            let ar = &mut *(arr.get_unchecked_mut(a) as *mut _);
            let br = &mut *(arr.get_unchecked_mut(b) as *mut _);
            Pair::Both(ar, br)
        }
    }
}

impl<N, E> Graph<N, E> {
    /// Create a new `Graph` with estimated capacity.
    pub fn with_capacity(nodes: usize, edges: usize) -> Self {
        Graph {
            nodes: Vec::with_capacity(nodes),
            edges: Vec::with_capacity(edges),
        }
    }

    /// Add a node (also called vertex) with associated data `weight` to the graph.
    ///
    /// Computes in **O(1)** time.
    ///
    /// Return the index of the new node.
    ///
    /// **Panics** if the Graph is at the maximum number of nodes for its index
    /// type (N/A if usize).
    pub fn add_node(&mut self, weight: N) -> NodeIndex {
        let node = Node {
            weight,
            next: [EdgeIndex::end(), EdgeIndex::end()],
        };
        assert!(self.nodes.len() != crate::INVALID_USIZE);
        let node_idx = NodeIndex::new(self.nodes.len() as u32);
        self.nodes.push(node);
        node_idx
    }

    /// Access the weight for node `a`.
    ///
    /// Also available with indexing syntax: `&graph[a]`.
    pub fn node_weight(&self, a: NodeIndex) -> Option<&N> {
        self.nodes.get(a.index()).map(|n| &n.weight)
    }

    /// Access the weight for edge `a`.
    ///
    /// Also available with indexing syntax: `&graph[a]`.
    pub fn edge_weight(&self, a: EdgeIndex) -> Option<&E> {
        self.edges.get(a.index()).map(|e| &e.weight)
    }

    /// Access the weight for edge `a` mutably.
    ///
    /// Also available with indexing syntax: `&mut graph[a]`.
    pub fn edge_weight_mut(&mut self, a: EdgeIndex) -> Option<&mut E> {
        self.edges.get_mut(a.index()).map(|e| &mut e.weight)
    }

    /// Add an edge from `a` to `b` to the graph, with its associated
    /// data `weight`.
    ///
    /// Return the index of the new edge.
    ///
    /// Computes in **O(1)** time.
    ///
    /// **Panics** if any of the nodes don't exist.<br>
    /// **Panics** if the Graph is at the maximum number of edges for its index
    /// type (N/A if usize).
    ///
    /// **Note:** `Graph` allows adding parallel (“duplicate”) edges. If you want
    /// to avoid this, use [`.update_edge(a, b, weight)`](#method.update_edge) instead.
    pub fn add_edge(&mut self, a: NodeIndex, b: NodeIndex, weight: E) -> EdgeIndex {
        assert!(self.edges.len() != crate::INVALID_USIZE);
        let edge_idx = EdgeIndex::new(self.edges.len() as u32);
        let mut edge = Edge {
            weight,
            node: [a, b],
            next: [EdgeIndex::end(); 2],
        };
        match index_twice(&mut self.nodes, a.index(), b.index()) {
            Pair::None => panic!("Graph::add_edge: node indices out of bounds"),
            Pair::One(an) => {
                edge.next = an.next;
                an.next[0] = edge_idx;
                an.next[1] = edge_idx;
            }
            Pair::Both(an, bn) => {
                // a and b are different indices
                edge.next = [an.next[0], bn.next[1]];
                an.next[0] = edge_idx;
                bn.next[1] = edge_idx;
            }
        }
        self.edges.push(edge);
        edge_idx
    }

    /// Access the source and target nodes for `e`.
    pub fn edge_endpoints(&self, e: EdgeIndex) -> Option<(NodeIndex, NodeIndex)> {
        self.edges
            .get(e.index())
            .map(|ed| (ed.source(), ed.target()))
    }

    /// Remove `a` from the graph if it exists, and return its weight.
    /// If it doesn't exist in the graph, return `None`.
    ///
    /// Apart from `a`, this invalidates the last node index in the graph
    /// (that node will adopt the removed node index). Edge indices are
    /// invalidated as they would be following the removal of each edge
    /// with an endpoint in `a`.
    ///
    /// Computes in **O(e')** time, where **e'** is the number of affected
    /// edges, including *n* calls to `.remove_edge()` where *n* is the number
    /// of edges with an endpoint in `a`, and including the edges with an
    /// endpoint in the displaced node.
    pub fn remove_node(&mut self, a: NodeIndex) -> Option<N> {
        self.nodes.get(a.index())?;
        for d in &DIRECTIONS {
            let k = *d as usize;

            // Remove all edges from and to this node.
            loop {
                let next = self.nodes[a.index()].next[k];
                if next == EdgeIndex::end() {
                    break;
                }
                let ret = self.remove_edge(next);
                debug_assert!(ret.is_some());
                let _ = ret;
            }
        }

        // Use swap_remove -- only the swapped-in node is going to change
        // NodeIndex, so we only have to walk its edges and update them.

        let node = self.nodes.swap_remove(a.index());

        // Find the edge lists of the node that had to relocate.
        // It may be that no node had to relocate, then we are done already.
        let swap_edges = match self.nodes.get(a.index()) {
            None => return Some(node.weight),
            Some(ed) => ed.next,
        };

        // The swapped element's old index
        let old_index = NodeIndex::new(self.nodes.len() as u32);
        let new_index = a;

        // Adjust the starts of the out edges, and ends of the in edges.
        for &d in &DIRECTIONS {
            let k = d as usize;
            let mut edges = edges_walker_mut(&mut self.edges, swap_edges[k], d);
            while let Some(curedge) = edges.next_edge() {
                debug_assert!(curedge.node[k] == old_index);
                curedge.node[k] = new_index;
            }
        }
        Some(node.weight)
    }

    /// For edge `e` with endpoints `edge_node`, replace links to it,
    /// with links to `edge_next`.
    fn change_edge_links(
        &mut self,
        edge_node: [NodeIndex; 2],
        e: EdgeIndex,
        edge_next: [EdgeIndex; 2],
    ) {
        for &d in &DIRECTIONS {
            let k = d as usize;
            let node = match self.nodes.get_mut(edge_node[k].index()) {
                Some(r) => r,
                None => {
                    debug_assert!(
                        false,
                        "Edge's endpoint dir={:?} index={:?} not found",
                        d, edge_node[k]
                    );
                    return;
                }
            };
            let fst = node.next[k];
            if fst == e {
                //println!("Updating first edge 0 for node {}, set to {}", edge_node[0], edge_next[0]);
                node.next[k] = edge_next[k];
            } else {
                let mut edges = edges_walker_mut(&mut self.edges, fst, d);
                while let Some(curedge) = edges.next_edge() {
                    if curedge.next[k] == e {
                        curedge.next[k] = edge_next[k];
                        break; // the edge can only be present once in the list.
                    }
                }
            }
        }
    }

    /// Remove an edge and return its edge weight, or `None` if it didn't exist.
    ///
    /// Apart from `e`, this invalidates the last edge index in the graph
    /// (that edge will adopt the removed edge index).
    ///
    /// Computes in **O(e')** time, where **e'** is the size of four particular edge lists, for
    /// the vertices of `e` and the vertices of another affected edge.
    pub fn remove_edge(&mut self, e: EdgeIndex) -> Option<E> {
        // every edge is part of two lists,
        // outgoing and incoming edges.
        // Remove it from both
        let (edge_node, edge_next) = match self.edges.get(e.index()) {
            None => return None,
            Some(x) => (x.node, x.next),
        };
        // Remove the edge from its in and out lists by replacing it with
        // a link to the next in the list.
        self.change_edge_links(edge_node, e, edge_next);
        self.remove_edge_adjust_indices(e)
    }

    fn remove_edge_adjust_indices(&mut self, e: EdgeIndex) -> Option<E> {
        // swap_remove the edge -- only the removed edge
        // and the edge swapped into place are affected and need updating
        // indices.
        let edge = self.edges.swap_remove(e.index());
        let swap = match self.edges.get(e.index()) {
            // no element needed to be swapped.
            None => return Some(edge.weight),
            Some(ed) => ed.node,
        };
        let swapped_e = EdgeIndex::new(self.edges.len() as u32);

        // Update the edge lists by replacing links to the old index by references to the new
        // edge index.
        self.change_edge_links(swap, swapped_e, [e, e]);
        Some(edge.weight)
    }

    /// Return an iterator of all edges of `a`.
    ///
    /// - `Directed`: Outgoing edges from `a`.
    /// - `Undirected`: All edges connected to `a`.
    ///
    /// Produces an empty iterator if the node doesn't exist.<br>
    /// Iterator element type is `EdgeReference<E, Ix>`.
    pub fn edges(&self, a: NodeIndex) -> Edges<E> {
        self.edges_directed(a, Direction::Outgoing)
    }

    /// Return an iterator of all edges of `a`, in the specified direction.
    ///
    /// - `Directed`, `Outgoing`: All edges from `a`.
    /// - `Directed`, `Incoming`: All edges to `a`.
    /// - `Undirected`, `Outgoing`: All edges connected to `a`, with `a` being the source of each
    ///   edge.
    /// - `Undirected`, `Incoming`: All edges connected to `a`, with `a` being the target of each
    ///   edge.
    ///
    /// Produces an empty iterator if the node `a` doesn't exist.<br>
    /// Iterator element type is `EdgeReference<E, Ix>`.
    pub fn edges_directed(&self, a: NodeIndex, dir: Direction) -> Edges<E> {
        Edges {
            skip_start: a,
            edges: &self.edges,
            direction: dir,
            next: match self.nodes.get(a.index()) {
                None => [EdgeIndex::end(), EdgeIndex::end()],
                Some(n) => n.next,
            },
        }
    }

    /*
    /// Return an iterator over all the edges connecting `a` and `b`.
    ///
    /// - `Directed`: Outgoing edges from `a`.
    /// - `Undirected`: All edges connected to `a`.
    ///
    /// Iterator element type is `EdgeReference<E, Ix>`.
    pub fn edges_connecting(&self, a: NodeIndex, b: NodeIndex) -> EdgesConnecting<E, Ty, Ix> {
        EdgesConnecting {
            target_node: b,
            edges: self.edges_directed(a, Direction::Outgoing),
            ty: PhantomData,
        }
    }
    */

    /// Lookup an edge from `a` to `b`.
    ///
    /// Computes in **O(e')** time, where **e'** is the number of edges
    /// connected to `a` (and `b`, if the graph edges are undirected).
    pub fn find_edge(&self, a: NodeIndex, b: NodeIndex) -> Option<EdgeIndex> {
        self.find_edge_undirected(a, b).map(|(ix, _)| ix)
    }

    /// Lookup an edge between `a` and `b`, in either direction.
    ///
    /// If the graph is undirected, then this is equivalent to `.find_edge()`.
    ///
    /// Return the edge index and its directionality, with `Outgoing` meaning
    /// from `a` to `b` and `Incoming` the reverse,
    /// or `None` if the edge does not exist.
    pub fn find_edge_undirected(
        &self,
        a: NodeIndex,
        b: NodeIndex,
    ) -> Option<(EdgeIndex, Direction)> {
        match self.nodes.get(a.index()) {
            None => None,
            Some(node) => self.find_edge_undirected_from_node(node, b),
        }
    }

    fn find_edge_undirected_from_node(
        &self,
        node: &Node<N>,
        b: NodeIndex,
    ) -> Option<(EdgeIndex, Direction)> {
        for &d in &DIRECTIONS {
            let k = d as usize;
            let mut edix = node.next[k];
            while let Some(edge) = self.edges.get(edix.index()) {
                if edge.node[1 - k] == b {
                    return Some((edix, d));
                }
                edix = edge.next[k];
            }
        }
        None
    }

    /// Access the internal node array.
    pub fn raw_nodes(&self) -> &[Node<N>] {
        &self.nodes
    }

    /// Access the internal edge array.
    pub fn raw_edges(&self) -> &[Edge<E>] {
        &self.edges
    }

    /// Accessor for data structure internals: the first edge in the given direction.
    pub fn first_edge(&self, a: NodeIndex, dir: Direction) -> Option<EdgeIndex> {
        match self.nodes.get(a.index()) {
            None => None,
            Some(node) => {
                let edix = node.next[dir as usize];
                if edix == EdgeIndex::end() {
                    None
                } else {
                    Some(edix)
                }
            }
        }
    }

    /// Accessor for data structure internals: the next edge for the given direction.
    pub fn next_edge(&self, e: EdgeIndex, dir: Direction) -> Option<EdgeIndex> {
        match self.edges.get(e.index()) {
            None => None,
            Some(node) => {
                let edix = node.next[dir as usize];
                if edix == EdgeIndex::end() {
                    None
                } else {
                    Some(edix)
                }
            }
        }
    }
}

struct EdgesWalkerMut<'a, E: 'a> {
    edges: &'a mut [Edge<E>],
    next: EdgeIndex,
    dir: Direction,
}

fn edges_walker_mut<E>(
    edges: &mut [Edge<E>],
    next: EdgeIndex,
    dir: Direction,
) -> EdgesWalkerMut<E> {
    EdgesWalkerMut { edges, next, dir }
}

impl<E> EdgesWalkerMut<'_, E> {
    fn next_edge(&mut self) -> Option<&mut Edge<E>> {
        self.next().map(|t| t.1)
    }

    fn next(&mut self) -> Option<(EdgeIndex, &mut Edge<E>)> {
        let this_index = self.next;
        let k = self.dir as usize;
        match self.edges.get_mut(self.next.index()) {
            None => None,
            Some(edge) => {
                self.next = edge.next[k];
                Some((this_index, edge))
            }
        }
    }
}

/// Iterator over the edges of from or to a node
pub struct Edges<'a, E: 'a> {
    /// starting node to skip over
    skip_start: NodeIndex,
    edges: &'a [Edge<E>],

    /// Next edge to visit.
    next: [EdgeIndex; 2],

    /// For directed graphs: the direction to iterate in
    /// For undirected graphs: the direction of edges
    direction: Direction,
}

impl<'a, E> Iterator for Edges<'a, E> {
    type Item = EdgeReference<'a, E>;

    fn next(&mut self) -> Option<Self::Item> {
        //      type        direction    |    iterate over    reverse
        //                               |
        //    Directed      Outgoing     |      outgoing        no
        //    Directed      Incoming     |      incoming        no
        //   Undirected     Outgoing     |        both       incoming
        //   Undirected     Incoming     |        both       outgoing

        // For iterate_over, "both" is represented as None.
        // For reverse, "no" is represented as None.
        let (iterate_over, _reverse) = (None, Some(self.direction.opposite()));

        if iterate_over.unwrap_or(Direction::Outgoing) == Direction::Outgoing {
            let i = self.next[0].index();
            if let Some(Edge {
                node: _node,
                weight,
                next,
            }) = self.edges.get(i)
            {
                self.next[0] = next[0];
                return Some(EdgeReference {
                    index: EdgeIndex(i as u32),
                    // node: if reverse == Some(Direction::Outgoing) {
                    //     swap_pair(*node)
                    // } else {
                    //     *node
                    // },
                    weight,
                });
            }
        }

        if iterate_over.unwrap_or(Direction::Incoming) == Direction::Incoming {
            while let Some(Edge { node, weight, next }) = self.edges.get(self.next[1].index()) {
                let edge_index = self.next[1];
                self.next[1] = next[1];
                // In any of the "both" situations, self-loops would be iterated over twice.
                // Skip them here.
                if iterate_over.is_none() && node[0] == self.skip_start {
                    continue;
                }

                return Some(EdgeReference {
                    index: edge_index,
                    // node: if reverse == Some(Direction::Incoming) {
                    //     swap_pair(*node)
                    // } else {
                    //     *node
                    // },
                    weight,
                });
            }
        }

        None
    }
}

// fn swap_pair<T>(mut x: [T; 2]) -> [T; 2] {
//     x.swap(0, 1);
//     x
// }

impl<E> Clone for Edges<'_, E> {
    fn clone(&self) -> Self {
        Edges {
            skip_start: self.skip_start,
            edges: self.edges,
            next: self.next,
            direction: self.direction,
        }
    }
}

/// Index the `Graph` by `NodeIndex` to access node weights.
///
/// **Panics** if the node doesn't exist.
impl<N, E> Index<NodeIndex> for Graph<N, E> {
    type Output = N;
    fn index(&self, index: NodeIndex) -> &N {
        &self.nodes[index.index()].weight
    }
}

/// Index the `Graph` by `NodeIndex` to access node weights.
///
/// **Panics** if the node doesn't exist.
impl<N, E> IndexMut<NodeIndex> for Graph<N, E> {
    fn index_mut(&mut self, index: NodeIndex) -> &mut N {
        &mut self.nodes[index.index()].weight
    }
}

/// Index the `Graph` by `EdgeIndex` to access edge weights.
///
/// **Panics** if the edge doesn't exist.
impl<N, E> Index<EdgeIndex> for Graph<N, E> {
    type Output = E;
    fn index(&self, index: EdgeIndex) -> &E {
        &self.edges[index.index()].weight
    }
}

/// Index the `Graph` by `EdgeIndex` to access edge weights.
///
/// **Panics** if the edge doesn't exist.
impl<N, E> IndexMut<EdgeIndex> for Graph<N, E> {
    fn index_mut(&mut self, index: EdgeIndex) -> &mut E {
        &mut self.edges[index.index()].weight
    }
}

/// Reference to a `Graph` edge.
#[derive(Debug)]
pub struct EdgeReference<'a, E: 'a> {
    index: EdgeIndex,
    // node: [NodeIndex; 2],
    weight: &'a E,
}

impl<'a, E: 'a> EdgeReference<'a, E> {
    #[inline]
    pub fn id(&self) -> EdgeIndex {
        self.index
    }

    #[inline]
    pub fn weight(&self) -> &'a E {
        self.weight
    }
}

impl<E> Clone for EdgeReference<'_, E> {
    fn clone(&self) -> Self {
        *self
    }
}

impl<E> Copy for EdgeReference<'_, E> {}

impl<E> PartialEq for EdgeReference<'_, E>
where
    E: PartialEq,
{
    fn eq(&self, rhs: &Self) -> bool {
        self.index == rhs.index && self.weight == rhs.weight
    }
}