rapier3d/dynamics/joint/
revolute_joint.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
use crate::dynamics::joint::{GenericJoint, GenericJointBuilder, JointAxesMask};
use crate::dynamics::{JointAxis, JointLimits, JointMotor, MotorModel};
use crate::math::{Point, Real, Rotation};

#[cfg(feature = "dim3")]
use crate::math::UnitVector;

#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Copy, Clone, Debug, PartialEq)]
#[repr(transparent)]
/// A revolute joint, locks all relative motion except for rotation along the joint’s principal axis.
pub struct RevoluteJoint {
    /// The underlying joint data.
    pub data: GenericJoint,
}

impl RevoluteJoint {
    /// Creates a new revolute joint allowing only relative rotations.
    #[cfg(feature = "dim2")]
    #[allow(clippy::new_without_default)] // For symmetry with 3D which can’t have a Default impl.
    pub fn new() -> Self {
        let data = GenericJointBuilder::new(JointAxesMask::LOCKED_REVOLUTE_AXES);
        Self { data: data.build() }
    }

    /// Creates a new revolute joint allowing only relative rotations along the specified axis.
    ///
    /// This axis is expressed in the local-space of both rigid-bodies.
    #[cfg(feature = "dim3")]
    pub fn new(axis: UnitVector<Real>) -> Self {
        let data = GenericJointBuilder::new(JointAxesMask::LOCKED_REVOLUTE_AXES)
            .local_axis1(axis)
            .local_axis2(axis)
            .build();
        Self { data }
    }

    /// The underlying generic joint.
    pub fn data(&self) -> &GenericJoint {
        &self.data
    }

    /// Are contacts between the attached rigid-bodies enabled?
    pub fn contacts_enabled(&self) -> bool {
        self.data.contacts_enabled
    }

    /// Sets whether contacts between the attached rigid-bodies are enabled.
    pub fn set_contacts_enabled(&mut self, enabled: bool) -> &mut Self {
        self.data.set_contacts_enabled(enabled);
        self
    }

    /// The joint’s anchor, expressed in the local-space of the first rigid-body.
    #[must_use]
    pub fn local_anchor1(&self) -> Point<Real> {
        self.data.local_anchor1()
    }

    /// Sets the joint’s anchor, expressed in the local-space of the first rigid-body.
    pub fn set_local_anchor1(&mut self, anchor1: Point<Real>) -> &mut Self {
        self.data.set_local_anchor1(anchor1);
        self
    }

    /// The joint’s anchor, expressed in the local-space of the second rigid-body.
    #[must_use]
    pub fn local_anchor2(&self) -> Point<Real> {
        self.data.local_anchor2()
    }

    /// Sets the joint’s anchor, expressed in the local-space of the second rigid-body.
    pub fn set_local_anchor2(&mut self, anchor2: Point<Real>) -> &mut Self {
        self.data.set_local_anchor2(anchor2);
        self
    }

    /// The angle along the free degree of freedom of this revolute joint in `[-π, π]`.
    ///
    /// # Parameters
    /// - `rb_rot1`: the rotation of the first rigid-body attached to this revolute joint.
    /// - `rb_rot2`: the rotation of the second rigid-body attached to this revolute joint.
    pub fn angle(&self, rb_rot1: &Rotation<Real>, rb_rot2: &Rotation<Real>) -> Real {
        let joint_rot1 = rb_rot1 * self.data.local_frame1.rotation;
        let joint_rot2 = rb_rot2 * self.data.local_frame2.rotation;
        let ang_err = joint_rot1.inverse() * joint_rot2;

        #[cfg(feature = "dim3")]
        if joint_rot1.dot(&joint_rot2) < 0.0 {
            -ang_err.i.clamp(-1.0, 1.0).asin() * 2.0
        } else {
            ang_err.i.clamp(-1.0, 1.0).asin() * 2.0
        }

        #[cfg(feature = "dim2")]
        {
            ang_err.angle()
        }
    }

    /// The motor affecting the joint’s rotational degree of freedom.
    #[must_use]
    pub fn motor(&self) -> Option<&JointMotor> {
        self.data.motor(JointAxis::AngX)
    }

    /// Set the spring-like model used by the motor to reach the desired target velocity and position.
    pub fn set_motor_model(&mut self, model: MotorModel) -> &mut Self {
        self.data.set_motor_model(JointAxis::AngX, model);
        self
    }

    /// Sets the target velocity this motor needs to reach.
    pub fn set_motor_velocity(&mut self, target_vel: Real, factor: Real) -> &mut Self {
        self.data
            .set_motor_velocity(JointAxis::AngX, target_vel, factor);
        self
    }

    /// Sets the target angle this motor needs to reach.
    pub fn set_motor_position(
        &mut self,
        target_pos: Real,
        stiffness: Real,
        damping: Real,
    ) -> &mut Self {
        self.data
            .set_motor_position(JointAxis::AngX, target_pos, stiffness, damping);
        self
    }

    /// Configure both the target angle and target velocity of the motor.
    pub fn set_motor(
        &mut self,
        target_pos: Real,
        target_vel: Real,
        stiffness: Real,
        damping: Real,
    ) -> &mut Self {
        self.data
            .set_motor(JointAxis::AngX, target_pos, target_vel, stiffness, damping);
        self
    }

    /// Sets the maximum force the motor can deliver.
    pub fn set_motor_max_force(&mut self, max_force: Real) -> &mut Self {
        self.data.set_motor_max_force(JointAxis::AngX, max_force);
        self
    }

    /// The limit angle attached bodies can translate along the joint’s principal axis.
    #[must_use]
    pub fn limits(&self) -> Option<&JointLimits<Real>> {
        self.data.limits(JointAxis::AngX)
    }

    /// Sets the `[min,max]` limit angle attached bodies can translate along the joint’s principal axis.
    pub fn set_limits(&mut self, limits: [Real; 2]) -> &mut Self {
        self.data.set_limits(JointAxis::AngX, limits);
        self
    }
}

impl From<RevoluteJoint> for GenericJoint {
    fn from(val: RevoluteJoint) -> GenericJoint {
        val.data
    }
}

/// Create revolute joints using the builder pattern.
///
/// A revolute joint locks all relative motion except for rotations along the joint’s principal axis.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct RevoluteJointBuilder(pub RevoluteJoint);

impl RevoluteJointBuilder {
    /// Creates a new revolute joint builder.
    #[cfg(feature = "dim2")]
    #[allow(clippy::new_without_default)] // For symmetry with 3D which can’t have a Default impl.
    pub fn new() -> Self {
        Self(RevoluteJoint::new())
    }

    /// Creates a new revolute joint builder, allowing only relative rotations along the specified axis.
    ///
    /// This axis is expressed in the local-space of both rigid-bodies.
    #[cfg(feature = "dim3")]
    pub fn new(axis: UnitVector<Real>) -> Self {
        Self(RevoluteJoint::new(axis))
    }

    /// Sets whether contacts between the attached rigid-bodies are enabled.
    #[must_use]
    pub fn contacts_enabled(mut self, enabled: bool) -> Self {
        self.0.set_contacts_enabled(enabled);
        self
    }

    /// Sets the joint’s anchor, expressed in the local-space of the first rigid-body.
    #[must_use]
    pub fn local_anchor1(mut self, anchor1: Point<Real>) -> Self {
        self.0.set_local_anchor1(anchor1);
        self
    }

    /// Sets the joint’s anchor, expressed in the local-space of the second rigid-body.
    #[must_use]
    pub fn local_anchor2(mut self, anchor2: Point<Real>) -> Self {
        self.0.set_local_anchor2(anchor2);
        self
    }

    /// Set the spring-like model used by the motor to reach the desired target velocity and position.
    #[must_use]
    pub fn motor_model(mut self, model: MotorModel) -> Self {
        self.0.set_motor_model(model);
        self
    }

    /// Sets the target velocity this motor needs to reach.
    #[must_use]
    pub fn motor_velocity(mut self, target_vel: Real, factor: Real) -> Self {
        self.0.set_motor_velocity(target_vel, factor);
        self
    }

    /// Sets the target angle this motor needs to reach.
    #[must_use]
    pub fn motor_position(mut self, target_pos: Real, stiffness: Real, damping: Real) -> Self {
        self.0.set_motor_position(target_pos, stiffness, damping);
        self
    }

    /// Configure both the target angle and target velocity of the motor.
    #[must_use]
    pub fn motor(
        mut self,
        target_pos: Real,
        target_vel: Real,
        stiffness: Real,
        damping: Real,
    ) -> Self {
        self.0.set_motor(target_pos, target_vel, stiffness, damping);
        self
    }

    /// Sets the maximum force the motor can deliver.
    #[must_use]
    pub fn motor_max_force(mut self, max_force: Real) -> Self {
        self.0.set_motor_max_force(max_force);
        self
    }

    /// Sets the `[min,max]` limit angles attached bodies can rotate along the joint’s principal axis.
    #[must_use]
    pub fn limits(mut self, limits: [Real; 2]) -> Self {
        self.0.set_limits(limits);
        self
    }

    /// Builds the revolute joint.
    #[must_use]
    pub fn build(self) -> RevoluteJoint {
        self.0
    }
}

impl From<RevoluteJointBuilder> for GenericJoint {
    fn from(val: RevoluteJointBuilder) -> GenericJoint {
        val.0.into()
    }
}

#[cfg(test)]
mod test {
    #[test]
    fn test_revolute_joint_angle() {
        use crate::math::{Real, Rotation};
        use crate::na::RealField;
        #[cfg(feature = "dim3")]
        use crate::{math::Vector, na::vector};

        #[cfg(feature = "dim2")]
        let revolute = super::RevoluteJointBuilder::new().build();
        #[cfg(feature = "dim2")]
        let rot1 = Rotation::new(1.0);
        #[cfg(feature = "dim3")]
        let revolute = super::RevoluteJointBuilder::new(Vector::y_axis()).build();
        #[cfg(feature = "dim3")]
        let rot1 = Rotation::new(vector![0.0, 1.0, 0.0]);

        let steps = 100;

        // The -pi and pi values will be checked later.
        for i in 1..steps {
            let delta = -Real::pi() + i as Real * Real::two_pi() / steps as Real;
            #[cfg(feature = "dim2")]
            let rot2 = Rotation::new(1.0 + delta);
            #[cfg(feature = "dim3")]
            let rot2 = Rotation::new(vector![0.0, 1.0 + delta, 0.0]);
            approx::assert_relative_eq!(revolute.angle(&rot1, &rot2), delta, epsilon = 1.0e-5);
        }

        // Check the special case for -pi and pi that may return an angle with a flipped sign
        // (because they are equivalent).
        for delta in [-Real::pi(), Real::pi()] {
            #[cfg(feature = "dim2")]
            let rot2 = Rotation::new(1.0 + delta);
            #[cfg(feature = "dim3")]
            let rot2 = Rotation::new(vector![0.0, 1.0 + delta, 0.0]);
            approx::assert_relative_eq!(
                revolute.angle(&rot1, &rot2).abs(),
                delta.abs(),
                epsilon = 1.0e-2
            );
        }
    }
}