rapier3d/dynamics/solver/contact_constraint/
generic_one_body_constraint.rsuse crate::dynamics::solver::OneBodyConstraint;
use crate::dynamics::{
IntegrationParameters, MultibodyJointSet, MultibodyLinkId, RigidBodySet, RigidBodyVelocity,
};
use crate::geometry::{ContactManifold, ContactManifoldIndex};
use crate::math::{Point, Real, DIM, MAX_MANIFOLD_POINTS};
use crate::utils::SimdCross;
use super::{OneBodyConstraintElement, OneBodyConstraintNormalPart};
use crate::dynamics::solver::solver_body::SolverBody;
use crate::dynamics::solver::{ContactPointInfos, OneBodyConstraintBuilder};
#[cfg(feature = "dim2")]
use crate::utils::SimdBasis;
use na::DVector;
#[derive(Copy, Clone)]
pub(crate) struct GenericOneBodyConstraintBuilder {
link2: MultibodyLinkId,
ccd_thickness: Real,
inner: OneBodyConstraintBuilder,
}
impl GenericOneBodyConstraintBuilder {
pub fn invalid() -> Self {
Self {
link2: MultibodyLinkId::default(),
ccd_thickness: 0.0,
inner: OneBodyConstraintBuilder::invalid(),
}
}
pub fn generate(
manifold_id: ContactManifoldIndex,
manifold: &ContactManifold,
bodies: &RigidBodySet,
multibodies: &MultibodyJointSet,
out_builders: &mut [GenericOneBodyConstraintBuilder],
out_constraints: &mut [GenericOneBodyConstraint],
jacobians: &mut DVector<Real>,
jacobian_id: &mut usize,
) {
let mut handle1 = manifold.data.rigid_body1;
let mut handle2 = manifold.data.rigid_body2;
let flipped = manifold.data.relative_dominance < 0;
let (force_dir1, flipped_multiplier) = if flipped {
std::mem::swap(&mut handle1, &mut handle2);
(manifold.data.normal, -1.0)
} else {
(-manifold.data.normal, 1.0)
};
let (vels1, world_com1) = if let Some(handle1) = handle1 {
let rb1 = &bodies[handle1];
(rb1.vels, rb1.mprops.world_com)
} else {
(RigidBodyVelocity::zero(), Point::origin())
};
let rb1 = handle1
.map(|h| SolverBody::from(&bodies[h]))
.unwrap_or_default();
let rb2 = &bodies[handle2.unwrap()];
let (vels2, mprops2) = (&rb2.vels, &rb2.mprops);
let link2 = *multibodies.rigid_body_link(handle2.unwrap()).unwrap();
let (mb2, link_id2) = (&multibodies[link2.multibody], link2.id);
let solver_vel2 = mb2.solver_id;
#[cfg(feature = "dim2")]
let tangents1 = force_dir1.orthonormal_basis();
#[cfg(feature = "dim3")]
let tangents1 =
super::compute_tangent_contact_directions(&force_dir1, &vels1.linvel, &vels2.linvel);
let multibodies_ndof = mb2.ndofs();
let required_jacobian_len =
*jacobian_id + manifold.data.solver_contacts.len() * multibodies_ndof * 2 * DIM;
if jacobians.nrows() < required_jacobian_len && !cfg!(feature = "parallel") {
jacobians.resize_vertically_mut(required_jacobian_len, 0.0);
}
for (l, manifold_points) in manifold
.data
.solver_contacts
.chunks(MAX_MANIFOLD_POINTS)
.enumerate()
{
let chunk_j_id = *jacobian_id;
let builder = &mut out_builders[l];
let constraint = &mut out_constraints[l];
builder.inner.rb1 = rb1;
builder.inner.vels1 = vels1;
constraint.inner.dir1 = force_dir1;
constraint.inner.im2 = mprops2.effective_inv_mass;
constraint.inner.solver_vel2 = solver_vel2;
constraint.inner.manifold_id = manifold_id;
constraint.inner.num_contacts = manifold_points.len() as u8;
#[cfg(feature = "dim3")]
{
constraint.inner.tangent1 = tangents1[0];
}
for k in 0..manifold_points.len() {
let manifold_point = &manifold_points[k];
let point = manifold_point.point;
let dp1 = point - world_com1;
let dp2 = point - mprops2.world_com;
let vel1 = vels1.linvel + vels1.angvel.gcross(dp1);
let vel2 = vels2.linvel + vels2.angvel.gcross(dp2);
constraint.inner.limit = manifold_point.friction;
constraint.inner.manifold_contact_id[k] = manifold_point.contact_id;
let normal_rhs_wo_bias;
{
let torque_dir2 = dp2.gcross(-force_dir1);
let inv_r2 = mb2
.fill_jacobians(
link_id2,
-force_dir1,
#[cfg(feature = "dim2")]
na::vector!(torque_dir2),
#[cfg(feature = "dim3")]
torque_dir2,
jacobian_id,
jacobians,
)
.0;
let r = crate::utils::inv(inv_r2);
let is_bouncy = manifold_point.is_bouncy() as u32 as Real;
let proj_vel1 = vel1.dot(&force_dir1);
let proj_vel2 = vel2.dot(&force_dir1);
let dvel = proj_vel1 - proj_vel2;
normal_rhs_wo_bias =
proj_vel1 + (is_bouncy * manifold_point.restitution) * dvel;
constraint.inner.elements[k].normal_part = OneBodyConstraintNormalPart {
gcross2: na::zero(), rhs: na::zero(),
rhs_wo_bias: na::zero(),
impulse: na::zero(),
impulse_accumulator: na::zero(),
r,
r_mat_elts: [0.0; 2],
};
}
{
constraint.inner.elements[k].tangent_part.impulse = na::zero();
for j in 0..DIM - 1 {
let torque_dir2 = dp2.gcross(-tangents1[j]);
let inv_r2 = mb2
.fill_jacobians(
link_id2,
-tangents1[j],
#[cfg(feature = "dim2")]
na::vector![torque_dir2],
#[cfg(feature = "dim3")]
torque_dir2,
jacobian_id,
jacobians,
)
.0;
let r = crate::utils::inv(inv_r2);
let rhs_wo_bias = (vel1
+ flipped_multiplier * manifold_point.tangent_velocity)
.dot(&tangents1[j]);
constraint.inner.elements[k].tangent_part.rhs_wo_bias[j] = rhs_wo_bias;
constraint.inner.elements[k].tangent_part.rhs[j] = rhs_wo_bias;
constraint.inner.elements[k].tangent_part.r[j] = r;
}
}
let infos = ContactPointInfos {
local_p1: rb1.position.inverse_transform_point(&manifold_point.point),
local_p2: rb2
.pos
.position
.inverse_transform_point(&manifold_point.point),
tangent_vel: manifold_point.tangent_velocity,
dist: manifold_point.dist,
normal_rhs_wo_bias,
};
builder.link2 = link2;
builder.ccd_thickness = rb2.ccd.ccd_thickness;
builder.inner.infos[k] = infos;
constraint.inner.manifold_contact_id[k] = manifold_point.contact_id;
}
constraint.j_id = chunk_j_id;
constraint.ndofs2 = mb2.ndofs();
}
}
pub fn update(
&self,
params: &IntegrationParameters,
solved_dt: Real,
_solver_bodies: &[SolverBody],
multibodies: &MultibodyJointSet,
constraint: &mut GenericOneBodyConstraint,
) {
let pos2 = &multibodies[self.link2.multibody]
.link(self.link2.id)
.unwrap()
.local_to_world;
self.inner
.update_with_positions(params, solved_dt, pos2, &mut constraint.inner);
}
}
#[derive(Copy, Clone, Debug)]
pub(crate) struct GenericOneBodyConstraint {
pub inner: OneBodyConstraint,
pub j_id: usize,
pub ndofs2: usize,
}
impl GenericOneBodyConstraint {
pub fn invalid() -> Self {
Self {
inner: OneBodyConstraint::invalid(),
j_id: usize::MAX,
ndofs2: usize::MAX,
}
}
pub fn warmstart(
&mut self,
jacobians: &DVector<Real>,
generic_solver_vels: &mut DVector<Real>,
) {
let solver_vel2 = self.inner.solver_vel2;
let elements = &mut self.inner.elements[..self.inner.num_contacts as usize];
OneBodyConstraintElement::generic_warmstart_group(
elements,
jacobians,
self.ndofs2,
self.j_id,
solver_vel2,
generic_solver_vels,
);
}
#[profiling::function]
pub fn solve(
&mut self,
jacobians: &DVector<Real>,
generic_solver_vels: &mut DVector<Real>,
solve_restitution: bool,
solve_friction: bool,
) {
let solver_vel2 = self.inner.solver_vel2;
let elements = &mut self.inner.elements[..self.inner.num_contacts as usize];
OneBodyConstraintElement::generic_solve_group(
self.inner.cfm_factor,
elements,
jacobians,
self.inner.limit,
self.ndofs2,
self.j_id,
solver_vel2,
generic_solver_vels,
solve_restitution,
solve_friction,
);
}
pub fn writeback_impulses(&self, manifolds_all: &mut [&mut ContactManifold]) {
self.inner.writeback_impulses(manifolds_all);
}
pub fn remove_cfm_and_bias_from_rhs(&mut self) {
self.inner.remove_cfm_and_bias_from_rhs();
}
}