rapier3d/geometry/broad_phase_multi_sap/broad_phase_multi_sap.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
use super::{
BroadPhasePairEvent, ColliderPair, SAPLayer, SAPProxies, SAPProxy, SAPProxyData, SAPRegionPool,
};
use crate::geometry::{
BroadPhaseProxyIndex, Collider, ColliderBroadPhaseData, ColliderChanges, ColliderHandle,
ColliderSet,
};
use crate::math::{Isometry, Real};
use crate::prelude::{BroadPhase, RigidBodySet};
use crate::utils::IndexMut2;
use parry::bounding_volume::BoundingVolume;
use parry::utils::hashmap::HashMap;
/// A broad-phase combining a Hierarchical Grid and Sweep-and-Prune.
///
/// The basic Sweep-and-Prune (SAP) algorithm has one significant flaws:
/// the interactions between far-away objects. This means that objects
/// that are very far away will still have some of their endpoints swapped
/// within the SAP data-structure. This results in poor scaling because this
/// results in lots of swapping between endpoints of Aabbs that won't ever
/// actually interact.
///
/// The first optimization to address this problem is to use the Multi-SAP
/// method. This basically combines an SAP with a grid. The grid subdivides
/// the spaces into equally-sized subspaces (grid cells). Each subspace, which we call
/// a "region" contains an SAP instance (i.e. there SAP axes responsible for
/// collecting endpoints and swapping them when they move to detect interaction pairs).
/// Each Aabb is inserted in all the regions it intersects.
/// This prevents the far-away problem because two objects that are far away will
/// be located on different regions. So their endpoints will never meet.
///
/// However, the Multi-SAP approach has one notable problem: the region size must
/// be chosen wisely. It could be user-defined, but that's makes it more difficult
/// to use (for the end-user). Or it can be given a fixed value. Using a fixed
/// value may result in large objects intersecting lots of regions, resulting in
/// poor performances and very high memory usage.
///
/// So a solution to that large-objects problem is the Multi-SAP approach is to
/// replace the grid by a hierarchical grid. A hierarchical grid is composed of
/// several layers. And each layer have different region sizes. For example all
/// the regions on layer 0 will have the size 1x1x1. All the regions on the layer
/// 1 will have the size 10x10x10, etc. That way, a given Aabb will be inserted
/// on the layer that has regions big enough to avoid the large-object problem.
/// For example a 20x20x20 object will be inserted in the layer with region
/// of size 10x10x10, resulting in only 8 regions being intersect by the Aabb.
/// (If it was inserted in the layer with regions of size 1x1x1, it would have intersected
/// 8000 regions, which is a problem performance-wise.)
///
/// We call this new method the Hierarchical-SAP.
///
/// Now with the Hierarchical-SAP, we can update each layer independently from one another.
/// However, objects belonging to different layers will never be detected as intersecting that
/// way. So we need a way to do inter-layer interference detection. There is a lot ways of doing
/// this: performing inter-layer Multi-Box-Pruning passes is one example (but this is not what we do).
/// In our implementation, we do the following:
/// - The Aabb bounds of each region of the layer `n` are inserted into the corresponding larger region
/// of the layer `n + 1`.
/// - When an Aabb in the region of the layer `n + 1` intersects the Aabb corresponding to one of the
/// regions at the smaller layer `n`, we add that Aabb to that smaller region.
///
/// So in the end it means that a given Aabb will be inserted into all the region it intersects at
/// the layer `n`. And it will also be inserted into all the regions it intersects at the smaller layers
/// (the layers `< n`), but only for the regions that already exist (so we don't have to discretize
/// our Aabb into the layers `< n`). This involves a fair amount of bookkeeping unfortunately, but
/// this has the benefit of keep the overall complexity of the algorithm O(1) in the typical specially
/// coherent scenario.
///
/// From an implementation point-of-view, our hierarchical SAP is implemented with the following structures:
/// - There is one `SAPLayer` per layer of the hierarchical grid.
/// - Each `SAPLayer` contains multiple `SAPRegion` (each being a region of the grid represented by that layer).
/// - Each `SAPRegion` contains three `SAPAxis`, representing the "classical" SAP algorithm running on this region.
/// - Each `SAPAxis` maintains a sorted list of `SAPEndpoints` representing the endpoints of the Aabbs intersecting
/// the bounds on the `SAPRegion` containing this `SAPAxis`.
/// - A set of `SAPProxy` are maintained separately. It contains the Aabbs of all the colliders managed by this
/// broad-phase, as well as the Aabbs of all the regions part of this broad-phase.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone)]
pub struct BroadPhaseMultiSap {
proxies: SAPProxies,
layers: Vec<SAPLayer>,
smallest_layer: u8,
largest_layer: u8,
// NOTE: we maintain this hashmap to simplify collider removal.
// This information is also present in the ColliderProxyId
// component. However if that component is removed, we need
// a way to access it to do some cleanup.
// Note that we could just remove the ColliderProxyId component
// altogether but that would be slow because of the need to
// always access this hashmap. Instead, we access this hashmap
// only when the collider has been added/removed.
// Another alternative would be to remove ColliderProxyId and
// just use a Coarena. But this seems like it could use too
// much memory.
#[cfg_attr(
feature = "serde-serialize",
serde(
serialize_with = "crate::utils::serde::serialize_to_vec_tuple",
deserialize_with = "crate::utils::serde::deserialize_from_vec_tuple"
)
)]
colliders_proxy_ids: HashMap<ColliderHandle, BroadPhaseProxyIndex>,
#[cfg_attr(feature = "serde-serialize", serde(skip))]
region_pool: SAPRegionPool, // To avoid repeated allocations.
// We could think serializing this workspace is useless.
// It turns out is is important to serialize at least its capacity
// and restore this capacity when deserializing the hashmap.
// This is because the order of future elements inserted into the
// hashmap depends on its capacity (because the internal bucket indices
// depend on this capacity). So not restoring this capacity may alter
// the order at which future elements are reported. This will in turn
// alter the order at which the pairs are registered in the narrow-phase,
// thus altering the order of the contact manifold. In the end, this
// alters the order of the resolution of contacts, resulting in
// diverging simulation after restoration of a snapshot.
#[cfg_attr(
feature = "serde-serialize",
serde(
serialize_with = "parry::utils::hashmap::serialize_hashmap_capacity",
deserialize_with = "parry::utils::hashmap::deserialize_hashmap_capacity"
)
)]
reporting: HashMap<(u32, u32), bool>, // Workspace
}
impl Default for BroadPhaseMultiSap {
fn default() -> Self {
Self::new()
}
}
impl BroadPhaseMultiSap {
/// Create a new empty broad-phase.
pub fn new() -> Self {
BroadPhaseMultiSap {
proxies: SAPProxies::new(),
layers: Vec::new(),
smallest_layer: 0,
largest_layer: 0,
region_pool: Vec::new(),
reporting: HashMap::default(),
colliders_proxy_ids: HashMap::default(),
}
}
/// Maintain the broad-phase internal state by taking collider removal into account.
///
/// For each colliders marked as removed, we make their containing layer mark
/// its proxy as pre-deleted. The actual proxy removal will happen at the end
/// of the `BroadPhaseMultiSap::update`.
fn handle_removed_colliders(&mut self, removed_colliders: &[ColliderHandle]) {
// For each removed collider, remove the corresponding proxy.
for removed in removed_colliders {
if let Some(proxy_id) = self.colliders_proxy_ids.get(removed).copied() {
self.predelete_proxy(proxy_id);
}
}
}
/// Pre-deletes a proxy from this broad-phase.
///
/// The removal of a proxy is a semi-lazy process. It will mark
/// the proxy as predeleted, and will set its Aabb as +infinity.
/// After this method has been called with all the proxies to
/// remove, the `complete_removal` method MUST be called to
/// complete the removal of these proxies, by actually removing them
/// from all the relevant layers/regions/axes.
fn predelete_proxy(&mut self, proxy_index: BroadPhaseProxyIndex) {
if proxy_index == crate::INVALID_U32 {
// This collider has not been added to the broad-phase yet.
return;
}
let proxy = &mut self.proxies[proxy_index];
let layer = &mut self.layers[proxy.layer_id as usize];
// Let the layer know that the proxy is being deleted.
layer.predelete_proxy(&mut self.proxies, proxy_index);
}
/// Completes the removal of the deleted proxies.
///
/// If `self.predelete_proxy` was called, then this `complete_removals`
/// method must be called to complete the removals.
///
/// This method will actually remove from the proxy list all the proxies
/// marked as deletable by `self.predelete_proxy`, making their proxy
/// handles re-usable by new proxies.
fn complete_removals(
&mut self,
colliders: &mut ColliderSet,
removed_colliders: &[ColliderHandle],
) {
// If there is no layer, there is nothing to remove.
if self.layers.is_empty() {
return;
}
// This is a bottom-up pass:
// - Complete the removal on the layer `n`. This may cause so regions to be deleted.
// - Continue with the layer `n + 1`. This will delete from `n + 1` all the proxies
// of the regions originating from `n`.
// This bottom-up approach will propagate region removal from the smallest layer up
// to the largest layer.
let mut curr_layer_id = self.smallest_layer;
loop {
let curr_layer = &mut self.layers[curr_layer_id as usize];
if let Some(larger_layer_id) = curr_layer.larger_layer {
let (curr_layer, larger_layer) = self
.layers
.index_mut2(curr_layer_id as usize, larger_layer_id as usize);
curr_layer.complete_removals(
Some(larger_layer),
&mut self.proxies,
&mut self.region_pool,
);
// NOTE: we don't care about reporting pairs.
self.reporting.clear();
curr_layer_id = larger_layer_id;
} else {
curr_layer.complete_removals(None, &mut self.proxies, &mut self.region_pool);
// NOTE: we don't care about reporting pairs.
self.reporting.clear();
break;
}
}
/*
* Actually remove the colliders proxies.
*/
for removed in removed_colliders {
#[cfg(feature = "enhanced-determinism")]
let proxy_id = self.colliders_proxy_ids.swap_remove(removed);
#[cfg(not(feature = "enhanced-determinism"))]
let proxy_id = self.colliders_proxy_ids.remove(removed);
if let Some(proxy_id) = proxy_id {
if proxy_id != crate::INVALID_U32 {
self.proxies.remove(proxy_id);
}
}
if let Some(co) = colliders.get_mut_internal(*removed) {
// Reset the proxy index.
co.bf_data.proxy_index = crate::INVALID_U32;
}
}
}
/// Finalize the insertion of the layer identified by `layer_id`.
///
/// This will:
/// - Remove all the subregion proxies from the larger layer.
/// - Pre-insert all the smaller layer's region proxies into this layer.
#[profiling::function]
fn finalize_layer_insertion(&mut self, layer_id: u8) {
// Remove all the region endpoints from the larger layer.
// They will be automatically replaced by the new layer's regions.
if let Some(larger_layer) = self.layers[layer_id as usize].larger_layer {
self.layers[larger_layer as usize].unregister_all_subregions(&mut self.proxies);
}
// Add all the regions from the smaller layer to the new layer.
// This will result in new regions to be created in the new layer.
// These new regions will automatically propagate to the larger layers in
// the Phase 3 of `Self::update`.
if let Some(smaller_layer) = self.layers[layer_id as usize].smaller_layer {
let (smaller_layer, new_layer) = self
.layers
.index_mut2(smaller_layer as usize, layer_id as usize);
smaller_layer.propagate_existing_regions(
new_layer,
&mut self.proxies,
&mut self.region_pool,
);
}
}
/// Ensures that a given layer exists.
///
/// If the layer does not exist then:
/// 1. It is created and added to `self.layers`.
/// 2. The smaller/larger layer indices are updated to order them
/// properly depending on their depth.
/// 3. All the subregion proxies from the larger layer are deleted:
/// they will be replaced by this new layer's regions later in
/// the `update` function.
/// 4. All the regions from the smaller layer are added to that new
/// layer.
#[profiling::function]
fn ensure_layer_exists(&mut self, new_depth: i8) -> u8 {
// Special case: we don't have any layers yet.
if self.layers.is_empty() {
let layer_id = self.layers.len() as u8; // TODO: check overflow.
self.layers
.push(SAPLayer::new(new_depth, layer_id, None, None));
return 0;
}
// Find the first layer with a depth larger or equal to new_depth.
let mut larger_layer_id = Some(self.smallest_layer);
while let Some(curr_layer_id) = larger_layer_id {
if self.layers[curr_layer_id as usize].depth >= new_depth {
break;
}
larger_layer_id = self.layers[curr_layer_id as usize].larger_layer;
}
match larger_layer_id {
None => {
// The layer we are currently creating is the new largest layer. So
// we need to update `self.largest_layer` accordingly then call
// `self.finalize_layer_insertion.
assert_ne!(self.layers.len() as u8, u8::MAX, "Not yet implemented.");
let new_layer_id = self.layers.len() as u8;
self.layers[self.largest_layer as usize].larger_layer = Some(new_layer_id);
self.layers.push(SAPLayer::new(
new_depth,
new_layer_id,
Some(self.largest_layer),
None,
));
self.largest_layer = new_layer_id;
self.finalize_layer_insertion(new_layer_id);
new_layer_id
}
Some(larger_layer_id) => {
if self.layers[larger_layer_id as usize].depth == new_depth {
// Found it! The layer already exists.
larger_layer_id
} else {
// The layer does not exist yet. Create it.
// And we found another layer that is larger than this one.
// So we need to adjust the smaller/larger layer indices too
// keep the list sorted, and then call `self.finalize_layer_insertion`
// to deal with region propagation.
let new_layer_id = self.layers.len() as u8;
let smaller_layer_id = self.layers[larger_layer_id as usize].smaller_layer;
self.layers[larger_layer_id as usize].smaller_layer = Some(new_layer_id);
if let Some(smaller_layer_id) = smaller_layer_id {
self.layers[smaller_layer_id as usize].larger_layer = Some(new_layer_id);
} else {
self.smallest_layer = new_layer_id;
}
self.layers.push(SAPLayer::new(
new_depth,
new_layer_id,
smaller_layer_id,
Some(larger_layer_id),
));
self.finalize_layer_insertion(new_layer_id);
new_layer_id
}
}
}
}
fn handle_modified_collider(
&mut self,
prediction_distance: Real,
handle: ColliderHandle,
proxy_index: &mut u32,
collider: &Collider,
next_position: Option<&Isometry<Real>>,
) -> bool {
let mut aabb = collider.compute_collision_aabb(prediction_distance / 2.0);
if let Some(next_position) = next_position {
let next_aabb = collider
.shape
.compute_aabb(next_position)
.loosened(collider.contact_skin() + prediction_distance / 2.0);
aabb.merge(&next_aabb);
}
if aabb.mins.coords.iter().any(|e| !e.is_finite())
|| aabb.maxs.coords.iter().any(|e| !e.is_finite())
{
// Reject Aabbs with non-finite values.
return false;
}
aabb.mins = super::clamp_point(aabb.mins);
aabb.maxs = super::clamp_point(aabb.maxs);
let prev_aabb;
let layer_id = if let Some(proxy) = self.proxies.get_mut(*proxy_index) {
let mut layer_id = proxy.layer_id;
prev_aabb = proxy.aabb;
proxy.aabb = aabb;
if collider.changes.contains(ColliderChanges::SHAPE) {
// If the shape was changed, then we need to see if this proxy should be
// migrated to a larger layer. Indeed, if the shape was replaced by
// a much larger shape, we need to promote the proxy to a bigger layer
// to avoid the O(n²) discretization problem.
let new_layer_depth = super::layer_containing_aabb(&aabb);
if new_layer_depth > proxy.layer_depth {
self.layers[proxy.layer_id as usize]
.proper_proxy_moved_to_bigger_layer(&mut self.proxies, *proxy_index);
// We need to promote the proxy to the bigger layer.
layer_id = self.ensure_layer_exists(new_layer_depth);
self.proxies[*proxy_index].layer_id = layer_id;
self.proxies[*proxy_index].layer_depth = new_layer_depth;
}
}
layer_id
} else {
let layer_depth = super::layer_containing_aabb(&aabb);
let layer_id = self.ensure_layer_exists(layer_depth);
// Create the proxy.
let proxy = SAPProxy::collider(handle, aabb, layer_id, layer_depth);
prev_aabb = aabb;
*proxy_index = self.proxies.insert(proxy);
layer_id
};
let layer = &mut self.layers[layer_id as usize];
// Preupdate the collider in the layer.
// We need to use both the prev Aabb and the new Aabb for this update, to
// handle special cases where one Aabb has left a region that doesn’t contain
// any other modified Aabbs.
// If the combination of both previous and new aabbs isn’t more than 25% bigger
// than the new Aabb, we just merge them to save some computation times (to avoid
// discretizing twice the area at their intersection. If it’s bigger than 25% then
// we discretize both aabbs individually.
let merged_aabbs = prev_aabb.merged(&aabb);
if merged_aabbs.volume() > aabb.volume() * 1.25 {
layer.preupdate_collider(
*proxy_index,
&aabb,
None,
&mut self.proxies,
&mut self.region_pool,
);
layer.preupdate_collider(
*proxy_index,
&prev_aabb,
Some(&aabb),
&mut self.proxies,
&mut self.region_pool,
);
} else {
layer.preupdate_collider(
*proxy_index,
&merged_aabbs,
Some(&aabb),
&mut self.proxies,
&mut self.region_pool,
);
}
// Returns true if propagation is needed.
!layer.created_regions.is_empty()
}
/// Propagate regions from the smallest layers up to the larger layers.
///
/// Whenever a region is created on a layer `n`, then its Aabb must be
/// added to its larger layer so we can detect when an object
/// in a larger layer may start interacting with objects in a smaller
/// layer.
#[profiling::function]
fn propagate_created_regions(&mut self) {
let mut curr_layer = Some(self.smallest_layer);
while let Some(curr_layer_id) = curr_layer {
let layer = &mut self.layers[curr_layer_id as usize];
let larger_layer = layer.larger_layer;
if !layer.created_regions.is_empty() {
if let Some(larger_layer) = larger_layer {
let (layer, larger_layer) = self
.layers
.index_mut2(curr_layer_id as usize, larger_layer as usize);
layer.propagate_created_regions(
larger_layer,
&mut self.proxies,
&mut self.region_pool,
);
layer.created_regions.clear();
} else {
// Always clear the set of created regions, even if
// there is no larger layer.
layer.created_regions.clear();
}
}
curr_layer = larger_layer;
}
}
#[profiling::function]
fn update_layers_and_find_pairs(&mut self, out_events: &mut Vec<BroadPhasePairEvent>) {
if self.layers.is_empty() {
return;
}
// This is a top-down operation: we start by updating the largest
// layer, and continue down to the smallest layer.
//
// This must be top-down because:
// 1. If a non-region proxy from the layer `n` interacts with one of
// the regions from the layer `n - 1`, it must be added to that
// smaller layer before that smaller layer is updated.
// 2. If a region has been updated, then all its subregions at the
// layer `n - 1` must be marked as "needs-to-be-updated" too, in
// order to account for the fact that a big proxy moved.
// NOTE: this 2nd point could probably be improved: instead of updating
// all the subregions, we could perhaps just update the subregions
// that crosses the boundary of the Aabb of the big proxies that
// moved in they layer `n`.
let mut layer_id = Some(self.largest_layer);
while let Some(curr_layer_id) = layer_id {
self.layers[curr_layer_id as usize]
.update_regions(&mut self.proxies, &mut self.reporting);
layer_id = self.layers[curr_layer_id as usize].smaller_layer;
for ((proxy_id1, proxy_id2), colliding) in &self.reporting {
let (proxy1, proxy2) = self
.proxies
.elements
.index_mut2(*proxy_id1 as usize, *proxy_id2 as usize);
match (&mut proxy1.data, &mut proxy2.data) {
(SAPProxyData::Collider(handle1), SAPProxyData::Collider(handle2)) => {
if *colliding {
out_events.push(BroadPhasePairEvent::AddPair(ColliderPair::new(
*handle1, *handle2,
)));
} else {
out_events.push(BroadPhasePairEvent::DeletePair(ColliderPair::new(
*handle1, *handle2,
)));
}
}
(SAPProxyData::Collider(_), SAPProxyData::Region(_)) => {
if *colliding {
// Add the collider to the subregion.
proxy2
.data
.as_region_mut()
.preupdate_proxy(*proxy_id1, false);
}
}
(SAPProxyData::Region(_), SAPProxyData::Collider(_)) => {
if *colliding {
// Add the collider to the subregion.
proxy1
.data
.as_region_mut()
.preupdate_proxy(*proxy_id2, false);
}
}
(SAPProxyData::Region(_), SAPProxyData::Region(_)) => {
// This will only happen between two adjacent subregions because
// they share some identical bounds. So this case does not matter.
}
}
}
self.reporting.clear();
}
}
}
impl BroadPhase for BroadPhaseMultiSap {
/// Updates the broad-phase, taking into account the new collider positions.
#[profiling::function]
fn update(
&mut self,
dt: Real,
prediction_distance: Real,
colliders: &mut ColliderSet,
bodies: &RigidBodySet,
modified_colliders: &[ColliderHandle],
removed_colliders: &[ColliderHandle],
events: &mut Vec<BroadPhasePairEvent>,
) {
// Phase 1: pre-delete the collisions that have been deleted.
self.handle_removed_colliders(removed_colliders);
let mut need_region_propagation = false;
// Phase 2: pre-delete the collisions that have been deleted.
for handle in modified_colliders {
// NOTE: we use `get` because the collider may no longer
// exist if it has been removed.
if let Some(co) = colliders.get_mut_internal(*handle) {
if !co.is_enabled() || !co.changes.needs_broad_phase_update() {
continue;
}
let mut new_proxy_id = co.bf_data.proxy_index;
let next_pos = co.parent.and_then(|p| {
let parent = bodies.get(p.handle)?;
(parent.soft_ccd_prediction() > 0.0).then(|| {
parent.predict_position_using_velocity_and_forces_with_max_dist(
dt,
parent.soft_ccd_prediction(),
) * p.pos_wrt_parent
})
});
if self.handle_modified_collider(
prediction_distance,
*handle,
&mut new_proxy_id,
co,
next_pos.as_ref(),
) {
need_region_propagation = true;
}
if co.bf_data.proxy_index != new_proxy_id {
self.colliders_proxy_ids.insert(*handle, new_proxy_id);
// Make sure we have the new proxy index in case
// the collider was added for the first time.
co.bf_data = ColliderBroadPhaseData {
proxy_index: new_proxy_id,
};
}
}
}
// Phase 3: bottom-up pass to propagate new regions from smaller layers to larger layers.
if need_region_propagation {
self.propagate_created_regions();
}
// Phase 4: top-down pass to propagate proxies from larger layers to smaller layers.
self.update_layers_and_find_pairs(events);
// Phase 5: bottom-up pass to remove proxies, and propagate region removed from smaller
// layers to possible remove regions from larger layers that would become empty that way.
self.complete_removals(colliders, removed_colliders);
}
}
#[cfg(test)]
mod test {
use crate::dynamics::{
ImpulseJointSet, IslandManager, MultibodyJointSet, RigidBodyBuilder, RigidBodySet,
};
use crate::geometry::{BroadPhase, BroadPhaseMultiSap, ColliderBuilder, ColliderSet};
#[test]
fn test_add_update_remove() {
let mut broad_phase = BroadPhaseMultiSap::new();
let mut bodies = RigidBodySet::new();
let mut colliders = ColliderSet::new();
let mut impulse_joints = ImpulseJointSet::new();
let mut multibody_joints = MultibodyJointSet::new();
let mut islands = IslandManager::new();
let rb = RigidBodyBuilder::dynamic().build();
let co = ColliderBuilder::ball(0.5).build();
let hrb = bodies.insert(rb);
let coh = colliders.insert_with_parent(co, hrb, &mut bodies);
let mut events = Vec::new();
broad_phase.update(0.0, 0.0, &mut colliders, &bodies, &[coh], &[], &mut events);
bodies.remove(
hrb,
&mut islands,
&mut colliders,
&mut impulse_joints,
&mut multibody_joints,
true,
);
broad_phase.update(0.0, 0.0, &mut colliders, &bodies, &[], &[coh], &mut events);
// Create another body.
let rb = RigidBodyBuilder::dynamic().build();
let co = ColliderBuilder::ball(0.5).build();
let hrb = bodies.insert(rb);
let coh = colliders.insert_with_parent(co, hrb, &mut bodies);
// Make sure the proxy handles is recycled properly.
broad_phase.update(0.0, 0.0, &mut colliders, &bodies, &[coh], &[], &mut events);
}
}