regex_automata/dfa/
dense.rs

1/*!
2Types and routines specific to dense DFAs.
3
4This module is the home of [`dense::DFA`](DFA).
5
6This module also contains a [`dense::Builder`](Builder) and a
7[`dense::Config`](Config) for building and configuring a dense DFA.
8*/
9
10#[cfg(feature = "dfa-build")]
11use core::cmp;
12use core::{fmt, iter, mem::size_of, slice};
13
14#[cfg(feature = "dfa-build")]
15use alloc::{
16    collections::{BTreeMap, BTreeSet},
17    vec,
18    vec::Vec,
19};
20
21#[cfg(feature = "dfa-build")]
22use crate::{
23    dfa::{
24        accel::Accel, determinize, minimize::Minimizer, remapper::Remapper,
25        sparse,
26    },
27    nfa::thompson,
28    util::{look::LookMatcher, search::MatchKind},
29};
30use crate::{
31    dfa::{
32        accel::Accels,
33        automaton::{fmt_state_indicator, Automaton, StartError},
34        special::Special,
35        start::StartKind,
36        DEAD,
37    },
38    util::{
39        alphabet::{self, ByteClasses, ByteSet},
40        int::{Pointer, Usize},
41        prefilter::Prefilter,
42        primitives::{PatternID, StateID},
43        search::Anchored,
44        start::{self, Start, StartByteMap},
45        wire::{self, DeserializeError, Endian, SerializeError},
46    },
47};
48
49/// The label that is pre-pended to a serialized DFA.
50const LABEL: &str = "rust-regex-automata-dfa-dense";
51
52/// The format version of dense regexes. This version gets incremented when a
53/// change occurs. A change may not necessarily be a breaking change, but the
54/// version does permit good error messages in the case where a breaking change
55/// is made.
56const VERSION: u32 = 2;
57
58/// The configuration used for compiling a dense DFA.
59///
60/// As a convenience, [`DFA::config`] is an alias for [`Config::new`]. The
61/// advantage of the former is that it often lets you avoid importing the
62/// `Config` type directly.
63///
64/// A dense DFA configuration is a simple data object that is typically used
65/// with [`dense::Builder::configure`](self::Builder::configure).
66///
67/// The default configuration guarantees that a search will never return
68/// a "quit" error, although it is possible for a search to fail if
69/// [`Config::starts_for_each_pattern`] wasn't enabled (which it is
70/// not by default) and an [`Anchored::Pattern`] mode is requested via
71/// [`Input`](crate::Input).
72#[cfg(feature = "dfa-build")]
73#[derive(Clone, Debug, Default)]
74pub struct Config {
75    // As with other configuration types in this crate, we put all our knobs
76    // in options so that we can distinguish between "default" and "not set."
77    // This makes it possible to easily combine multiple configurations
78    // without default values overwriting explicitly specified values. See the
79    // 'overwrite' method.
80    //
81    // For docs on the fields below, see the corresponding method setters.
82    accelerate: Option<bool>,
83    pre: Option<Option<Prefilter>>,
84    minimize: Option<bool>,
85    match_kind: Option<MatchKind>,
86    start_kind: Option<StartKind>,
87    starts_for_each_pattern: Option<bool>,
88    byte_classes: Option<bool>,
89    unicode_word_boundary: Option<bool>,
90    quitset: Option<ByteSet>,
91    specialize_start_states: Option<bool>,
92    dfa_size_limit: Option<Option<usize>>,
93    determinize_size_limit: Option<Option<usize>>,
94}
95
96#[cfg(feature = "dfa-build")]
97impl Config {
98    /// Return a new default dense DFA compiler configuration.
99    pub fn new() -> Config {
100        Config::default()
101    }
102
103    /// Enable state acceleration.
104    ///
105    /// When enabled, DFA construction will analyze each state to determine
106    /// whether it is eligible for simple acceleration. Acceleration typically
107    /// occurs when most of a state's transitions loop back to itself, leaving
108    /// only a select few bytes that will exit the state. When this occurs,
109    /// other routines like `memchr` can be used to look for those bytes which
110    /// may be much faster than traversing the DFA.
111    ///
112    /// Callers may elect to disable this if consistent performance is more
113    /// desirable than variable performance. Namely, acceleration can sometimes
114    /// make searching slower than it otherwise would be if the transitions
115    /// that leave accelerated states are traversed frequently.
116    ///
117    /// See [`Automaton::accelerator`] for an example.
118    ///
119    /// This is enabled by default.
120    pub fn accelerate(mut self, yes: bool) -> Config {
121        self.accelerate = Some(yes);
122        self
123    }
124
125    /// Set a prefilter to be used whenever a start state is entered.
126    ///
127    /// A [`Prefilter`] in this context is meant to accelerate searches by
128    /// looking for literal prefixes that every match for the corresponding
129    /// pattern (or patterns) must start with. Once a prefilter produces a
130    /// match, the underlying search routine continues on to try and confirm
131    /// the match.
132    ///
133    /// Be warned that setting a prefilter does not guarantee that the search
134    /// will be faster. While it's usually a good bet, if the prefilter
135    /// produces a lot of false positive candidates (i.e., positions matched
136    /// by the prefilter but not by the regex), then the overall result can
137    /// be slower than if you had just executed the regex engine without any
138    /// prefilters.
139    ///
140    /// Note that unless [`Config::specialize_start_states`] has been
141    /// explicitly set, then setting this will also enable (when `pre` is
142    /// `Some`) or disable (when `pre` is `None`) start state specialization.
143    /// This occurs because without start state specialization, a prefilter
144    /// is likely to be less effective. And without a prefilter, start state
145    /// specialization is usually pointless.
146    ///
147    /// **WARNING:** Note that prefilters are not preserved as part of
148    /// serialization. Serializing a DFA will drop its prefilter.
149    ///
150    /// By default no prefilter is set.
151    ///
152    /// # Example
153    ///
154    /// ```
155    /// use regex_automata::{
156    ///     dfa::{dense::DFA, Automaton},
157    ///     util::prefilter::Prefilter,
158    ///     Input, HalfMatch, MatchKind,
159    /// };
160    ///
161    /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["foo", "bar"]);
162    /// let re = DFA::builder()
163    ///     .configure(DFA::config().prefilter(pre))
164    ///     .build(r"(foo|bar)[a-z]+")?;
165    /// let input = Input::new("foo1 barfox bar");
166    /// assert_eq!(
167    ///     Some(HalfMatch::must(0, 11)),
168    ///     re.try_search_fwd(&input)?,
169    /// );
170    ///
171    /// # Ok::<(), Box<dyn std::error::Error>>(())
172    /// ```
173    ///
174    /// Be warned though that an incorrect prefilter can lead to incorrect
175    /// results!
176    ///
177    /// ```
178    /// use regex_automata::{
179    ///     dfa::{dense::DFA, Automaton},
180    ///     util::prefilter::Prefilter,
181    ///     Input, HalfMatch, MatchKind,
182    /// };
183    ///
184    /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["foo", "car"]);
185    /// let re = DFA::builder()
186    ///     .configure(DFA::config().prefilter(pre))
187    ///     .build(r"(foo|bar)[a-z]+")?;
188    /// let input = Input::new("foo1 barfox bar");
189    /// assert_eq!(
190    ///     // No match reported even though there clearly is one!
191    ///     None,
192    ///     re.try_search_fwd(&input)?,
193    /// );
194    ///
195    /// # Ok::<(), Box<dyn std::error::Error>>(())
196    /// ```
197    pub fn prefilter(mut self, pre: Option<Prefilter>) -> Config {
198        self.pre = Some(pre);
199        if self.specialize_start_states.is_none() {
200            self.specialize_start_states =
201                Some(self.get_prefilter().is_some());
202        }
203        self
204    }
205
206    /// Minimize the DFA.
207    ///
208    /// When enabled, the DFA built will be minimized such that it is as small
209    /// as possible.
210    ///
211    /// Whether one enables minimization or not depends on the types of costs
212    /// you're willing to pay and how much you care about its benefits. In
213    /// particular, minimization has worst case `O(n*k*logn)` time and `O(k*n)`
214    /// space, where `n` is the number of DFA states and `k` is the alphabet
215    /// size. In practice, minimization can be quite costly in terms of both
216    /// space and time, so it should only be done if you're willing to wait
217    /// longer to produce a DFA. In general, you might want a minimal DFA in
218    /// the following circumstances:
219    ///
220    /// 1. You would like to optimize for the size of the automaton. This can
221    ///    manifest in one of two ways. Firstly, if you're converting the
222    ///    DFA into Rust code (or a table embedded in the code), then a minimal
223    ///    DFA will translate into a corresponding reduction in code  size, and
224    ///    thus, also the final compiled binary size. Secondly, if you are
225    ///    building many DFAs and putting them on the heap, you'll be able to
226    ///    fit more if they are smaller. Note though that building a minimal
227    ///    DFA itself requires additional space; you only realize the space
228    ///    savings once the minimal DFA is constructed (at which point, the
229    ///    space used for minimization is freed).
230    /// 2. You've observed that a smaller DFA results in faster match
231    ///    performance. Naively, this isn't guaranteed since there is no
232    ///    inherent difference between matching with a bigger-than-minimal
233    ///    DFA and a minimal DFA. However, a smaller DFA may make use of your
234    ///    CPU's cache more efficiently.
235    /// 3. You are trying to establish an equivalence between regular
236    ///    languages. The standard method for this is to build a minimal DFA
237    ///    for each language and then compare them. If the DFAs are equivalent
238    ///    (up to state renaming), then the languages are equivalent.
239    ///
240    /// Typically, minimization only makes sense as an offline process. That
241    /// is, one might minimize a DFA before serializing it to persistent
242    /// storage. In practical terms, minimization can take around an order of
243    /// magnitude more time than compiling the initial DFA via determinization.
244    ///
245    /// This option is disabled by default.
246    pub fn minimize(mut self, yes: bool) -> Config {
247        self.minimize = Some(yes);
248        self
249    }
250
251    /// Set the desired match semantics.
252    ///
253    /// The default is [`MatchKind::LeftmostFirst`], which corresponds to the
254    /// match semantics of Perl-like regex engines. That is, when multiple
255    /// patterns would match at the same leftmost position, the pattern that
256    /// appears first in the concrete syntax is chosen.
257    ///
258    /// Currently, the only other kind of match semantics supported is
259    /// [`MatchKind::All`]. This corresponds to classical DFA construction
260    /// where all possible matches are added to the DFA.
261    ///
262    /// Typically, `All` is used when one wants to execute an overlapping
263    /// search and `LeftmostFirst` otherwise. In particular, it rarely makes
264    /// sense to use `All` with the various "leftmost" find routines, since the
265    /// leftmost routines depend on the `LeftmostFirst` automata construction
266    /// strategy. Specifically, `LeftmostFirst` adds dead states to the DFA
267    /// as a way to terminate the search and report a match. `LeftmostFirst`
268    /// also supports non-greedy matches using this strategy where as `All`
269    /// does not.
270    ///
271    /// # Example: overlapping search
272    ///
273    /// This example shows the typical use of `MatchKind::All`, which is to
274    /// report overlapping matches.
275    ///
276    /// ```
277    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
278    /// use regex_automata::{
279    ///     dfa::{Automaton, OverlappingState, dense},
280    ///     HalfMatch, Input, MatchKind,
281    /// };
282    ///
283    /// let dfa = dense::Builder::new()
284    ///     .configure(dense::Config::new().match_kind(MatchKind::All))
285    ///     .build_many(&[r"\w+$", r"\S+$"])?;
286    /// let input = Input::new("@foo");
287    /// let mut state = OverlappingState::start();
288    ///
289    /// let expected = Some(HalfMatch::must(1, 4));
290    /// dfa.try_search_overlapping_fwd(&input, &mut state)?;
291    /// assert_eq!(expected, state.get_match());
292    ///
293    /// // The first pattern also matches at the same position, so re-running
294    /// // the search will yield another match. Notice also that the first
295    /// // pattern is returned after the second. This is because the second
296    /// // pattern begins its match before the first, is therefore an earlier
297    /// // match and is thus reported first.
298    /// let expected = Some(HalfMatch::must(0, 4));
299    /// dfa.try_search_overlapping_fwd(&input, &mut state)?;
300    /// assert_eq!(expected, state.get_match());
301    ///
302    /// # Ok::<(), Box<dyn std::error::Error>>(())
303    /// ```
304    ///
305    /// # Example: reverse automaton to find start of match
306    ///
307    /// Another example for using `MatchKind::All` is for constructing a
308    /// reverse automaton to find the start of a match. `All` semantics are
309    /// used for this in order to find the longest possible match, which
310    /// corresponds to the leftmost starting position.
311    ///
312    /// Note that if you need the starting position then
313    /// [`dfa::regex::Regex`](crate::dfa::regex::Regex) will handle this for
314    /// you, so it's usually not necessary to do this yourself.
315    ///
316    /// ```
317    /// use regex_automata::{
318    ///     dfa::{dense, Automaton, StartKind},
319    ///     nfa::thompson::NFA,
320    ///     Anchored, HalfMatch, Input, MatchKind,
321    /// };
322    ///
323    /// let haystack = "123foobar456".as_bytes();
324    /// let pattern = r"[a-z]+r";
325    ///
326    /// let dfa_fwd = dense::DFA::new(pattern)?;
327    /// let dfa_rev = dense::Builder::new()
328    ///     .thompson(NFA::config().reverse(true))
329    ///     .configure(dense::Config::new()
330    ///         // This isn't strictly necessary since both anchored and
331    ///         // unanchored searches are supported by default. But since
332    ///         // finding the start-of-match only requires anchored searches,
333    ///         // we can get rid of the unanchored configuration and possibly
334    ///         // slim down our DFA considerably.
335    ///         .start_kind(StartKind::Anchored)
336    ///         .match_kind(MatchKind::All)
337    ///     )
338    ///     .build(pattern)?;
339    /// let expected_fwd = HalfMatch::must(0, 9);
340    /// let expected_rev = HalfMatch::must(0, 3);
341    /// let got_fwd = dfa_fwd.try_search_fwd(&Input::new(haystack))?.unwrap();
342    /// // Here we don't specify the pattern to search for since there's only
343    /// // one pattern and we're doing a leftmost search. But if this were an
344    /// // overlapping search, you'd need to specify the pattern that matched
345    /// // in the forward direction. (Otherwise, you might wind up finding the
346    /// // starting position of a match of some other pattern.) That in turn
347    /// // requires building the reverse automaton with starts_for_each_pattern
348    /// // enabled. Indeed, this is what Regex does internally.
349    /// let input = Input::new(haystack)
350    ///     .range(..got_fwd.offset())
351    ///     .anchored(Anchored::Yes);
352    /// let got_rev = dfa_rev.try_search_rev(&input)?.unwrap();
353    /// assert_eq!(expected_fwd, got_fwd);
354    /// assert_eq!(expected_rev, got_rev);
355    ///
356    /// # Ok::<(), Box<dyn std::error::Error>>(())
357    /// ```
358    pub fn match_kind(mut self, kind: MatchKind) -> Config {
359        self.match_kind = Some(kind);
360        self
361    }
362
363    /// The type of starting state configuration to use for a DFA.
364    ///
365    /// By default, the starting state configuration is [`StartKind::Both`].
366    ///
367    /// # Example
368    ///
369    /// ```
370    /// use regex_automata::{
371    ///     dfa::{dense::DFA, Automaton, StartKind},
372    ///     Anchored, HalfMatch, Input,
373    /// };
374    ///
375    /// let haystack = "quux foo123";
376    /// let expected = HalfMatch::must(0, 11);
377    ///
378    /// // By default, DFAs support both anchored and unanchored searches.
379    /// let dfa = DFA::new(r"[0-9]+")?;
380    /// let input = Input::new(haystack);
381    /// assert_eq!(Some(expected), dfa.try_search_fwd(&input)?);
382    ///
383    /// // But if we only need anchored searches, then we can build a DFA
384    /// // that only supports anchored searches. This leads to a smaller DFA
385    /// // (potentially significantly smaller in some cases), but a DFA that
386    /// // will panic if you try to use it with an unanchored search.
387    /// let dfa = DFA::builder()
388    ///     .configure(DFA::config().start_kind(StartKind::Anchored))
389    ///     .build(r"[0-9]+")?;
390    /// let input = Input::new(haystack)
391    ///     .range(8..)
392    ///     .anchored(Anchored::Yes);
393    /// assert_eq!(Some(expected), dfa.try_search_fwd(&input)?);
394    ///
395    /// # Ok::<(), Box<dyn std::error::Error>>(())
396    /// ```
397    pub fn start_kind(mut self, kind: StartKind) -> Config {
398        self.start_kind = Some(kind);
399        self
400    }
401
402    /// Whether to compile a separate start state for each pattern in the
403    /// automaton.
404    ///
405    /// When enabled, a separate **anchored** start state is added for each
406    /// pattern in the DFA. When this start state is used, then the DFA will
407    /// only search for matches for the pattern specified, even if there are
408    /// other patterns in the DFA.
409    ///
410    /// The main downside of this option is that it can potentially increase
411    /// the size of the DFA and/or increase the time it takes to build the DFA.
412    ///
413    /// There are a few reasons one might want to enable this (it's disabled
414    /// by default):
415    ///
416    /// 1. When looking for the start of an overlapping match (using a
417    /// reverse DFA), doing it correctly requires starting the reverse search
418    /// using the starting state of the pattern that matched in the forward
419    /// direction. Indeed, when building a [`Regex`](crate::dfa::regex::Regex),
420    /// it will automatically enable this option when building the reverse DFA
421    /// internally.
422    /// 2. When you want to use a DFA with multiple patterns to both search
423    /// for matches of any pattern or to search for anchored matches of one
424    /// particular pattern while using the same DFA. (Otherwise, you would need
425    /// to compile a new DFA for each pattern.)
426    /// 3. Since the start states added for each pattern are anchored, if you
427    /// compile an unanchored DFA with one pattern while also enabling this
428    /// option, then you can use the same DFA to perform anchored or unanchored
429    /// searches. The latter you get with the standard search APIs. The former
430    /// you get from the various `_at` search methods that allow you specify a
431    /// pattern ID to search for.
432    ///
433    /// By default this is disabled.
434    ///
435    /// # Example
436    ///
437    /// This example shows how to use this option to permit the same DFA to
438    /// run both anchored and unanchored searches for a single pattern.
439    ///
440    /// ```
441    /// use regex_automata::{
442    ///     dfa::{dense, Automaton},
443    ///     Anchored, HalfMatch, PatternID, Input,
444    /// };
445    ///
446    /// let dfa = dense::Builder::new()
447    ///     .configure(dense::Config::new().starts_for_each_pattern(true))
448    ///     .build(r"foo[0-9]+")?;
449    /// let haystack = "quux foo123";
450    ///
451    /// // Here's a normal unanchored search. Notice that we use 'None' for the
452    /// // pattern ID. Since the DFA was built as an unanchored machine, it
453    /// // use its default unanchored starting state.
454    /// let expected = HalfMatch::must(0, 11);
455    /// let input = Input::new(haystack);
456    /// assert_eq!(Some(expected), dfa.try_search_fwd(&input)?);
457    /// // But now if we explicitly specify the pattern to search ('0' being
458    /// // the only pattern in the DFA), then it will use the starting state
459    /// // for that specific pattern which is always anchored. Since the
460    /// // pattern doesn't have a match at the beginning of the haystack, we
461    /// // find nothing.
462    /// let input = Input::new(haystack)
463    ///     .anchored(Anchored::Pattern(PatternID::must(0)));
464    /// assert_eq!(None, dfa.try_search_fwd(&input)?);
465    /// // And finally, an anchored search is not the same as putting a '^' at
466    /// // beginning of the pattern. An anchored search can only match at the
467    /// // beginning of the *search*, which we can change:
468    /// let input = Input::new(haystack)
469    ///     .anchored(Anchored::Pattern(PatternID::must(0)))
470    ///     .range(5..);
471    /// assert_eq!(Some(expected), dfa.try_search_fwd(&input)?);
472    ///
473    /// # Ok::<(), Box<dyn std::error::Error>>(())
474    /// ```
475    pub fn starts_for_each_pattern(mut self, yes: bool) -> Config {
476        self.starts_for_each_pattern = Some(yes);
477        self
478    }
479
480    /// Whether to attempt to shrink the size of the DFA's alphabet or not.
481    ///
482    /// This option is enabled by default and should never be disabled unless
483    /// one is debugging a generated DFA.
484    ///
485    /// When enabled, the DFA will use a map from all possible bytes to their
486    /// corresponding equivalence class. Each equivalence class represents a
487    /// set of bytes that does not discriminate between a match and a non-match
488    /// in the DFA. For example, the pattern `[ab]+` has at least two
489    /// equivalence classes: a set containing `a` and `b` and a set containing
490    /// every byte except for `a` and `b`. `a` and `b` are in the same
491    /// equivalence class because they never discriminate between a match and a
492    /// non-match.
493    ///
494    /// The advantage of this map is that the size of the transition table
495    /// can be reduced drastically from `#states * 256 * sizeof(StateID)` to
496    /// `#states * k * sizeof(StateID)` where `k` is the number of equivalence
497    /// classes (rounded up to the nearest power of 2). As a result, total
498    /// space usage can decrease substantially. Moreover, since a smaller
499    /// alphabet is used, DFA compilation becomes faster as well.
500    ///
501    /// **WARNING:** This is only useful for debugging DFAs. Disabling this
502    /// does not yield any speed advantages. Namely, even when this is
503    /// disabled, a byte class map is still used while searching. The only
504    /// difference is that every byte will be forced into its own distinct
505    /// equivalence class. This is useful for debugging the actual generated
506    /// transitions because it lets one see the transitions defined on actual
507    /// bytes instead of the equivalence classes.
508    pub fn byte_classes(mut self, yes: bool) -> Config {
509        self.byte_classes = Some(yes);
510        self
511    }
512
513    /// Heuristically enable Unicode word boundaries.
514    ///
515    /// When set, this will attempt to implement Unicode word boundaries as if
516    /// they were ASCII word boundaries. This only works when the search input
517    /// is ASCII only. If a non-ASCII byte is observed while searching, then a
518    /// [`MatchError::quit`](crate::MatchError::quit) error is returned.
519    ///
520    /// A possible alternative to enabling this option is to simply use an
521    /// ASCII word boundary, e.g., via `(?-u:\b)`. The main reason to use this
522    /// option is if you absolutely need Unicode support. This option lets one
523    /// use a fast search implementation (a DFA) for some potentially very
524    /// common cases, while providing the option to fall back to some other
525    /// regex engine to handle the general case when an error is returned.
526    ///
527    /// If the pattern provided has no Unicode word boundary in it, then this
528    /// option has no effect. (That is, quitting on a non-ASCII byte only
529    /// occurs when this option is enabled _and_ a Unicode word boundary is
530    /// present in the pattern.)
531    ///
532    /// This is almost equivalent to setting all non-ASCII bytes to be quit
533    /// bytes. The only difference is that this will cause non-ASCII bytes to
534    /// be quit bytes _only_ when a Unicode word boundary is present in the
535    /// pattern.
536    ///
537    /// When enabling this option, callers _must_ be prepared to handle
538    /// a [`MatchError`](crate::MatchError) error during search.
539    /// When using a [`Regex`](crate::dfa::regex::Regex), this corresponds
540    /// to using the `try_` suite of methods. Alternatively, if
541    /// callers can guarantee that their input is ASCII only, then a
542    /// [`MatchError::quit`](crate::MatchError::quit) error will never be
543    /// returned while searching.
544    ///
545    /// This is disabled by default.
546    ///
547    /// # Example
548    ///
549    /// This example shows how to heuristically enable Unicode word boundaries
550    /// in a pattern. It also shows what happens when a search comes across a
551    /// non-ASCII byte.
552    ///
553    /// ```
554    /// use regex_automata::{
555    ///     dfa::{Automaton, dense},
556    ///     HalfMatch, Input, MatchError,
557    /// };
558    ///
559    /// let dfa = dense::Builder::new()
560    ///     .configure(dense::Config::new().unicode_word_boundary(true))
561    ///     .build(r"\b[0-9]+\b")?;
562    ///
563    /// // The match occurs before the search ever observes the snowman
564    /// // character, so no error occurs.
565    /// let haystack = "foo 123  ☃".as_bytes();
566    /// let expected = Some(HalfMatch::must(0, 7));
567    /// let got = dfa.try_search_fwd(&Input::new(haystack))?;
568    /// assert_eq!(expected, got);
569    ///
570    /// // Notice that this search fails, even though the snowman character
571    /// // occurs after the ending match offset. This is because search
572    /// // routines read one byte past the end of the search to account for
573    /// // look-around, and indeed, this is required here to determine whether
574    /// // the trailing \b matches.
575    /// let haystack = "foo 123 ☃".as_bytes();
576    /// let expected = MatchError::quit(0xE2, 8);
577    /// let got = dfa.try_search_fwd(&Input::new(haystack));
578    /// assert_eq!(Err(expected), got);
579    ///
580    /// // Another example is executing a search where the span of the haystack
581    /// // we specify is all ASCII, but there is non-ASCII just before it. This
582    /// // correctly also reports an error.
583    /// let input = Input::new("β123").range(2..);
584    /// let expected = MatchError::quit(0xB2, 1);
585    /// let got = dfa.try_search_fwd(&input);
586    /// assert_eq!(Err(expected), got);
587    ///
588    /// // And similarly for the trailing word boundary.
589    /// let input = Input::new("123β").range(..3);
590    /// let expected = MatchError::quit(0xCE, 3);
591    /// let got = dfa.try_search_fwd(&input);
592    /// assert_eq!(Err(expected), got);
593    ///
594    /// # Ok::<(), Box<dyn std::error::Error>>(())
595    /// ```
596    pub fn unicode_word_boundary(mut self, yes: bool) -> Config {
597        // We have a separate option for this instead of just setting the
598        // appropriate quit bytes here because we don't want to set quit bytes
599        // for every regex. We only want to set them when the regex contains a
600        // Unicode word boundary.
601        self.unicode_word_boundary = Some(yes);
602        self
603    }
604
605    /// Add a "quit" byte to the DFA.
606    ///
607    /// When a quit byte is seen during search time, then search will return
608    /// a [`MatchError::quit`](crate::MatchError::quit) error indicating the
609    /// offset at which the search stopped.
610    ///
611    /// A quit byte will always overrule any other aspects of a regex. For
612    /// example, if the `x` byte is added as a quit byte and the regex `\w` is
613    /// used, then observing `x` will cause the search to quit immediately
614    /// despite the fact that `x` is in the `\w` class.
615    ///
616    /// This mechanism is primarily useful for heuristically enabling certain
617    /// features like Unicode word boundaries in a DFA. Namely, if the input
618    /// to search is ASCII, then a Unicode word boundary can be implemented
619    /// via an ASCII word boundary with no change in semantics. Thus, a DFA
620    /// can attempt to match a Unicode word boundary but give up as soon as it
621    /// observes a non-ASCII byte. Indeed, if callers set all non-ASCII bytes
622    /// to be quit bytes, then Unicode word boundaries will be permitted when
623    /// building DFAs. Of course, callers should enable
624    /// [`Config::unicode_word_boundary`] if they want this behavior instead.
625    /// (The advantage being that non-ASCII quit bytes will only be added if a
626    /// Unicode word boundary is in the pattern.)
627    ///
628    /// When enabling this option, callers _must_ be prepared to handle a
629    /// [`MatchError`](crate::MatchError) error during search. When using a
630    /// [`Regex`](crate::dfa::regex::Regex), this corresponds to using the
631    /// `try_` suite of methods.
632    ///
633    /// By default, there are no quit bytes set.
634    ///
635    /// # Panics
636    ///
637    /// This panics if heuristic Unicode word boundaries are enabled and any
638    /// non-ASCII byte is removed from the set of quit bytes. Namely, enabling
639    /// Unicode word boundaries requires setting every non-ASCII byte to a quit
640    /// byte. So if the caller attempts to undo any of that, then this will
641    /// panic.
642    ///
643    /// # Example
644    ///
645    /// This example shows how to cause a search to terminate if it sees a
646    /// `\n` byte. This could be useful if, for example, you wanted to prevent
647    /// a user supplied pattern from matching across a line boundary.
648    ///
649    /// ```
650    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
651    /// use regex_automata::{dfa::{Automaton, dense}, Input, MatchError};
652    ///
653    /// let dfa = dense::Builder::new()
654    ///     .configure(dense::Config::new().quit(b'\n', true))
655    ///     .build(r"foo\p{any}+bar")?;
656    ///
657    /// let haystack = "foo\nbar".as_bytes();
658    /// // Normally this would produce a match, since \p{any} contains '\n'.
659    /// // But since we instructed the automaton to enter a quit state if a
660    /// // '\n' is observed, this produces a match error instead.
661    /// let expected = MatchError::quit(b'\n', 3);
662    /// let got = dfa.try_search_fwd(&Input::new(haystack)).unwrap_err();
663    /// assert_eq!(expected, got);
664    ///
665    /// # Ok::<(), Box<dyn std::error::Error>>(())
666    /// ```
667    pub fn quit(mut self, byte: u8, yes: bool) -> Config {
668        if self.get_unicode_word_boundary() && !byte.is_ascii() && !yes {
669            panic!(
670                "cannot set non-ASCII byte to be non-quit when \
671                 Unicode word boundaries are enabled"
672            );
673        }
674        if self.quitset.is_none() {
675            self.quitset = Some(ByteSet::empty());
676        }
677        if yes {
678            self.quitset.as_mut().unwrap().add(byte);
679        } else {
680            self.quitset.as_mut().unwrap().remove(byte);
681        }
682        self
683    }
684
685    /// Enable specializing start states in the DFA.
686    ///
687    /// When start states are specialized, an implementor of a search routine
688    /// using a lazy DFA can tell when the search has entered a starting state.
689    /// When start states aren't specialized, then it is impossible to know
690    /// whether the search has entered a start state.
691    ///
692    /// Ideally, this option wouldn't need to exist and we could always
693    /// specialize start states. The problem is that start states can be quite
694    /// active. This in turn means that an efficient search routine is likely
695    /// to ping-pong between a heavily optimized hot loop that handles most
696    /// states and to a less optimized specialized handling of start states.
697    /// This causes branches to get heavily mispredicted and overall can
698    /// materially decrease throughput. Therefore, specializing start states
699    /// should only be enabled when it is needed.
700    ///
701    /// Knowing whether a search is in a start state is typically useful when a
702    /// prefilter is active for the search. A prefilter is typically only run
703    /// when in a start state and a prefilter can greatly accelerate a search.
704    /// Therefore, the possible cost of specializing start states is worth it
705    /// in this case. Otherwise, if you have no prefilter, there is likely no
706    /// reason to specialize start states.
707    ///
708    /// This is disabled by default, but note that it is automatically
709    /// enabled (or disabled) if [`Config::prefilter`] is set. Namely, unless
710    /// `specialize_start_states` has already been set, [`Config::prefilter`]
711    /// will automatically enable or disable it based on whether a prefilter
712    /// is present or not, respectively. This is done because a prefilter's
713    /// effectiveness is rooted in being executed whenever the DFA is in a
714    /// start state, and that's only possible to do when they are specialized.
715    ///
716    /// Note that it is plausibly reasonable to _disable_ this option
717    /// explicitly while _enabling_ a prefilter. In that case, a prefilter
718    /// will still be run at the beginning of a search, but never again. This
719    /// in theory could strike a good balance if you're in a situation where a
720    /// prefilter is likely to produce many false positive candidates.
721    ///
722    /// # Example
723    ///
724    /// This example shows how to enable start state specialization and then
725    /// shows how to check whether a state is a start state or not.
726    ///
727    /// ```
728    /// use regex_automata::{dfa::{Automaton, dense::DFA}, Input};
729    ///
730    /// let dfa = DFA::builder()
731    ///     .configure(DFA::config().specialize_start_states(true))
732    ///     .build(r"[a-z]+")?;
733    ///
734    /// let haystack = "123 foobar 4567".as_bytes();
735    /// let sid = dfa.start_state_forward(&Input::new(haystack))?;
736    /// // The ID returned by 'start_state_forward' will always be tagged as
737    /// // a start state when start state specialization is enabled.
738    /// assert!(dfa.is_special_state(sid));
739    /// assert!(dfa.is_start_state(sid));
740    ///
741    /// # Ok::<(), Box<dyn std::error::Error>>(())
742    /// ```
743    ///
744    /// Compare the above with the default DFA configuration where start states
745    /// are _not_ specialized. In this case, the start state is not tagged at
746    /// all:
747    ///
748    /// ```
749    /// use regex_automata::{dfa::{Automaton, dense::DFA}, Input};
750    ///
751    /// let dfa = DFA::new(r"[a-z]+")?;
752    ///
753    /// let haystack = "123 foobar 4567";
754    /// let sid = dfa.start_state_forward(&Input::new(haystack))?;
755    /// // Start states are not special in the default configuration!
756    /// assert!(!dfa.is_special_state(sid));
757    /// assert!(!dfa.is_start_state(sid));
758    ///
759    /// # Ok::<(), Box<dyn std::error::Error>>(())
760    /// ```
761    pub fn specialize_start_states(mut self, yes: bool) -> Config {
762        self.specialize_start_states = Some(yes);
763        self
764    }
765
766    /// Set a size limit on the total heap used by a DFA.
767    ///
768    /// This size limit is expressed in bytes and is applied during
769    /// determinization of an NFA into a DFA. If the DFA's heap usage, and only
770    /// the DFA, exceeds this configured limit, then determinization is stopped
771    /// and an error is returned.
772    ///
773    /// This limit does not apply to auxiliary storage used during
774    /// determinization that isn't part of the generated DFA.
775    ///
776    /// This limit is only applied during determinization. Currently, there is
777    /// no way to post-pone this check to after minimization if minimization
778    /// was enabled.
779    ///
780    /// The total limit on heap used during determinization is the sum of the
781    /// DFA and determinization size limits.
782    ///
783    /// The default is no limit.
784    ///
785    /// # Example
786    ///
787    /// This example shows a DFA that fails to build because of a configured
788    /// size limit. This particular example also serves as a cautionary tale
789    /// demonstrating just how big DFAs with large Unicode character classes
790    /// can get.
791    ///
792    /// ```
793    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
794    /// use regex_automata::{dfa::{dense, Automaton}, Input};
795    ///
796    /// // 6MB isn't enough!
797    /// dense::Builder::new()
798    ///     .configure(dense::Config::new().dfa_size_limit(Some(6_000_000)))
799    ///     .build(r"\w{20}")
800    ///     .unwrap_err();
801    ///
802    /// // ... but 7MB probably is!
803    /// // (Note that DFA sizes aren't necessarily stable between releases.)
804    /// let dfa = dense::Builder::new()
805    ///     .configure(dense::Config::new().dfa_size_limit(Some(7_000_000)))
806    ///     .build(r"\w{20}")?;
807    /// let haystack = "A".repeat(20).into_bytes();
808    /// assert!(dfa.try_search_fwd(&Input::new(&haystack))?.is_some());
809    ///
810    /// # Ok::<(), Box<dyn std::error::Error>>(())
811    /// ```
812    ///
813    /// While one needs a little more than 6MB to represent `\w{20}`, it
814    /// turns out that you only need a little more than 6KB to represent
815    /// `(?-u:\w{20})`. So only use Unicode if you need it!
816    ///
817    /// As with [`Config::determinize_size_limit`], the size of a DFA is
818    /// influenced by other factors, such as what start state configurations
819    /// to support. For example, if you only need unanchored searches and not
820    /// anchored searches, then configuring the DFA to only support unanchored
821    /// searches can reduce its size. By default, DFAs support both unanchored
822    /// and anchored searches.
823    ///
824    /// ```
825    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
826    /// use regex_automata::{dfa::{dense, Automaton, StartKind}, Input};
827    ///
828    /// // 3MB isn't enough!
829    /// dense::Builder::new()
830    ///     .configure(dense::Config::new()
831    ///         .dfa_size_limit(Some(3_000_000))
832    ///         .start_kind(StartKind::Unanchored)
833    ///     )
834    ///     .build(r"\w{20}")
835    ///     .unwrap_err();
836    ///
837    /// // ... but 4MB probably is!
838    /// // (Note that DFA sizes aren't necessarily stable between releases.)
839    /// let dfa = dense::Builder::new()
840    ///     .configure(dense::Config::new()
841    ///         .dfa_size_limit(Some(4_000_000))
842    ///         .start_kind(StartKind::Unanchored)
843    ///     )
844    ///     .build(r"\w{20}")?;
845    /// let haystack = "A".repeat(20).into_bytes();
846    /// assert!(dfa.try_search_fwd(&Input::new(&haystack))?.is_some());
847    ///
848    /// # Ok::<(), Box<dyn std::error::Error>>(())
849    /// ```
850    pub fn dfa_size_limit(mut self, bytes: Option<usize>) -> Config {
851        self.dfa_size_limit = Some(bytes);
852        self
853    }
854
855    /// Set a size limit on the total heap used by determinization.
856    ///
857    /// This size limit is expressed in bytes and is applied during
858    /// determinization of an NFA into a DFA. If the heap used for auxiliary
859    /// storage during determinization (memory that is not in the DFA but
860    /// necessary for building the DFA) exceeds this configured limit, then
861    /// determinization is stopped and an error is returned.
862    ///
863    /// This limit does not apply to heap used by the DFA itself.
864    ///
865    /// The total limit on heap used during determinization is the sum of the
866    /// DFA and determinization size limits.
867    ///
868    /// The default is no limit.
869    ///
870    /// # Example
871    ///
872    /// This example shows a DFA that fails to build because of a
873    /// configured size limit on the amount of heap space used by
874    /// determinization. This particular example complements the example for
875    /// [`Config::dfa_size_limit`] by demonstrating that not only does Unicode
876    /// potentially make DFAs themselves big, but it also results in more
877    /// auxiliary storage during determinization. (Although, auxiliary storage
878    /// is still not as much as the DFA itself.)
879    ///
880    /// ```
881    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
882    /// # if !cfg!(target_pointer_width = "64") { return Ok(()); } // see #1039
883    /// use regex_automata::{dfa::{dense, Automaton}, Input};
884    ///
885    /// // 700KB isn't enough!
886    /// dense::Builder::new()
887    ///     .configure(dense::Config::new()
888    ///         .determinize_size_limit(Some(700_000))
889    ///     )
890    ///     .build(r"\w{20}")
891    ///     .unwrap_err();
892    ///
893    /// // ... but 800KB probably is!
894    /// // (Note that auxiliary storage sizes aren't necessarily stable between
895    /// // releases.)
896    /// let dfa = dense::Builder::new()
897    ///     .configure(dense::Config::new()
898    ///         .determinize_size_limit(Some(800_000))
899    ///     )
900    ///     .build(r"\w{20}")?;
901    /// let haystack = "A".repeat(20).into_bytes();
902    /// assert!(dfa.try_search_fwd(&Input::new(&haystack))?.is_some());
903    ///
904    /// # Ok::<(), Box<dyn std::error::Error>>(())
905    /// ```
906    ///
907    /// Note that some parts of the configuration on a DFA can have a
908    /// big impact on how big the DFA is, and thus, how much memory is
909    /// used. For example, the default setting for [`Config::start_kind`] is
910    /// [`StartKind::Both`]. But if you only need an anchored search, for
911    /// example, then it can be much cheaper to build a DFA that only supports
912    /// anchored searches. (Running an unanchored search with it would panic.)
913    ///
914    /// ```
915    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
916    /// # if !cfg!(target_pointer_width = "64") { return Ok(()); } // see #1039
917    /// use regex_automata::{
918    ///     dfa::{dense, Automaton, StartKind},
919    ///     Anchored, Input,
920    /// };
921    ///
922    /// // 200KB isn't enough!
923    /// dense::Builder::new()
924    ///     .configure(dense::Config::new()
925    ///         .determinize_size_limit(Some(200_000))
926    ///         .start_kind(StartKind::Anchored)
927    ///     )
928    ///     .build(r"\w{20}")
929    ///     .unwrap_err();
930    ///
931    /// // ... but 300KB probably is!
932    /// // (Note that auxiliary storage sizes aren't necessarily stable between
933    /// // releases.)
934    /// let dfa = dense::Builder::new()
935    ///     .configure(dense::Config::new()
936    ///         .determinize_size_limit(Some(300_000))
937    ///         .start_kind(StartKind::Anchored)
938    ///     )
939    ///     .build(r"\w{20}")?;
940    /// let haystack = "A".repeat(20).into_bytes();
941    /// let input = Input::new(&haystack).anchored(Anchored::Yes);
942    /// assert!(dfa.try_search_fwd(&input)?.is_some());
943    ///
944    /// # Ok::<(), Box<dyn std::error::Error>>(())
945    /// ```
946    pub fn determinize_size_limit(mut self, bytes: Option<usize>) -> Config {
947        self.determinize_size_limit = Some(bytes);
948        self
949    }
950
951    /// Returns whether this configuration has enabled simple state
952    /// acceleration.
953    pub fn get_accelerate(&self) -> bool {
954        self.accelerate.unwrap_or(true)
955    }
956
957    /// Returns the prefilter attached to this configuration, if any.
958    pub fn get_prefilter(&self) -> Option<&Prefilter> {
959        self.pre.as_ref().unwrap_or(&None).as_ref()
960    }
961
962    /// Returns whether this configuration has enabled the expensive process
963    /// of minimizing a DFA.
964    pub fn get_minimize(&self) -> bool {
965        self.minimize.unwrap_or(false)
966    }
967
968    /// Returns the match semantics set in this configuration.
969    pub fn get_match_kind(&self) -> MatchKind {
970        self.match_kind.unwrap_or(MatchKind::LeftmostFirst)
971    }
972
973    /// Returns the starting state configuration for a DFA.
974    pub fn get_starts(&self) -> StartKind {
975        self.start_kind.unwrap_or(StartKind::Both)
976    }
977
978    /// Returns whether this configuration has enabled anchored starting states
979    /// for every pattern in the DFA.
980    pub fn get_starts_for_each_pattern(&self) -> bool {
981        self.starts_for_each_pattern.unwrap_or(false)
982    }
983
984    /// Returns whether this configuration has enabled byte classes or not.
985    /// This is typically a debugging oriented option, as disabling it confers
986    /// no speed benefit.
987    pub fn get_byte_classes(&self) -> bool {
988        self.byte_classes.unwrap_or(true)
989    }
990
991    /// Returns whether this configuration has enabled heuristic Unicode word
992    /// boundary support. When enabled, it is possible for a search to return
993    /// an error.
994    pub fn get_unicode_word_boundary(&self) -> bool {
995        self.unicode_word_boundary.unwrap_or(false)
996    }
997
998    /// Returns whether this configuration will instruct the DFA to enter a
999    /// quit state whenever the given byte is seen during a search. When at
1000    /// least one byte has this enabled, it is possible for a search to return
1001    /// an error.
1002    pub fn get_quit(&self, byte: u8) -> bool {
1003        self.quitset.map_or(false, |q| q.contains(byte))
1004    }
1005
1006    /// Returns whether this configuration will instruct the DFA to
1007    /// "specialize" start states. When enabled, the DFA will mark start states
1008    /// as "special" so that search routines using the DFA can detect when
1009    /// it's in a start state and do some kind of optimization (like run a
1010    /// prefilter).
1011    pub fn get_specialize_start_states(&self) -> bool {
1012        self.specialize_start_states.unwrap_or(false)
1013    }
1014
1015    /// Returns the DFA size limit of this configuration if one was set.
1016    /// The size limit is total number of bytes on the heap that a DFA is
1017    /// permitted to use. If the DFA exceeds this limit during construction,
1018    /// then construction is stopped and an error is returned.
1019    pub fn get_dfa_size_limit(&self) -> Option<usize> {
1020        self.dfa_size_limit.unwrap_or(None)
1021    }
1022
1023    /// Returns the determinization size limit of this configuration if one
1024    /// was set. The size limit is total number of bytes on the heap that
1025    /// determinization is permitted to use. If determinization exceeds this
1026    /// limit during construction, then construction is stopped and an error is
1027    /// returned.
1028    ///
1029    /// This is different from the DFA size limit in that this only applies to
1030    /// the auxiliary storage used during determinization. Once determinization
1031    /// is complete, this memory is freed.
1032    ///
1033    /// The limit on the total heap memory used is the sum of the DFA and
1034    /// determinization size limits.
1035    pub fn get_determinize_size_limit(&self) -> Option<usize> {
1036        self.determinize_size_limit.unwrap_or(None)
1037    }
1038
1039    /// Overwrite the default configuration such that the options in `o` are
1040    /// always used. If an option in `o` is not set, then the corresponding
1041    /// option in `self` is used. If it's not set in `self` either, then it
1042    /// remains not set.
1043    pub(crate) fn overwrite(&self, o: Config) -> Config {
1044        Config {
1045            accelerate: o.accelerate.or(self.accelerate),
1046            pre: o.pre.or_else(|| self.pre.clone()),
1047            minimize: o.minimize.or(self.minimize),
1048            match_kind: o.match_kind.or(self.match_kind),
1049            start_kind: o.start_kind.or(self.start_kind),
1050            starts_for_each_pattern: o
1051                .starts_for_each_pattern
1052                .or(self.starts_for_each_pattern),
1053            byte_classes: o.byte_classes.or(self.byte_classes),
1054            unicode_word_boundary: o
1055                .unicode_word_boundary
1056                .or(self.unicode_word_boundary),
1057            quitset: o.quitset.or(self.quitset),
1058            specialize_start_states: o
1059                .specialize_start_states
1060                .or(self.specialize_start_states),
1061            dfa_size_limit: o.dfa_size_limit.or(self.dfa_size_limit),
1062            determinize_size_limit: o
1063                .determinize_size_limit
1064                .or(self.determinize_size_limit),
1065        }
1066    }
1067}
1068
1069/// A builder for constructing a deterministic finite automaton from regular
1070/// expressions.
1071///
1072/// This builder provides two main things:
1073///
1074/// 1. It provides a few different `build` routines for actually constructing
1075/// a DFA from different kinds of inputs. The most convenient is
1076/// [`Builder::build`], which builds a DFA directly from a pattern string. The
1077/// most flexible is [`Builder::build_from_nfa`], which builds a DFA straight
1078/// from an NFA.
1079/// 2. The builder permits configuring a number of things.
1080/// [`Builder::configure`] is used with [`Config`] to configure aspects of
1081/// the DFA and the construction process itself. [`Builder::syntax`] and
1082/// [`Builder::thompson`] permit configuring the regex parser and Thompson NFA
1083/// construction, respectively. The syntax and thompson configurations only
1084/// apply when building from a pattern string.
1085///
1086/// This builder always constructs a *single* DFA. As such, this builder
1087/// can only be used to construct regexes that either detect the presence
1088/// of a match or find the end location of a match. A single DFA cannot
1089/// produce both the start and end of a match. For that information, use a
1090/// [`Regex`](crate::dfa::regex::Regex), which can be similarly configured
1091/// using [`regex::Builder`](crate::dfa::regex::Builder). The main reason to
1092/// use a DFA directly is if the end location of a match is enough for your use
1093/// case. Namely, a `Regex` will construct two DFAs instead of one, since a
1094/// second reverse DFA is needed to find the start of a match.
1095///
1096/// Note that if one wants to build a sparse DFA, you must first build a dense
1097/// DFA and convert that to a sparse DFA. There is no way to build a sparse
1098/// DFA without first building a dense DFA.
1099///
1100/// # Example
1101///
1102/// This example shows how to build a minimized DFA that completely disables
1103/// Unicode. That is:
1104///
1105/// * Things such as `\w`, `.` and `\b` are no longer Unicode-aware. `\w`
1106///   and `\b` are ASCII-only while `.` matches any byte except for `\n`
1107///   (instead of any UTF-8 encoding of a Unicode scalar value except for
1108///   `\n`). Things that are Unicode only, such as `\pL`, are not allowed.
1109/// * The pattern itself is permitted to match invalid UTF-8. For example,
1110///   things like `[^a]` that match any byte except for `a` are permitted.
1111///
1112/// ```
1113/// use regex_automata::{
1114///     dfa::{Automaton, dense},
1115///     util::syntax,
1116///     HalfMatch, Input,
1117/// };
1118///
1119/// let dfa = dense::Builder::new()
1120///     .configure(dense::Config::new().minimize(false))
1121///     .syntax(syntax::Config::new().unicode(false).utf8(false))
1122///     .build(r"foo[^b]ar.*")?;
1123///
1124/// let haystack = b"\xFEfoo\xFFar\xE2\x98\xFF\n";
1125/// let expected = Some(HalfMatch::must(0, 10));
1126/// let got = dfa.try_search_fwd(&Input::new(haystack))?;
1127/// assert_eq!(expected, got);
1128///
1129/// # Ok::<(), Box<dyn std::error::Error>>(())
1130/// ```
1131#[cfg(feature = "dfa-build")]
1132#[derive(Clone, Debug)]
1133pub struct Builder {
1134    config: Config,
1135    #[cfg(feature = "syntax")]
1136    thompson: thompson::Compiler,
1137}
1138
1139#[cfg(feature = "dfa-build")]
1140impl Builder {
1141    /// Create a new dense DFA builder with the default configuration.
1142    pub fn new() -> Builder {
1143        Builder {
1144            config: Config::default(),
1145            #[cfg(feature = "syntax")]
1146            thompson: thompson::Compiler::new(),
1147        }
1148    }
1149
1150    /// Build a DFA from the given pattern.
1151    ///
1152    /// If there was a problem parsing or compiling the pattern, then an error
1153    /// is returned.
1154    #[cfg(feature = "syntax")]
1155    pub fn build(&self, pattern: &str) -> Result<OwnedDFA, BuildError> {
1156        self.build_many(&[pattern])
1157    }
1158
1159    /// Build a DFA from the given patterns.
1160    ///
1161    /// When matches are returned, the pattern ID corresponds to the index of
1162    /// the pattern in the slice given.
1163    #[cfg(feature = "syntax")]
1164    pub fn build_many<P: AsRef<str>>(
1165        &self,
1166        patterns: &[P],
1167    ) -> Result<OwnedDFA, BuildError> {
1168        let nfa = self
1169            .thompson
1170            .clone()
1171            // We can always forcefully disable captures because DFAs do not
1172            // support them.
1173            .configure(
1174                thompson::Config::new()
1175                    .which_captures(thompson::WhichCaptures::None),
1176            )
1177            .build_many(patterns)
1178            .map_err(BuildError::nfa)?;
1179        self.build_from_nfa(&nfa)
1180    }
1181
1182    /// Build a DFA from the given NFA.
1183    ///
1184    /// # Example
1185    ///
1186    /// This example shows how to build a DFA if you already have an NFA in
1187    /// hand.
1188    ///
1189    /// ```
1190    /// use regex_automata::{
1191    ///     dfa::{Automaton, dense},
1192    ///     nfa::thompson::NFA,
1193    ///     HalfMatch, Input,
1194    /// };
1195    ///
1196    /// let haystack = "foo123bar".as_bytes();
1197    ///
1198    /// // This shows how to set non-default options for building an NFA.
1199    /// let nfa = NFA::compiler()
1200    ///     .configure(NFA::config().shrink(true))
1201    ///     .build(r"[0-9]+")?;
1202    /// let dfa = dense::Builder::new().build_from_nfa(&nfa)?;
1203    /// let expected = Some(HalfMatch::must(0, 6));
1204    /// let got = dfa.try_search_fwd(&Input::new(haystack))?;
1205    /// assert_eq!(expected, got);
1206    ///
1207    /// # Ok::<(), Box<dyn std::error::Error>>(())
1208    /// ```
1209    pub fn build_from_nfa(
1210        &self,
1211        nfa: &thompson::NFA,
1212    ) -> Result<OwnedDFA, BuildError> {
1213        let mut quitset = self.config.quitset.unwrap_or(ByteSet::empty());
1214        if self.config.get_unicode_word_boundary()
1215            && nfa.look_set_any().contains_word_unicode()
1216        {
1217            for b in 0x80..=0xFF {
1218                quitset.add(b);
1219            }
1220        }
1221        let classes = if !self.config.get_byte_classes() {
1222            // DFAs will always use the equivalence class map, but enabling
1223            // this option is useful for debugging. Namely, this will cause all
1224            // transitions to be defined over their actual bytes instead of an
1225            // opaque equivalence class identifier. The former is much easier
1226            // to grok as a human.
1227            ByteClasses::singletons()
1228        } else {
1229            let mut set = nfa.byte_class_set().clone();
1230            // It is important to distinguish any "quit" bytes from all other
1231            // bytes. Otherwise, a non-quit byte may end up in the same
1232            // class as a quit byte, and thus cause the DFA to stop when it
1233            // shouldn't.
1234            //
1235            // Test case:
1236            //
1237            //   regex-cli find match dense --unicode-word-boundary \
1238            //     -p '^#' -p '\b10\.55\.182\.100\b' -y @conn.json.1000x.log
1239            if !quitset.is_empty() {
1240                set.add_set(&quitset);
1241            }
1242            set.byte_classes()
1243        };
1244
1245        let mut dfa = DFA::initial(
1246            classes,
1247            nfa.pattern_len(),
1248            self.config.get_starts(),
1249            nfa.look_matcher(),
1250            self.config.get_starts_for_each_pattern(),
1251            self.config.get_prefilter().map(|p| p.clone()),
1252            quitset,
1253            Flags::from_nfa(&nfa),
1254        )?;
1255        determinize::Config::new()
1256            .match_kind(self.config.get_match_kind())
1257            .quit(quitset)
1258            .dfa_size_limit(self.config.get_dfa_size_limit())
1259            .determinize_size_limit(self.config.get_determinize_size_limit())
1260            .run(nfa, &mut dfa)?;
1261        if self.config.get_minimize() {
1262            dfa.minimize();
1263        }
1264        if self.config.get_accelerate() {
1265            dfa.accelerate();
1266        }
1267        // The state shuffling done before this point always assumes that start
1268        // states should be marked as "special," even though it isn't the
1269        // default configuration. State shuffling is complex enough as it is,
1270        // so it's simpler to just "fix" our special state ID ranges to not
1271        // include starting states after-the-fact.
1272        if !self.config.get_specialize_start_states() {
1273            dfa.special.set_no_special_start_states();
1274        }
1275        // Look for and set the universal starting states.
1276        dfa.set_universal_starts();
1277        dfa.tt.table.shrink_to_fit();
1278        dfa.st.table.shrink_to_fit();
1279        dfa.ms.slices.shrink_to_fit();
1280        dfa.ms.pattern_ids.shrink_to_fit();
1281        Ok(dfa)
1282    }
1283
1284    /// Apply the given dense DFA configuration options to this builder.
1285    pub fn configure(&mut self, config: Config) -> &mut Builder {
1286        self.config = self.config.overwrite(config);
1287        self
1288    }
1289
1290    /// Set the syntax configuration for this builder using
1291    /// [`syntax::Config`](crate::util::syntax::Config).
1292    ///
1293    /// This permits setting things like case insensitivity, Unicode and multi
1294    /// line mode.
1295    ///
1296    /// These settings only apply when constructing a DFA directly from a
1297    /// pattern.
1298    #[cfg(feature = "syntax")]
1299    pub fn syntax(
1300        &mut self,
1301        config: crate::util::syntax::Config,
1302    ) -> &mut Builder {
1303        self.thompson.syntax(config);
1304        self
1305    }
1306
1307    /// Set the Thompson NFA configuration for this builder using
1308    /// [`nfa::thompson::Config`](crate::nfa::thompson::Config).
1309    ///
1310    /// This permits setting things like whether the DFA should match the regex
1311    /// in reverse or if additional time should be spent shrinking the size of
1312    /// the NFA.
1313    ///
1314    /// These settings only apply when constructing a DFA directly from a
1315    /// pattern.
1316    #[cfg(feature = "syntax")]
1317    pub fn thompson(&mut self, config: thompson::Config) -> &mut Builder {
1318        self.thompson.configure(config);
1319        self
1320    }
1321}
1322
1323#[cfg(feature = "dfa-build")]
1324impl Default for Builder {
1325    fn default() -> Builder {
1326        Builder::new()
1327    }
1328}
1329
1330/// A convenience alias for an owned DFA. We use this particular instantiation
1331/// a lot in this crate, so it's worth giving it a name. This instantiation
1332/// is commonly used for mutable APIs on the DFA while building it. The main
1333/// reason for making DFAs generic is no_std support, and more generally,
1334/// making it possible to load a DFA from an arbitrary slice of bytes.
1335#[cfg(feature = "alloc")]
1336pub(crate) type OwnedDFA = DFA<alloc::vec::Vec<u32>>;
1337
1338/// A dense table-based deterministic finite automaton (DFA).
1339///
1340/// All dense DFAs have one or more start states, zero or more match states
1341/// and a transition table that maps the current state and the current byte
1342/// of input to the next state. A DFA can use this information to implement
1343/// fast searching. In particular, the use of a dense DFA generally makes the
1344/// trade off that match speed is the most valuable characteristic, even if
1345/// building the DFA may take significant time *and* space. (More concretely,
1346/// building a DFA takes time and space that is exponential in the size of the
1347/// pattern in the worst case.) As such, the processing of every byte of input
1348/// is done with a small constant number of operations that does not vary with
1349/// the pattern, its size or the size of the alphabet. If your needs don't line
1350/// up with this trade off, then a dense DFA may not be an adequate solution to
1351/// your problem.
1352///
1353/// In contrast, a [`sparse::DFA`] makes the opposite
1354/// trade off: it uses less space but will execute a variable number of
1355/// instructions per byte at match time, which makes it slower for matching.
1356/// (Note that space usage is still exponential in the size of the pattern in
1357/// the worst case.)
1358///
1359/// A DFA can be built using the default configuration via the
1360/// [`DFA::new`] constructor. Otherwise, one can
1361/// configure various aspects via [`dense::Builder`](Builder).
1362///
1363/// A single DFA fundamentally supports the following operations:
1364///
1365/// 1. Detection of a match.
1366/// 2. Location of the end of a match.
1367/// 3. In the case of a DFA with multiple patterns, which pattern matched is
1368///    reported as well.
1369///
1370/// A notable absence from the above list of capabilities is the location of
1371/// the *start* of a match. In order to provide both the start and end of
1372/// a match, *two* DFAs are required. This functionality is provided by a
1373/// [`Regex`](crate::dfa::regex::Regex).
1374///
1375/// # Type parameters
1376///
1377/// A `DFA` has one type parameter, `T`, which is used to represent state IDs,
1378/// pattern IDs and accelerators. `T` is typically a `Vec<u32>` or a `&[u32]`.
1379///
1380/// # The `Automaton` trait
1381///
1382/// This type implements the [`Automaton`] trait, which means it can be used
1383/// for searching. For example:
1384///
1385/// ```
1386/// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
1387///
1388/// let dfa = DFA::new("foo[0-9]+")?;
1389/// let expected = HalfMatch::must(0, 8);
1390/// assert_eq!(Some(expected), dfa.try_search_fwd(&Input::new("foo12345"))?);
1391/// # Ok::<(), Box<dyn std::error::Error>>(())
1392/// ```
1393#[derive(Clone)]
1394pub struct DFA<T> {
1395    /// The transition table for this DFA. This includes the transitions
1396    /// themselves, along with the stride, number of states and the equivalence
1397    /// class mapping.
1398    tt: TransitionTable<T>,
1399    /// The set of starting state identifiers for this DFA. The starting state
1400    /// IDs act as pointers into the transition table. The specific starting
1401    /// state chosen for each search is dependent on the context at which the
1402    /// search begins.
1403    st: StartTable<T>,
1404    /// The set of match states and the patterns that match for each
1405    /// corresponding match state.
1406    ///
1407    /// This structure is technically only needed because of support for
1408    /// multi-regexes. Namely, multi-regexes require answering not just whether
1409    /// a match exists, but _which_ patterns match. So we need to store the
1410    /// matching pattern IDs for each match state. We do this even when there
1411    /// is only one pattern for the sake of simplicity. In practice, this uses
1412    /// up very little space for the case of one pattern.
1413    ms: MatchStates<T>,
1414    /// Information about which states are "special." Special states are states
1415    /// that are dead, quit, matching, starting or accelerated. For more info,
1416    /// see the docs for `Special`.
1417    special: Special,
1418    /// The accelerators for this DFA.
1419    ///
1420    /// If a state is accelerated, then there exist only a small number of
1421    /// bytes that can cause the DFA to leave the state. This permits searching
1422    /// to use optimized routines to find those specific bytes instead of using
1423    /// the transition table.
1424    ///
1425    /// All accelerated states exist in a contiguous range in the DFA's
1426    /// transition table. See dfa/special.rs for more details on how states are
1427    /// arranged.
1428    accels: Accels<T>,
1429    /// Any prefilter attached to this DFA.
1430    ///
1431    /// Note that currently prefilters are not serialized. When deserializing
1432    /// a DFA from bytes, this is always set to `None`.
1433    pre: Option<Prefilter>,
1434    /// The set of "quit" bytes for this DFA.
1435    ///
1436    /// This is only used when computing the start state for a particular
1437    /// position in a haystack. Namely, in the case where there is a quit
1438    /// byte immediately before the start of the search, this set needs to be
1439    /// explicitly consulted. In all other cases, quit bytes are detected by
1440    /// the DFA itself, by transitioning all quit bytes to a special "quit
1441    /// state."
1442    quitset: ByteSet,
1443    /// Various flags describing the behavior of this DFA.
1444    flags: Flags,
1445}
1446
1447#[cfg(feature = "dfa-build")]
1448impl OwnedDFA {
1449    /// Parse the given regular expression using a default configuration and
1450    /// return the corresponding DFA.
1451    ///
1452    /// If you want a non-default configuration, then use the
1453    /// [`dense::Builder`](Builder) to set your own configuration.
1454    ///
1455    /// # Example
1456    ///
1457    /// ```
1458    /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input};
1459    ///
1460    /// let dfa = dense::DFA::new("foo[0-9]+bar")?;
1461    /// let expected = Some(HalfMatch::must(0, 11));
1462    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345bar"))?);
1463    /// # Ok::<(), Box<dyn std::error::Error>>(())
1464    /// ```
1465    #[cfg(feature = "syntax")]
1466    pub fn new(pattern: &str) -> Result<OwnedDFA, BuildError> {
1467        Builder::new().build(pattern)
1468    }
1469
1470    /// Parse the given regular expressions using a default configuration and
1471    /// return the corresponding multi-DFA.
1472    ///
1473    /// If you want a non-default configuration, then use the
1474    /// [`dense::Builder`](Builder) to set your own configuration.
1475    ///
1476    /// # Example
1477    ///
1478    /// ```
1479    /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input};
1480    ///
1481    /// let dfa = dense::DFA::new_many(&["[0-9]+", "[a-z]+"])?;
1482    /// let expected = Some(HalfMatch::must(1, 3));
1483    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345bar"))?);
1484    /// # Ok::<(), Box<dyn std::error::Error>>(())
1485    /// ```
1486    #[cfg(feature = "syntax")]
1487    pub fn new_many<P: AsRef<str>>(
1488        patterns: &[P],
1489    ) -> Result<OwnedDFA, BuildError> {
1490        Builder::new().build_many(patterns)
1491    }
1492}
1493
1494#[cfg(feature = "dfa-build")]
1495impl OwnedDFA {
1496    /// Create a new DFA that matches every input.
1497    ///
1498    /// # Example
1499    ///
1500    /// ```
1501    /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input};
1502    ///
1503    /// let dfa = dense::DFA::always_match()?;
1504    ///
1505    /// let expected = Some(HalfMatch::must(0, 0));
1506    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new(""))?);
1507    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo"))?);
1508    /// # Ok::<(), Box<dyn std::error::Error>>(())
1509    /// ```
1510    pub fn always_match() -> Result<OwnedDFA, BuildError> {
1511        let nfa = thompson::NFA::always_match();
1512        Builder::new().build_from_nfa(&nfa)
1513    }
1514
1515    /// Create a new DFA that never matches any input.
1516    ///
1517    /// # Example
1518    ///
1519    /// ```
1520    /// use regex_automata::{dfa::{Automaton, dense}, Input};
1521    ///
1522    /// let dfa = dense::DFA::never_match()?;
1523    /// assert_eq!(None, dfa.try_search_fwd(&Input::new(""))?);
1524    /// assert_eq!(None, dfa.try_search_fwd(&Input::new("foo"))?);
1525    /// # Ok::<(), Box<dyn std::error::Error>>(())
1526    /// ```
1527    pub fn never_match() -> Result<OwnedDFA, BuildError> {
1528        let nfa = thompson::NFA::never_match();
1529        Builder::new().build_from_nfa(&nfa)
1530    }
1531
1532    /// Create an initial DFA with the given equivalence classes, pattern
1533    /// length and whether anchored starting states are enabled for each
1534    /// pattern. An initial DFA can be further mutated via determinization.
1535    fn initial(
1536        classes: ByteClasses,
1537        pattern_len: usize,
1538        starts: StartKind,
1539        lookm: &LookMatcher,
1540        starts_for_each_pattern: bool,
1541        pre: Option<Prefilter>,
1542        quitset: ByteSet,
1543        flags: Flags,
1544    ) -> Result<OwnedDFA, BuildError> {
1545        let start_pattern_len =
1546            if starts_for_each_pattern { Some(pattern_len) } else { None };
1547        Ok(DFA {
1548            tt: TransitionTable::minimal(classes),
1549            st: StartTable::dead(starts, lookm, start_pattern_len)?,
1550            ms: MatchStates::empty(pattern_len),
1551            special: Special::new(),
1552            accels: Accels::empty(),
1553            pre,
1554            quitset,
1555            flags,
1556        })
1557    }
1558}
1559
1560#[cfg(feature = "dfa-build")]
1561impl DFA<&[u32]> {
1562    /// Return a new default dense DFA compiler configuration.
1563    ///
1564    /// This is a convenience routine to avoid needing to import the [`Config`]
1565    /// type when customizing the construction of a dense DFA.
1566    pub fn config() -> Config {
1567        Config::new()
1568    }
1569
1570    /// Create a new dense DFA builder with the default configuration.
1571    ///
1572    /// This is a convenience routine to avoid needing to import the
1573    /// [`Builder`] type in common cases.
1574    pub fn builder() -> Builder {
1575        Builder::new()
1576    }
1577}
1578
1579impl<T: AsRef<[u32]>> DFA<T> {
1580    /// Cheaply return a borrowed version of this dense DFA. Specifically,
1581    /// the DFA returned always uses `&[u32]` for its transition table.
1582    pub fn as_ref(&self) -> DFA<&'_ [u32]> {
1583        DFA {
1584            tt: self.tt.as_ref(),
1585            st: self.st.as_ref(),
1586            ms: self.ms.as_ref(),
1587            special: self.special,
1588            accels: self.accels(),
1589            pre: self.pre.clone(),
1590            quitset: self.quitset,
1591            flags: self.flags,
1592        }
1593    }
1594
1595    /// Return an owned version of this sparse DFA. Specifically, the DFA
1596    /// returned always uses `Vec<u32>` for its transition table.
1597    ///
1598    /// Effectively, this returns a dense DFA whose transition table lives on
1599    /// the heap.
1600    #[cfg(feature = "alloc")]
1601    pub fn to_owned(&self) -> OwnedDFA {
1602        DFA {
1603            tt: self.tt.to_owned(),
1604            st: self.st.to_owned(),
1605            ms: self.ms.to_owned(),
1606            special: self.special,
1607            accels: self.accels().to_owned(),
1608            pre: self.pre.clone(),
1609            quitset: self.quitset,
1610            flags: self.flags,
1611        }
1612    }
1613
1614    /// Returns the starting state configuration for this DFA.
1615    ///
1616    /// The default is [`StartKind::Both`], which means the DFA supports both
1617    /// unanchored and anchored searches. However, this can generally lead to
1618    /// bigger DFAs. Therefore, a DFA might be compiled with support for just
1619    /// unanchored or anchored searches. In that case, running a search with
1620    /// an unsupported configuration will panic.
1621    pub fn start_kind(&self) -> StartKind {
1622        self.st.kind
1623    }
1624
1625    /// Returns the start byte map used for computing the `Start` configuration
1626    /// at the beginning of a search.
1627    pub(crate) fn start_map(&self) -> &StartByteMap {
1628        &self.st.start_map
1629    }
1630
1631    /// Returns true only if this DFA has starting states for each pattern.
1632    ///
1633    /// When a DFA has starting states for each pattern, then a search with the
1634    /// DFA can be configured to only look for anchored matches of a specific
1635    /// pattern. Specifically, APIs like [`Automaton::try_search_fwd`] can
1636    /// accept a non-None `pattern_id` if and only if this method returns true.
1637    /// Otherwise, calling `try_search_fwd` will panic.
1638    ///
1639    /// Note that if the DFA has no patterns, this always returns false.
1640    pub fn starts_for_each_pattern(&self) -> bool {
1641        self.st.pattern_len.is_some()
1642    }
1643
1644    /// Returns the equivalence classes that make up the alphabet for this DFA.
1645    ///
1646    /// Unless [`Config::byte_classes`] was disabled, it is possible that
1647    /// multiple distinct bytes are grouped into the same equivalence class
1648    /// if it is impossible for them to discriminate between a match and a
1649    /// non-match. This has the effect of reducing the overall alphabet size
1650    /// and in turn potentially substantially reducing the size of the DFA's
1651    /// transition table.
1652    ///
1653    /// The downside of using equivalence classes like this is that every state
1654    /// transition will automatically use this map to convert an arbitrary
1655    /// byte to its corresponding equivalence class. In practice this has a
1656    /// negligible impact on performance.
1657    pub fn byte_classes(&self) -> &ByteClasses {
1658        &self.tt.classes
1659    }
1660
1661    /// Returns the total number of elements in the alphabet for this DFA.
1662    ///
1663    /// That is, this returns the total number of transitions that each state
1664    /// in this DFA must have. Typically, a normal byte oriented DFA would
1665    /// always have an alphabet size of 256, corresponding to the number of
1666    /// unique values in a single byte. However, this implementation has two
1667    /// peculiarities that impact the alphabet length:
1668    ///
1669    /// * Every state has a special "EOI" transition that is only followed
1670    /// after the end of some haystack is reached. This EOI transition is
1671    /// necessary to account for one byte of look-ahead when implementing
1672    /// things like `\b` and `$`.
1673    /// * Bytes are grouped into equivalence classes such that no two bytes in
1674    /// the same class can distinguish a match from a non-match. For example,
1675    /// in the regex `^[a-z]+$`, the ASCII bytes `a-z` could all be in the
1676    /// same equivalence class. This leads to a massive space savings.
1677    ///
1678    /// Note though that the alphabet length does _not_ necessarily equal the
1679    /// total stride space taken up by a single DFA state in the transition
1680    /// table. Namely, for performance reasons, the stride is always the
1681    /// smallest power of two that is greater than or equal to the alphabet
1682    /// length. For this reason, [`DFA::stride`] or [`DFA::stride2`] are
1683    /// often more useful. The alphabet length is typically useful only for
1684    /// informational purposes.
1685    pub fn alphabet_len(&self) -> usize {
1686        self.tt.alphabet_len()
1687    }
1688
1689    /// Returns the total stride for every state in this DFA, expressed as the
1690    /// exponent of a power of 2. The stride is the amount of space each state
1691    /// takes up in the transition table, expressed as a number of transitions.
1692    /// (Unused transitions map to dead states.)
1693    ///
1694    /// The stride of a DFA is always equivalent to the smallest power of 2
1695    /// that is greater than or equal to the DFA's alphabet length. This
1696    /// definition uses extra space, but permits faster translation between
1697    /// premultiplied state identifiers and contiguous indices (by using shifts
1698    /// instead of relying on integer division).
1699    ///
1700    /// For example, if the DFA's stride is 16 transitions, then its `stride2`
1701    /// is `4` since `2^4 = 16`.
1702    ///
1703    /// The minimum `stride2` value is `1` (corresponding to a stride of `2`)
1704    /// while the maximum `stride2` value is `9` (corresponding to a stride of
1705    /// `512`). The maximum is not `8` since the maximum alphabet size is `257`
1706    /// when accounting for the special EOI transition. However, an alphabet
1707    /// length of that size is exceptionally rare since the alphabet is shrunk
1708    /// into equivalence classes.
1709    pub fn stride2(&self) -> usize {
1710        self.tt.stride2
1711    }
1712
1713    /// Returns the total stride for every state in this DFA. This corresponds
1714    /// to the total number of transitions used by each state in this DFA's
1715    /// transition table.
1716    ///
1717    /// Please see [`DFA::stride2`] for more information. In particular, this
1718    /// returns the stride as the number of transitions, where as `stride2`
1719    /// returns it as the exponent of a power of 2.
1720    pub fn stride(&self) -> usize {
1721        self.tt.stride()
1722    }
1723
1724    /// Returns the memory usage, in bytes, of this DFA.
1725    ///
1726    /// The memory usage is computed based on the number of bytes used to
1727    /// represent this DFA.
1728    ///
1729    /// This does **not** include the stack size used up by this DFA. To
1730    /// compute that, use `std::mem::size_of::<dense::DFA>()`.
1731    pub fn memory_usage(&self) -> usize {
1732        self.tt.memory_usage()
1733            + self.st.memory_usage()
1734            + self.ms.memory_usage()
1735            + self.accels.memory_usage()
1736    }
1737}
1738
1739/// Routines for converting a dense DFA to other representations, such as
1740/// sparse DFAs or raw bytes suitable for persistent storage.
1741impl<T: AsRef<[u32]>> DFA<T> {
1742    /// Convert this dense DFA to a sparse DFA.
1743    ///
1744    /// If a `StateID` is too small to represent all states in the sparse
1745    /// DFA, then this returns an error. In most cases, if a dense DFA is
1746    /// constructable with `StateID` then a sparse DFA will be as well.
1747    /// However, it is not guaranteed.
1748    ///
1749    /// # Example
1750    ///
1751    /// ```
1752    /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input};
1753    ///
1754    /// let dense = dense::DFA::new("foo[0-9]+")?;
1755    /// let sparse = dense.to_sparse()?;
1756    ///
1757    /// let expected = Some(HalfMatch::must(0, 8));
1758    /// assert_eq!(expected, sparse.try_search_fwd(&Input::new("foo12345"))?);
1759    /// # Ok::<(), Box<dyn std::error::Error>>(())
1760    /// ```
1761    #[cfg(feature = "dfa-build")]
1762    pub fn to_sparse(&self) -> Result<sparse::DFA<Vec<u8>>, BuildError> {
1763        sparse::DFA::from_dense(self)
1764    }
1765
1766    /// Serialize this DFA as raw bytes to a `Vec<u8>` in little endian
1767    /// format. Upon success, the `Vec<u8>` and the initial padding length are
1768    /// returned.
1769    ///
1770    /// The written bytes are guaranteed to be deserialized correctly and
1771    /// without errors in a semver compatible release of this crate by a
1772    /// `DFA`'s deserialization APIs (assuming all other criteria for the
1773    /// deserialization APIs has been satisfied):
1774    ///
1775    /// * [`DFA::from_bytes`]
1776    /// * [`DFA::from_bytes_unchecked`]
1777    ///
1778    /// The padding returned is non-zero if the returned `Vec<u8>` starts at
1779    /// an address that does not have the same alignment as `u32`. The padding
1780    /// corresponds to the number of leading bytes written to the returned
1781    /// `Vec<u8>`.
1782    ///
1783    /// # Example
1784    ///
1785    /// This example shows how to serialize and deserialize a DFA:
1786    ///
1787    /// ```
1788    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
1789    ///
1790    /// // Compile our original DFA.
1791    /// let original_dfa = DFA::new("foo[0-9]+")?;
1792    ///
1793    /// // N.B. We use native endianness here to make the example work, but
1794    /// // using to_bytes_little_endian would work on a little endian target.
1795    /// let (buf, _) = original_dfa.to_bytes_native_endian();
1796    /// // Even if buf has initial padding, DFA::from_bytes will automatically
1797    /// // ignore it.
1798    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0;
1799    ///
1800    /// let expected = Some(HalfMatch::must(0, 8));
1801    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
1802    /// # Ok::<(), Box<dyn std::error::Error>>(())
1803    /// ```
1804    #[cfg(feature = "dfa-build")]
1805    pub fn to_bytes_little_endian(&self) -> (Vec<u8>, usize) {
1806        self.to_bytes::<wire::LE>()
1807    }
1808
1809    /// Serialize this DFA as raw bytes to a `Vec<u8>` in big endian
1810    /// format. Upon success, the `Vec<u8>` and the initial padding length are
1811    /// returned.
1812    ///
1813    /// The written bytes are guaranteed to be deserialized correctly and
1814    /// without errors in a semver compatible release of this crate by a
1815    /// `DFA`'s deserialization APIs (assuming all other criteria for the
1816    /// deserialization APIs has been satisfied):
1817    ///
1818    /// * [`DFA::from_bytes`]
1819    /// * [`DFA::from_bytes_unchecked`]
1820    ///
1821    /// The padding returned is non-zero if the returned `Vec<u8>` starts at
1822    /// an address that does not have the same alignment as `u32`. The padding
1823    /// corresponds to the number of leading bytes written to the returned
1824    /// `Vec<u8>`.
1825    ///
1826    /// # Example
1827    ///
1828    /// This example shows how to serialize and deserialize a DFA:
1829    ///
1830    /// ```
1831    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
1832    ///
1833    /// // Compile our original DFA.
1834    /// let original_dfa = DFA::new("foo[0-9]+")?;
1835    ///
1836    /// // N.B. We use native endianness here to make the example work, but
1837    /// // using to_bytes_big_endian would work on a big endian target.
1838    /// let (buf, _) = original_dfa.to_bytes_native_endian();
1839    /// // Even if buf has initial padding, DFA::from_bytes will automatically
1840    /// // ignore it.
1841    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0;
1842    ///
1843    /// let expected = Some(HalfMatch::must(0, 8));
1844    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
1845    /// # Ok::<(), Box<dyn std::error::Error>>(())
1846    /// ```
1847    #[cfg(feature = "dfa-build")]
1848    pub fn to_bytes_big_endian(&self) -> (Vec<u8>, usize) {
1849        self.to_bytes::<wire::BE>()
1850    }
1851
1852    /// Serialize this DFA as raw bytes to a `Vec<u8>` in native endian
1853    /// format. Upon success, the `Vec<u8>` and the initial padding length are
1854    /// returned.
1855    ///
1856    /// The written bytes are guaranteed to be deserialized correctly and
1857    /// without errors in a semver compatible release of this crate by a
1858    /// `DFA`'s deserialization APIs (assuming all other criteria for the
1859    /// deserialization APIs has been satisfied):
1860    ///
1861    /// * [`DFA::from_bytes`]
1862    /// * [`DFA::from_bytes_unchecked`]
1863    ///
1864    /// The padding returned is non-zero if the returned `Vec<u8>` starts at
1865    /// an address that does not have the same alignment as `u32`. The padding
1866    /// corresponds to the number of leading bytes written to the returned
1867    /// `Vec<u8>`.
1868    ///
1869    /// Generally speaking, native endian format should only be used when
1870    /// you know that the target you're compiling the DFA for matches the
1871    /// endianness of the target on which you're compiling DFA. For example,
1872    /// if serialization and deserialization happen in the same process or on
1873    /// the same machine. Otherwise, when serializing a DFA for use in a
1874    /// portable environment, you'll almost certainly want to serialize _both_
1875    /// a little endian and a big endian version and then load the correct one
1876    /// based on the target's configuration.
1877    ///
1878    /// # Example
1879    ///
1880    /// This example shows how to serialize and deserialize a DFA:
1881    ///
1882    /// ```
1883    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
1884    ///
1885    /// // Compile our original DFA.
1886    /// let original_dfa = DFA::new("foo[0-9]+")?;
1887    ///
1888    /// let (buf, _) = original_dfa.to_bytes_native_endian();
1889    /// // Even if buf has initial padding, DFA::from_bytes will automatically
1890    /// // ignore it.
1891    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0;
1892    ///
1893    /// let expected = Some(HalfMatch::must(0, 8));
1894    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
1895    /// # Ok::<(), Box<dyn std::error::Error>>(())
1896    /// ```
1897    #[cfg(feature = "dfa-build")]
1898    pub fn to_bytes_native_endian(&self) -> (Vec<u8>, usize) {
1899        self.to_bytes::<wire::NE>()
1900    }
1901
1902    /// The implementation of the public `to_bytes` serialization methods,
1903    /// which is generic over endianness.
1904    #[cfg(feature = "dfa-build")]
1905    fn to_bytes<E: Endian>(&self) -> (Vec<u8>, usize) {
1906        let len = self.write_to_len();
1907        let (mut buf, padding) = wire::alloc_aligned_buffer::<u32>(len);
1908        // This should always succeed since the only possible serialization
1909        // error is providing a buffer that's too small, but we've ensured that
1910        // `buf` is big enough here.
1911        self.as_ref().write_to::<E>(&mut buf[padding..]).unwrap();
1912        (buf, padding)
1913    }
1914
1915    /// Serialize this DFA as raw bytes to the given slice, in little endian
1916    /// format. Upon success, the total number of bytes written to `dst` is
1917    /// returned.
1918    ///
1919    /// The written bytes are guaranteed to be deserialized correctly and
1920    /// without errors in a semver compatible release of this crate by a
1921    /// `DFA`'s deserialization APIs (assuming all other criteria for the
1922    /// deserialization APIs has been satisfied):
1923    ///
1924    /// * [`DFA::from_bytes`]
1925    /// * [`DFA::from_bytes_unchecked`]
1926    ///
1927    /// Note that unlike the various `to_byte_*` routines, this does not write
1928    /// any padding. Callers are responsible for handling alignment correctly.
1929    ///
1930    /// # Errors
1931    ///
1932    /// This returns an error if the given destination slice is not big enough
1933    /// to contain the full serialized DFA. If an error occurs, then nothing
1934    /// is written to `dst`.
1935    ///
1936    /// # Example
1937    ///
1938    /// This example shows how to serialize and deserialize a DFA without
1939    /// dynamic memory allocation.
1940    ///
1941    /// ```
1942    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
1943    ///
1944    /// // Compile our original DFA.
1945    /// let original_dfa = DFA::new("foo[0-9]+")?;
1946    ///
1947    /// // Create a 4KB buffer on the stack to store our serialized DFA. We
1948    /// // need to use a special type to force the alignment of our [u8; N]
1949    /// // array to be aligned to a 4 byte boundary. Otherwise, deserializing
1950    /// // the DFA may fail because of an alignment mismatch.
1951    /// #[repr(C)]
1952    /// struct Aligned<B: ?Sized> {
1953    ///     _align: [u32; 0],
1954    ///     bytes: B,
1955    /// }
1956    /// let mut buf = Aligned { _align: [], bytes: [0u8; 4 * (1<<10)] };
1957    /// // N.B. We use native endianness here to make the example work, but
1958    /// // using write_to_little_endian would work on a little endian target.
1959    /// let written = original_dfa.write_to_native_endian(&mut buf.bytes)?;
1960    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf.bytes[..written])?.0;
1961    ///
1962    /// let expected = Some(HalfMatch::must(0, 8));
1963    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
1964    /// # Ok::<(), Box<dyn std::error::Error>>(())
1965    /// ```
1966    pub fn write_to_little_endian(
1967        &self,
1968        dst: &mut [u8],
1969    ) -> Result<usize, SerializeError> {
1970        self.as_ref().write_to::<wire::LE>(dst)
1971    }
1972
1973    /// Serialize this DFA as raw bytes to the given slice, in big endian
1974    /// format. Upon success, the total number of bytes written to `dst` is
1975    /// returned.
1976    ///
1977    /// The written bytes are guaranteed to be deserialized correctly and
1978    /// without errors in a semver compatible release of this crate by a
1979    /// `DFA`'s deserialization APIs (assuming all other criteria for the
1980    /// deserialization APIs has been satisfied):
1981    ///
1982    /// * [`DFA::from_bytes`]
1983    /// * [`DFA::from_bytes_unchecked`]
1984    ///
1985    /// Note that unlike the various `to_byte_*` routines, this does not write
1986    /// any padding. Callers are responsible for handling alignment correctly.
1987    ///
1988    /// # Errors
1989    ///
1990    /// This returns an error if the given destination slice is not big enough
1991    /// to contain the full serialized DFA. If an error occurs, then nothing
1992    /// is written to `dst`.
1993    ///
1994    /// # Example
1995    ///
1996    /// This example shows how to serialize and deserialize a DFA without
1997    /// dynamic memory allocation.
1998    ///
1999    /// ```
2000    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
2001    ///
2002    /// // Compile our original DFA.
2003    /// let original_dfa = DFA::new("foo[0-9]+")?;
2004    ///
2005    /// // Create a 4KB buffer on the stack to store our serialized DFA. We
2006    /// // need to use a special type to force the alignment of our [u8; N]
2007    /// // array to be aligned to a 4 byte boundary. Otherwise, deserializing
2008    /// // the DFA may fail because of an alignment mismatch.
2009    /// #[repr(C)]
2010    /// struct Aligned<B: ?Sized> {
2011    ///     _align: [u32; 0],
2012    ///     bytes: B,
2013    /// }
2014    /// let mut buf = Aligned { _align: [], bytes: [0u8; 4 * (1<<10)] };
2015    /// // N.B. We use native endianness here to make the example work, but
2016    /// // using write_to_big_endian would work on a big endian target.
2017    /// let written = original_dfa.write_to_native_endian(&mut buf.bytes)?;
2018    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf.bytes[..written])?.0;
2019    ///
2020    /// let expected = Some(HalfMatch::must(0, 8));
2021    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
2022    /// # Ok::<(), Box<dyn std::error::Error>>(())
2023    /// ```
2024    pub fn write_to_big_endian(
2025        &self,
2026        dst: &mut [u8],
2027    ) -> Result<usize, SerializeError> {
2028        self.as_ref().write_to::<wire::BE>(dst)
2029    }
2030
2031    /// Serialize this DFA as raw bytes to the given slice, in native endian
2032    /// format. Upon success, the total number of bytes written to `dst` is
2033    /// returned.
2034    ///
2035    /// The written bytes are guaranteed to be deserialized correctly and
2036    /// without errors in a semver compatible release of this crate by a
2037    /// `DFA`'s deserialization APIs (assuming all other criteria for the
2038    /// deserialization APIs has been satisfied):
2039    ///
2040    /// * [`DFA::from_bytes`]
2041    /// * [`DFA::from_bytes_unchecked`]
2042    ///
2043    /// Generally speaking, native endian format should only be used when
2044    /// you know that the target you're compiling the DFA for matches the
2045    /// endianness of the target on which you're compiling DFA. For example,
2046    /// if serialization and deserialization happen in the same process or on
2047    /// the same machine. Otherwise, when serializing a DFA for use in a
2048    /// portable environment, you'll almost certainly want to serialize _both_
2049    /// a little endian and a big endian version and then load the correct one
2050    /// based on the target's configuration.
2051    ///
2052    /// Note that unlike the various `to_byte_*` routines, this does not write
2053    /// any padding. Callers are responsible for handling alignment correctly.
2054    ///
2055    /// # Errors
2056    ///
2057    /// This returns an error if the given destination slice is not big enough
2058    /// to contain the full serialized DFA. If an error occurs, then nothing
2059    /// is written to `dst`.
2060    ///
2061    /// # Example
2062    ///
2063    /// This example shows how to serialize and deserialize a DFA without
2064    /// dynamic memory allocation.
2065    ///
2066    /// ```
2067    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
2068    ///
2069    /// // Compile our original DFA.
2070    /// let original_dfa = DFA::new("foo[0-9]+")?;
2071    ///
2072    /// // Create a 4KB buffer on the stack to store our serialized DFA. We
2073    /// // need to use a special type to force the alignment of our [u8; N]
2074    /// // array to be aligned to a 4 byte boundary. Otherwise, deserializing
2075    /// // the DFA may fail because of an alignment mismatch.
2076    /// #[repr(C)]
2077    /// struct Aligned<B: ?Sized> {
2078    ///     _align: [u32; 0],
2079    ///     bytes: B,
2080    /// }
2081    /// let mut buf = Aligned { _align: [], bytes: [0u8; 4 * (1<<10)] };
2082    /// let written = original_dfa.write_to_native_endian(&mut buf.bytes)?;
2083    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf.bytes[..written])?.0;
2084    ///
2085    /// let expected = Some(HalfMatch::must(0, 8));
2086    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
2087    /// # Ok::<(), Box<dyn std::error::Error>>(())
2088    /// ```
2089    pub fn write_to_native_endian(
2090        &self,
2091        dst: &mut [u8],
2092    ) -> Result<usize, SerializeError> {
2093        self.as_ref().write_to::<wire::NE>(dst)
2094    }
2095
2096    /// Return the total number of bytes required to serialize this DFA.
2097    ///
2098    /// This is useful for determining the size of the buffer required to pass
2099    /// to one of the serialization routines:
2100    ///
2101    /// * [`DFA::write_to_little_endian`]
2102    /// * [`DFA::write_to_big_endian`]
2103    /// * [`DFA::write_to_native_endian`]
2104    ///
2105    /// Passing a buffer smaller than the size returned by this method will
2106    /// result in a serialization error. Serialization routines are guaranteed
2107    /// to succeed when the buffer is big enough.
2108    ///
2109    /// # Example
2110    ///
2111    /// This example shows how to dynamically allocate enough room to serialize
2112    /// a DFA.
2113    ///
2114    /// ```
2115    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
2116    ///
2117    /// let original_dfa = DFA::new("foo[0-9]+")?;
2118    ///
2119    /// let mut buf = vec![0; original_dfa.write_to_len()];
2120    /// // This is guaranteed to succeed, because the only serialization error
2121    /// // that can occur is when the provided buffer is too small. But
2122    /// // write_to_len guarantees a correct size.
2123    /// let written = original_dfa.write_to_native_endian(&mut buf).unwrap();
2124    /// // But this is not guaranteed to succeed! In particular,
2125    /// // deserialization requires proper alignment for &[u32], but our buffer
2126    /// // was allocated as a &[u8] whose required alignment is smaller than
2127    /// // &[u32]. However, it's likely to work in practice because of how most
2128    /// // allocators work. So if you write code like this, make sure to either
2129    /// // handle the error correctly and/or run it under Miri since Miri will
2130    /// // likely provoke the error by returning Vec<u8> buffers with alignment
2131    /// // less than &[u32].
2132    /// let dfa: DFA<&[u32]> = match DFA::from_bytes(&buf[..written]) {
2133    ///     // As mentioned above, it is legal for an error to be returned
2134    ///     // here. It is quite difficult to get a Vec<u8> with a guaranteed
2135    ///     // alignment equivalent to Vec<u32>.
2136    ///     Err(_) => return Ok(()),
2137    ///     Ok((dfa, _)) => dfa,
2138    /// };
2139    ///
2140    /// let expected = Some(HalfMatch::must(0, 8));
2141    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
2142    /// # Ok::<(), Box<dyn std::error::Error>>(())
2143    /// ```
2144    ///
2145    /// Note that this example isn't actually guaranteed to work! In
2146    /// particular, if `buf` is not aligned to a 4-byte boundary, then the
2147    /// `DFA::from_bytes` call will fail. If you need this to work, then you
2148    /// either need to deal with adding some initial padding yourself, or use
2149    /// one of the `to_bytes` methods, which will do it for you.
2150    pub fn write_to_len(&self) -> usize {
2151        wire::write_label_len(LABEL)
2152        + wire::write_endianness_check_len()
2153        + wire::write_version_len()
2154        + size_of::<u32>() // unused, intended for future flexibility
2155        + self.flags.write_to_len()
2156        + self.tt.write_to_len()
2157        + self.st.write_to_len()
2158        + self.ms.write_to_len()
2159        + self.special.write_to_len()
2160        + self.accels.write_to_len()
2161        + self.quitset.write_to_len()
2162    }
2163}
2164
2165impl<'a> DFA<&'a [u32]> {
2166    /// Safely deserialize a DFA with a specific state identifier
2167    /// representation. Upon success, this returns both the deserialized DFA
2168    /// and the number of bytes read from the given slice. Namely, the contents
2169    /// of the slice beyond the DFA are not read.
2170    ///
2171    /// Deserializing a DFA using this routine will never allocate heap memory.
2172    /// For safety purposes, the DFA's transition table will be verified such
2173    /// that every transition points to a valid state. If this verification is
2174    /// too costly, then a [`DFA::from_bytes_unchecked`] API is provided, which
2175    /// will always execute in constant time.
2176    ///
2177    /// The bytes given must be generated by one of the serialization APIs
2178    /// of a `DFA` using a semver compatible release of this crate. Those
2179    /// include:
2180    ///
2181    /// * [`DFA::to_bytes_little_endian`]
2182    /// * [`DFA::to_bytes_big_endian`]
2183    /// * [`DFA::to_bytes_native_endian`]
2184    /// * [`DFA::write_to_little_endian`]
2185    /// * [`DFA::write_to_big_endian`]
2186    /// * [`DFA::write_to_native_endian`]
2187    ///
2188    /// The `to_bytes` methods allocate and return a `Vec<u8>` for you, along
2189    /// with handling alignment correctly. The `write_to` methods do not
2190    /// allocate and write to an existing slice (which may be on the stack).
2191    /// Since deserialization always uses the native endianness of the target
2192    /// platform, the serialization API you use should match the endianness of
2193    /// the target platform. (It's often a good idea to generate serialized
2194    /// DFAs for both forms of endianness and then load the correct one based
2195    /// on endianness.)
2196    ///
2197    /// # Errors
2198    ///
2199    /// Generally speaking, it's easier to state the conditions in which an
2200    /// error is _not_ returned. All of the following must be true:
2201    ///
2202    /// * The bytes given must be produced by one of the serialization APIs
2203    ///   on this DFA, as mentioned above.
2204    /// * The endianness of the target platform matches the endianness used to
2205    ///   serialized the provided DFA.
2206    /// * The slice given must have the same alignment as `u32`.
2207    ///
2208    /// If any of the above are not true, then an error will be returned.
2209    ///
2210    /// # Panics
2211    ///
2212    /// This routine will never panic for any input.
2213    ///
2214    /// # Example
2215    ///
2216    /// This example shows how to serialize a DFA to raw bytes, deserialize it
2217    /// and then use it for searching.
2218    ///
2219    /// ```
2220    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
2221    ///
2222    /// let initial = DFA::new("foo[0-9]+")?;
2223    /// let (bytes, _) = initial.to_bytes_native_endian();
2224    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&bytes)?.0;
2225    ///
2226    /// let expected = Some(HalfMatch::must(0, 8));
2227    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
2228    /// # Ok::<(), Box<dyn std::error::Error>>(())
2229    /// ```
2230    ///
2231    /// # Example: dealing with alignment and padding
2232    ///
2233    /// In the above example, we used the `to_bytes_native_endian` method to
2234    /// serialize a DFA, but we ignored part of its return value corresponding
2235    /// to padding added to the beginning of the serialized DFA. This is OK
2236    /// because deserialization will skip this initial padding. What matters
2237    /// is that the address immediately following the padding has an alignment
2238    /// that matches `u32`. That is, the following is an equivalent but
2239    /// alternative way to write the above example:
2240    ///
2241    /// ```
2242    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
2243    ///
2244    /// let initial = DFA::new("foo[0-9]+")?;
2245    /// // Serialization returns the number of leading padding bytes added to
2246    /// // the returned Vec<u8>.
2247    /// let (bytes, pad) = initial.to_bytes_native_endian();
2248    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&bytes[pad..])?.0;
2249    ///
2250    /// let expected = Some(HalfMatch::must(0, 8));
2251    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
2252    /// # Ok::<(), Box<dyn std::error::Error>>(())
2253    /// ```
2254    ///
2255    /// This padding is necessary because Rust's standard library does
2256    /// not expose any safe and robust way of creating a `Vec<u8>` with a
2257    /// guaranteed alignment other than 1. Now, in practice, the underlying
2258    /// allocator is likely to provide a `Vec<u8>` that meets our alignment
2259    /// requirements, which means `pad` is zero in practice most of the time.
2260    ///
2261    /// The purpose of exposing the padding like this is flexibility for the
2262    /// caller. For example, if one wants to embed a serialized DFA into a
2263    /// compiled program, then it's important to guarantee that it starts at a
2264    /// `u32`-aligned address. The simplest way to do this is to discard the
2265    /// padding bytes and set it up so that the serialized DFA itself begins at
2266    /// a properly aligned address. We can show this in two parts. The first
2267    /// part is serializing the DFA to a file:
2268    ///
2269    /// ```no_run
2270    /// use regex_automata::dfa::dense::DFA;
2271    ///
2272    /// let dfa = DFA::new("foo[0-9]+")?;
2273    ///
2274    /// let (bytes, pad) = dfa.to_bytes_big_endian();
2275    /// // Write the contents of the DFA *without* the initial padding.
2276    /// std::fs::write("foo.bigendian.dfa", &bytes[pad..])?;
2277    ///
2278    /// // Do it again, but this time for little endian.
2279    /// let (bytes, pad) = dfa.to_bytes_little_endian();
2280    /// std::fs::write("foo.littleendian.dfa", &bytes[pad..])?;
2281    /// # Ok::<(), Box<dyn std::error::Error>>(())
2282    /// ```
2283    ///
2284    /// And now the second part is embedding the DFA into the compiled program
2285    /// and deserializing it at runtime on first use. We use conditional
2286    /// compilation to choose the correct endianness.
2287    ///
2288    /// ```no_run
2289    /// use regex_automata::{
2290    ///     dfa::{Automaton, dense::DFA},
2291    ///     util::{lazy::Lazy, wire::AlignAs},
2292    ///     HalfMatch, Input,
2293    /// };
2294    ///
2295    /// // This crate provides its own "lazy" type, kind of like
2296    /// // lazy_static! or once_cell::sync::Lazy. But it works in no-alloc
2297    /// // no-std environments and let's us write this using completely
2298    /// // safe code.
2299    /// static RE: Lazy<DFA<&'static [u32]>> = Lazy::new(|| {
2300    ///     # const _: &str = stringify! {
2301    ///     // This assignment is made possible (implicitly) via the
2302    ///     // CoerceUnsized trait. This is what guarantees that our
2303    ///     // bytes are stored in memory on a 4 byte boundary. You
2304    ///     // *must* do this or something equivalent for correct
2305    ///     // deserialization.
2306    ///     static ALIGNED: &AlignAs<[u8], u32> = &AlignAs {
2307    ///         _align: [],
2308    ///         #[cfg(target_endian = "big")]
2309    ///         bytes: *include_bytes!("foo.bigendian.dfa"),
2310    ///         #[cfg(target_endian = "little")]
2311    ///         bytes: *include_bytes!("foo.littleendian.dfa"),
2312    ///     };
2313    ///     # };
2314    ///     # static ALIGNED: &AlignAs<[u8], u32> = &AlignAs {
2315    ///     #     _align: [],
2316    ///     #     bytes: [],
2317    ///     # };
2318    ///
2319    ///     let (dfa, _) = DFA::from_bytes(&ALIGNED.bytes)
2320    ///         .expect("serialized DFA should be valid");
2321    ///     dfa
2322    /// });
2323    ///
2324    /// let expected = Ok(Some(HalfMatch::must(0, 8)));
2325    /// assert_eq!(expected, RE.try_search_fwd(&Input::new("foo12345")));
2326    /// ```
2327    ///
2328    /// An alternative to [`util::lazy::Lazy`](crate::util::lazy::Lazy)
2329    /// is [`lazy_static`](https://crates.io/crates/lazy_static) or
2330    /// [`once_cell`](https://crates.io/crates/once_cell), which provide
2331    /// stronger guarantees (like the initialization function only being
2332    /// executed once). And `once_cell` in particular provides a more
2333    /// expressive API. But a `Lazy` value from this crate is likely just fine
2334    /// in most circumstances.
2335    ///
2336    /// Note that regardless of which initialization method you use, you
2337    /// will still need to use the [`AlignAs`](crate::util::wire::AlignAs)
2338    /// trick above to force correct alignment, but this is safe to do and
2339    /// `from_bytes` will return an error if you get it wrong.
2340    pub fn from_bytes(
2341        slice: &'a [u8],
2342    ) -> Result<(DFA<&'a [u32]>, usize), DeserializeError> {
2343        // SAFETY: This is safe because we validate the transition table, start
2344        // table, match states and accelerators below. If any validation fails,
2345        // then we return an error.
2346        let (dfa, nread) = unsafe { DFA::from_bytes_unchecked(slice)? };
2347        // Note that validation order is important here:
2348        //
2349        // * `MatchState::validate` can be called with an untrusted DFA.
2350        // * `TransistionTable::validate` uses `dfa.ms` through `match_len`.
2351        // * `StartTable::validate` needs a valid transition table.
2352        //
2353        // So... validate the match states first.
2354        dfa.accels.validate()?;
2355        dfa.ms.validate(&dfa)?;
2356        dfa.tt.validate(&dfa)?;
2357        dfa.st.validate(&dfa)?;
2358        // N.B. dfa.special doesn't have a way to do unchecked deserialization,
2359        // so it has already been validated.
2360        for state in dfa.states() {
2361            // If the state is an accel state, then it must have a non-empty
2362            // accelerator.
2363            if dfa.is_accel_state(state.id()) {
2364                let index = dfa.accelerator_index(state.id());
2365                if index >= dfa.accels.len() {
2366                    return Err(DeserializeError::generic(
2367                        "found DFA state with invalid accelerator index",
2368                    ));
2369                }
2370                let needles = dfa.accels.needles(index);
2371                if !(1 <= needles.len() && needles.len() <= 3) {
2372                    return Err(DeserializeError::generic(
2373                        "accelerator needles has invalid length",
2374                    ));
2375                }
2376            }
2377        }
2378        Ok((dfa, nread))
2379    }
2380
2381    /// Deserialize a DFA with a specific state identifier representation in
2382    /// constant time by omitting the verification of the validity of the
2383    /// transition table and other data inside the DFA.
2384    ///
2385    /// This is just like [`DFA::from_bytes`], except it can potentially return
2386    /// a DFA that exhibits undefined behavior if its transition table contains
2387    /// invalid state identifiers.
2388    ///
2389    /// This routine is useful if you need to deserialize a DFA cheaply
2390    /// and cannot afford the transition table validation performed by
2391    /// `from_bytes`.
2392    ///
2393    /// # Example
2394    ///
2395    /// ```
2396    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
2397    ///
2398    /// let initial = DFA::new("foo[0-9]+")?;
2399    /// let (bytes, _) = initial.to_bytes_native_endian();
2400    /// // SAFETY: This is guaranteed to be safe since the bytes given come
2401    /// // directly from a compatible serialization routine.
2402    /// let dfa: DFA<&[u32]> = unsafe { DFA::from_bytes_unchecked(&bytes)?.0 };
2403    ///
2404    /// let expected = Some(HalfMatch::must(0, 8));
2405    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
2406    /// # Ok::<(), Box<dyn std::error::Error>>(())
2407    /// ```
2408    pub unsafe fn from_bytes_unchecked(
2409        slice: &'a [u8],
2410    ) -> Result<(DFA<&'a [u32]>, usize), DeserializeError> {
2411        let mut nr = 0;
2412
2413        nr += wire::skip_initial_padding(slice);
2414        wire::check_alignment::<StateID>(&slice[nr..])?;
2415        nr += wire::read_label(&slice[nr..], LABEL)?;
2416        nr += wire::read_endianness_check(&slice[nr..])?;
2417        nr += wire::read_version(&slice[nr..], VERSION)?;
2418
2419        let _unused = wire::try_read_u32(&slice[nr..], "unused space")?;
2420        nr += size_of::<u32>();
2421
2422        let (flags, nread) = Flags::from_bytes(&slice[nr..])?;
2423        nr += nread;
2424
2425        let (tt, nread) = TransitionTable::from_bytes_unchecked(&slice[nr..])?;
2426        nr += nread;
2427
2428        let (st, nread) = StartTable::from_bytes_unchecked(&slice[nr..])?;
2429        nr += nread;
2430
2431        let (ms, nread) = MatchStates::from_bytes_unchecked(&slice[nr..])?;
2432        nr += nread;
2433
2434        let (special, nread) = Special::from_bytes(&slice[nr..])?;
2435        nr += nread;
2436        special.validate_state_len(tt.len(), tt.stride2)?;
2437
2438        let (accels, nread) = Accels::from_bytes_unchecked(&slice[nr..])?;
2439        nr += nread;
2440
2441        let (quitset, nread) = ByteSet::from_bytes(&slice[nr..])?;
2442        nr += nread;
2443
2444        // Prefilters don't support serialization, so they're always absent.
2445        let pre = None;
2446        Ok((DFA { tt, st, ms, special, accels, pre, quitset, flags }, nr))
2447    }
2448
2449    /// The implementation of the public `write_to` serialization methods,
2450    /// which is generic over endianness.
2451    ///
2452    /// This is defined only for &[u32] to reduce binary size/compilation time.
2453    fn write_to<E: Endian>(
2454        &self,
2455        mut dst: &mut [u8],
2456    ) -> Result<usize, SerializeError> {
2457        let nwrite = self.write_to_len();
2458        if dst.len() < nwrite {
2459            return Err(SerializeError::buffer_too_small("dense DFA"));
2460        }
2461        dst = &mut dst[..nwrite];
2462
2463        let mut nw = 0;
2464        nw += wire::write_label(LABEL, &mut dst[nw..])?;
2465        nw += wire::write_endianness_check::<E>(&mut dst[nw..])?;
2466        nw += wire::write_version::<E>(VERSION, &mut dst[nw..])?;
2467        nw += {
2468            // Currently unused, intended for future flexibility
2469            E::write_u32(0, &mut dst[nw..]);
2470            size_of::<u32>()
2471        };
2472        nw += self.flags.write_to::<E>(&mut dst[nw..])?;
2473        nw += self.tt.write_to::<E>(&mut dst[nw..])?;
2474        nw += self.st.write_to::<E>(&mut dst[nw..])?;
2475        nw += self.ms.write_to::<E>(&mut dst[nw..])?;
2476        nw += self.special.write_to::<E>(&mut dst[nw..])?;
2477        nw += self.accels.write_to::<E>(&mut dst[nw..])?;
2478        nw += self.quitset.write_to::<E>(&mut dst[nw..])?;
2479        Ok(nw)
2480    }
2481}
2482
2483/// Other routines that work for all `T`.
2484impl<T> DFA<T> {
2485    /// Set or unset the prefilter attached to this DFA.
2486    ///
2487    /// This is useful when one has deserialized a DFA from `&[u8]`.
2488    /// Deserialization does not currently include prefilters, so if you
2489    /// want prefilter acceleration, you'll need to rebuild it and attach
2490    /// it here.
2491    pub fn set_prefilter(&mut self, prefilter: Option<Prefilter>) {
2492        self.pre = prefilter
2493    }
2494}
2495
2496// The following methods implement mutable routines on the internal
2497// representation of a DFA. As such, we must fix the first type parameter to a
2498// `Vec<u32>` since a generic `T: AsRef<[u32]>` does not permit mutation. We
2499// can get away with this because these methods are internal to the crate and
2500// are exclusively used during construction of the DFA.
2501#[cfg(feature = "dfa-build")]
2502impl OwnedDFA {
2503    /// Add a start state of this DFA.
2504    pub(crate) fn set_start_state(
2505        &mut self,
2506        anchored: Anchored,
2507        start: Start,
2508        id: StateID,
2509    ) {
2510        assert!(self.tt.is_valid(id), "invalid start state");
2511        self.st.set_start(anchored, start, id);
2512    }
2513
2514    /// Set the given transition to this DFA. Both the `from` and `to` states
2515    /// must already exist.
2516    pub(crate) fn set_transition(
2517        &mut self,
2518        from: StateID,
2519        byte: alphabet::Unit,
2520        to: StateID,
2521    ) {
2522        self.tt.set(from, byte, to);
2523    }
2524
2525    /// An empty state (a state where all transitions lead to a dead state)
2526    /// and return its identifier. The identifier returned is guaranteed to
2527    /// not point to any other existing state.
2528    ///
2529    /// If adding a state would exceed `StateID::LIMIT`, then this returns an
2530    /// error.
2531    pub(crate) fn add_empty_state(&mut self) -> Result<StateID, BuildError> {
2532        self.tt.add_empty_state()
2533    }
2534
2535    /// Swap the two states given in the transition table.
2536    ///
2537    /// This routine does not do anything to check the correctness of this
2538    /// swap. Callers must ensure that other states pointing to id1 and id2 are
2539    /// updated appropriately.
2540    pub(crate) fn swap_states(&mut self, id1: StateID, id2: StateID) {
2541        self.tt.swap(id1, id2);
2542    }
2543
2544    /// Remap all of the state identifiers in this DFA according to the map
2545    /// function given. This includes all transitions and all starting state
2546    /// identifiers.
2547    pub(crate) fn remap(&mut self, map: impl Fn(StateID) -> StateID) {
2548        // We could loop over each state ID and call 'remap_state' here, but
2549        // this is more direct: just map every transition directly. This
2550        // technically might do a little extra work since the alphabet length
2551        // is likely less than the stride, but if that is indeed an issue we
2552        // should benchmark it and fix it.
2553        for sid in self.tt.table_mut().iter_mut() {
2554            *sid = map(*sid);
2555        }
2556        for sid in self.st.table_mut().iter_mut() {
2557            *sid = map(*sid);
2558        }
2559    }
2560
2561    /// Remap the transitions for the state given according to the function
2562    /// given. This applies the given map function to every transition in the
2563    /// given state and changes the transition in place to the result of the
2564    /// map function for that transition.
2565    pub(crate) fn remap_state(
2566        &mut self,
2567        id: StateID,
2568        map: impl Fn(StateID) -> StateID,
2569    ) {
2570        self.tt.remap(id, map);
2571    }
2572
2573    /// Truncate the states in this DFA to the given length.
2574    ///
2575    /// This routine does not do anything to check the correctness of this
2576    /// truncation. Callers must ensure that other states pointing to truncated
2577    /// states are updated appropriately.
2578    pub(crate) fn truncate_states(&mut self, len: usize) {
2579        self.tt.truncate(len);
2580    }
2581
2582    /// Minimize this DFA in place using Hopcroft's algorithm.
2583    pub(crate) fn minimize(&mut self) {
2584        Minimizer::new(self).run();
2585    }
2586
2587    /// Updates the match state pattern ID map to use the one provided.
2588    ///
2589    /// This is useful when it's convenient to manipulate matching states
2590    /// (and their corresponding pattern IDs) as a map. In particular, the
2591    /// representation used by a DFA for this map is not amenable to mutation,
2592    /// so if things need to be changed (like when shuffling states), it's
2593    /// often easier to work with the map form.
2594    pub(crate) fn set_pattern_map(
2595        &mut self,
2596        map: &BTreeMap<StateID, Vec<PatternID>>,
2597    ) -> Result<(), BuildError> {
2598        self.ms = self.ms.new_with_map(map)?;
2599        Ok(())
2600    }
2601
2602    /// Find states that have a small number of non-loop transitions and mark
2603    /// them as candidates for acceleration during search.
2604    pub(crate) fn accelerate(&mut self) {
2605        // dead and quit states can never be accelerated.
2606        if self.state_len() <= 2 {
2607            return;
2608        }
2609
2610        // Go through every state and record their accelerator, if possible.
2611        let mut accels = BTreeMap::new();
2612        // Count the number of accelerated match, start and non-match/start
2613        // states.
2614        let (mut cmatch, mut cstart, mut cnormal) = (0, 0, 0);
2615        for state in self.states() {
2616            if let Some(accel) = state.accelerate(self.byte_classes()) {
2617                debug!(
2618                    "accelerating full DFA state {}: {:?}",
2619                    state.id().as_usize(),
2620                    accel,
2621                );
2622                accels.insert(state.id(), accel);
2623                if self.is_match_state(state.id()) {
2624                    cmatch += 1;
2625                } else if self.is_start_state(state.id()) {
2626                    cstart += 1;
2627                } else {
2628                    assert!(!self.is_dead_state(state.id()));
2629                    assert!(!self.is_quit_state(state.id()));
2630                    cnormal += 1;
2631                }
2632            }
2633        }
2634        // If no states were able to be accelerated, then we're done.
2635        if accels.is_empty() {
2636            return;
2637        }
2638        let original_accels_len = accels.len();
2639
2640        // A remapper keeps track of state ID changes. Once we're done
2641        // shuffling, the remapper is used to rewrite all transitions in the
2642        // DFA based on the new positions of states.
2643        let mut remapper = Remapper::new(self);
2644
2645        // As we swap states, if they are match states, we need to swap their
2646        // pattern ID lists too (for multi-regexes). We do this by converting
2647        // the lists to an easily swappable map, and then convert back to
2648        // MatchStates once we're done.
2649        let mut new_matches = self.ms.to_map(self);
2650
2651        // There is at least one state that gets accelerated, so these are
2652        // guaranteed to get set to sensible values below.
2653        self.special.min_accel = StateID::MAX;
2654        self.special.max_accel = StateID::ZERO;
2655        let update_special_accel =
2656            |special: &mut Special, accel_id: StateID| {
2657                special.min_accel = cmp::min(special.min_accel, accel_id);
2658                special.max_accel = cmp::max(special.max_accel, accel_id);
2659            };
2660
2661        // Start by shuffling match states. Any match states that are
2662        // accelerated get moved to the end of the match state range.
2663        if cmatch > 0 && self.special.matches() {
2664            // N.B. special.{min,max}_match do not need updating, since the
2665            // range/number of match states does not change. Only the ordering
2666            // of match states may change.
2667            let mut next_id = self.special.max_match;
2668            let mut cur_id = next_id;
2669            while cur_id >= self.special.min_match {
2670                if let Some(accel) = accels.remove(&cur_id) {
2671                    accels.insert(next_id, accel);
2672                    update_special_accel(&mut self.special, next_id);
2673
2674                    // No need to do any actual swapping for equivalent IDs.
2675                    if cur_id != next_id {
2676                        remapper.swap(self, cur_id, next_id);
2677
2678                        // Swap pattern IDs for match states.
2679                        let cur_pids = new_matches.remove(&cur_id).unwrap();
2680                        let next_pids = new_matches.remove(&next_id).unwrap();
2681                        new_matches.insert(cur_id, next_pids);
2682                        new_matches.insert(next_id, cur_pids);
2683                    }
2684                    next_id = self.tt.prev_state_id(next_id);
2685                }
2686                cur_id = self.tt.prev_state_id(cur_id);
2687            }
2688        }
2689
2690        // This is where it gets tricky. Without acceleration, start states
2691        // normally come right after match states. But we want accelerated
2692        // states to be a single contiguous range (to make it very fast
2693        // to determine whether a state *is* accelerated), while also keeping
2694        // match and starting states as contiguous ranges for the same reason.
2695        // So what we do here is shuffle states such that it looks like this:
2696        //
2697        //     DQMMMMAAAAASSSSSSNNNNNNN
2698        //         |         |
2699        //         |---------|
2700        //      accelerated states
2701        //
2702        // Where:
2703        //   D - dead state
2704        //   Q - quit state
2705        //   M - match state (may be accelerated)
2706        //   A - normal state that is accelerated
2707        //   S - start state (may be accelerated)
2708        //   N - normal state that is NOT accelerated
2709        //
2710        // We implement this by shuffling states, which is done by a sequence
2711        // of pairwise swaps. We start by looking at all normal states to be
2712        // accelerated. When we find one, we swap it with the earliest starting
2713        // state, and then swap that with the earliest normal state. This
2714        // preserves the contiguous property.
2715        //
2716        // Once we're done looking for accelerated normal states, now we look
2717        // for accelerated starting states by moving them to the beginning
2718        // of the starting state range (just like we moved accelerated match
2719        // states to the end of the matching state range).
2720        //
2721        // For a more detailed/different perspective on this, see the docs
2722        // in dfa/special.rs.
2723        if cnormal > 0 {
2724            // our next available starting and normal states for swapping.
2725            let mut next_start_id = self.special.min_start;
2726            let mut cur_id = self.to_state_id(self.state_len() - 1);
2727            // This is guaranteed to exist since cnormal > 0.
2728            let mut next_norm_id =
2729                self.tt.next_state_id(self.special.max_start);
2730            while cur_id >= next_norm_id {
2731                if let Some(accel) = accels.remove(&cur_id) {
2732                    remapper.swap(self, next_start_id, cur_id);
2733                    remapper.swap(self, next_norm_id, cur_id);
2734                    // Keep our accelerator map updated with new IDs if the
2735                    // states we swapped were also accelerated.
2736                    if let Some(accel2) = accels.remove(&next_norm_id) {
2737                        accels.insert(cur_id, accel2);
2738                    }
2739                    if let Some(accel2) = accels.remove(&next_start_id) {
2740                        accels.insert(next_norm_id, accel2);
2741                    }
2742                    accels.insert(next_start_id, accel);
2743                    update_special_accel(&mut self.special, next_start_id);
2744                    // Our start range shifts one to the right now.
2745                    self.special.min_start =
2746                        self.tt.next_state_id(self.special.min_start);
2747                    self.special.max_start =
2748                        self.tt.next_state_id(self.special.max_start);
2749                    next_start_id = self.tt.next_state_id(next_start_id);
2750                    next_norm_id = self.tt.next_state_id(next_norm_id);
2751                }
2752                // This is pretty tricky, but if our 'next_norm_id' state also
2753                // happened to be accelerated, then the result is that it is
2754                // now in the position of cur_id, so we need to consider it
2755                // again. This loop is still guaranteed to terminate though,
2756                // because when accels contains cur_id, we're guaranteed to
2757                // increment next_norm_id even if cur_id remains unchanged.
2758                if !accels.contains_key(&cur_id) {
2759                    cur_id = self.tt.prev_state_id(cur_id);
2760                }
2761            }
2762        }
2763        // Just like we did for match states, but we want to move accelerated
2764        // start states to the beginning of the range instead of the end.
2765        if cstart > 0 {
2766            // N.B. special.{min,max}_start do not need updating, since the
2767            // range/number of start states does not change at this point. Only
2768            // the ordering of start states may change.
2769            let mut next_id = self.special.min_start;
2770            let mut cur_id = next_id;
2771            while cur_id <= self.special.max_start {
2772                if let Some(accel) = accels.remove(&cur_id) {
2773                    remapper.swap(self, cur_id, next_id);
2774                    accels.insert(next_id, accel);
2775                    update_special_accel(&mut self.special, next_id);
2776                    next_id = self.tt.next_state_id(next_id);
2777                }
2778                cur_id = self.tt.next_state_id(cur_id);
2779            }
2780        }
2781
2782        // Remap all transitions in our DFA and assert some things.
2783        remapper.remap(self);
2784        // This unwrap is OK because acceleration never changes the number of
2785        // match states or patterns in those match states. Since acceleration
2786        // runs after the pattern map has been set at least once, we know that
2787        // our match states cannot error.
2788        self.set_pattern_map(&new_matches).unwrap();
2789        self.special.set_max();
2790        self.special.validate().expect("special state ranges should validate");
2791        self.special
2792            .validate_state_len(self.state_len(), self.stride2())
2793            .expect(
2794                "special state ranges should be consistent with state length",
2795            );
2796        assert_eq!(
2797            self.special.accel_len(self.stride()),
2798            // We record the number of accelerated states initially detected
2799            // since the accels map is itself mutated in the process above.
2800            // If mutated incorrectly, its size may change, and thus can't be
2801            // trusted as a source of truth of how many accelerated states we
2802            // expected there to be.
2803            original_accels_len,
2804            "mismatch with expected number of accelerated states",
2805        );
2806
2807        // And finally record our accelerators. We kept our accels map updated
2808        // as we shuffled states above, so the accelerators should now
2809        // correspond to a contiguous range in the state ID space. (Which we
2810        // assert.)
2811        let mut prev: Option<StateID> = None;
2812        for (id, accel) in accels {
2813            assert!(prev.map_or(true, |p| self.tt.next_state_id(p) == id));
2814            prev = Some(id);
2815            self.accels.add(accel);
2816        }
2817    }
2818
2819    /// Shuffle the states in this DFA so that starting states, match
2820    /// states and accelerated states are all contiguous.
2821    ///
2822    /// See dfa/special.rs for more details.
2823    pub(crate) fn shuffle(
2824        &mut self,
2825        mut matches: BTreeMap<StateID, Vec<PatternID>>,
2826    ) -> Result<(), BuildError> {
2827        // The determinizer always adds a quit state and it is always second.
2828        self.special.quit_id = self.to_state_id(1);
2829        // If all we have are the dead and quit states, then we're done and
2830        // the DFA will never produce a match.
2831        if self.state_len() <= 2 {
2832            self.special.set_max();
2833            return Ok(());
2834        }
2835
2836        // Collect all our non-DEAD start states into a convenient set and
2837        // confirm there is no overlap with match states. In the classical DFA
2838        // construction, start states can be match states. But because of
2839        // look-around, we delay all matches by a byte, which prevents start
2840        // states from being match states.
2841        let mut is_start: BTreeSet<StateID> = BTreeSet::new();
2842        for (start_id, _, _) in self.starts() {
2843            // If a starting configuration points to a DEAD state, then we
2844            // don't want to shuffle it. The DEAD state is always the first
2845            // state with ID=0. So we can just leave it be.
2846            if start_id == DEAD {
2847                continue;
2848            }
2849            assert!(
2850                !matches.contains_key(&start_id),
2851                "{start_id:?} is both a start and a match state, \
2852                 which is not allowed",
2853            );
2854            is_start.insert(start_id);
2855        }
2856
2857        // We implement shuffling by a sequence of pairwise swaps of states.
2858        // Since we have a number of things referencing states via their
2859        // IDs and swapping them changes their IDs, we need to record every
2860        // swap we make so that we can remap IDs. The remapper handles this
2861        // book-keeping for us.
2862        let mut remapper = Remapper::new(self);
2863
2864        // Shuffle matching states.
2865        if matches.is_empty() {
2866            self.special.min_match = DEAD;
2867            self.special.max_match = DEAD;
2868        } else {
2869            // The determinizer guarantees that the first two states are the
2870            // dead and quit states, respectively. We want our match states to
2871            // come right after quit.
2872            let mut next_id = self.to_state_id(2);
2873            let mut new_matches = BTreeMap::new();
2874            self.special.min_match = next_id;
2875            for (id, pids) in matches {
2876                remapper.swap(self, next_id, id);
2877                new_matches.insert(next_id, pids);
2878                // If we swapped a start state, then update our set.
2879                if is_start.contains(&next_id) {
2880                    is_start.remove(&next_id);
2881                    is_start.insert(id);
2882                }
2883                next_id = self.tt.next_state_id(next_id);
2884            }
2885            matches = new_matches;
2886            self.special.max_match = cmp::max(
2887                self.special.min_match,
2888                self.tt.prev_state_id(next_id),
2889            );
2890        }
2891
2892        // Shuffle starting states.
2893        {
2894            let mut next_id = self.to_state_id(2);
2895            if self.special.matches() {
2896                next_id = self.tt.next_state_id(self.special.max_match);
2897            }
2898            self.special.min_start = next_id;
2899            for id in is_start {
2900                remapper.swap(self, next_id, id);
2901                next_id = self.tt.next_state_id(next_id);
2902            }
2903            self.special.max_start = cmp::max(
2904                self.special.min_start,
2905                self.tt.prev_state_id(next_id),
2906            );
2907        }
2908
2909        // Finally remap all transitions in our DFA.
2910        remapper.remap(self);
2911        self.set_pattern_map(&matches)?;
2912        self.special.set_max();
2913        self.special.validate().expect("special state ranges should validate");
2914        self.special
2915            .validate_state_len(self.state_len(), self.stride2())
2916            .expect(
2917                "special state ranges should be consistent with state length",
2918            );
2919        Ok(())
2920    }
2921
2922    /// Checks whether there are universal start states (both anchored and
2923    /// unanchored), and if so, sets the relevant fields to the start state
2924    /// IDs.
2925    ///
2926    /// Universal start states occur precisely when the all patterns in the
2927    /// DFA have no look-around assertions in their prefix.
2928    fn set_universal_starts(&mut self) {
2929        assert_eq!(6, Start::len(), "expected 6 start configurations");
2930
2931        let start_id = |dfa: &mut OwnedDFA,
2932                        anchored: Anchored,
2933                        start: Start| {
2934            // This OK because we only call 'start' under conditions
2935            // in which we know it will succeed.
2936            dfa.st.start(anchored, start).expect("valid Input configuration")
2937        };
2938        if self.start_kind().has_unanchored() {
2939            let anchor = Anchored::No;
2940            let sid = start_id(self, anchor, Start::NonWordByte);
2941            if sid == start_id(self, anchor, Start::WordByte)
2942                && sid == start_id(self, anchor, Start::Text)
2943                && sid == start_id(self, anchor, Start::LineLF)
2944                && sid == start_id(self, anchor, Start::LineCR)
2945                && sid == start_id(self, anchor, Start::CustomLineTerminator)
2946            {
2947                self.st.universal_start_unanchored = Some(sid);
2948            }
2949        }
2950        if self.start_kind().has_anchored() {
2951            let anchor = Anchored::Yes;
2952            let sid = start_id(self, anchor, Start::NonWordByte);
2953            if sid == start_id(self, anchor, Start::WordByte)
2954                && sid == start_id(self, anchor, Start::Text)
2955                && sid == start_id(self, anchor, Start::LineLF)
2956                && sid == start_id(self, anchor, Start::LineCR)
2957                && sid == start_id(self, anchor, Start::CustomLineTerminator)
2958            {
2959                self.st.universal_start_anchored = Some(sid);
2960            }
2961        }
2962    }
2963}
2964
2965// A variety of generic internal methods for accessing DFA internals.
2966impl<T: AsRef<[u32]>> DFA<T> {
2967    /// Return the info about special states.
2968    pub(crate) fn special(&self) -> &Special {
2969        &self.special
2970    }
2971
2972    /// Return the info about special states as a mutable borrow.
2973    #[cfg(feature = "dfa-build")]
2974    pub(crate) fn special_mut(&mut self) -> &mut Special {
2975        &mut self.special
2976    }
2977
2978    /// Returns the quit set (may be empty) used by this DFA.
2979    pub(crate) fn quitset(&self) -> &ByteSet {
2980        &self.quitset
2981    }
2982
2983    /// Returns the flags for this DFA.
2984    pub(crate) fn flags(&self) -> &Flags {
2985        &self.flags
2986    }
2987
2988    /// Returns an iterator over all states in this DFA.
2989    ///
2990    /// This iterator yields a tuple for each state. The first element of the
2991    /// tuple corresponds to a state's identifier, and the second element
2992    /// corresponds to the state itself (comprised of its transitions).
2993    pub(crate) fn states(&self) -> StateIter<'_, T> {
2994        self.tt.states()
2995    }
2996
2997    /// Return the total number of states in this DFA. Every DFA has at least
2998    /// 1 state, even the empty DFA.
2999    pub(crate) fn state_len(&self) -> usize {
3000        self.tt.len()
3001    }
3002
3003    /// Return an iterator over all pattern IDs for the given match state.
3004    ///
3005    /// If the given state is not a match state, then this panics.
3006    #[cfg(feature = "dfa-build")]
3007    pub(crate) fn pattern_id_slice(&self, id: StateID) -> &[PatternID] {
3008        assert!(self.is_match_state(id));
3009        self.ms.pattern_id_slice(self.match_state_index(id))
3010    }
3011
3012    /// Return the total number of pattern IDs for the given match state.
3013    ///
3014    /// If the given state is not a match state, then this panics.
3015    pub(crate) fn match_pattern_len(&self, id: StateID) -> usize {
3016        assert!(self.is_match_state(id));
3017        self.ms.pattern_len(self.match_state_index(id))
3018    }
3019
3020    /// Returns the total number of patterns matched by this DFA.
3021    pub(crate) fn pattern_len(&self) -> usize {
3022        self.ms.pattern_len
3023    }
3024
3025    /// Returns a map from match state ID to a list of pattern IDs that match
3026    /// in that state.
3027    #[cfg(feature = "dfa-build")]
3028    pub(crate) fn pattern_map(&self) -> BTreeMap<StateID, Vec<PatternID>> {
3029        self.ms.to_map(self)
3030    }
3031
3032    /// Returns the ID of the quit state for this DFA.
3033    #[cfg(feature = "dfa-build")]
3034    pub(crate) fn quit_id(&self) -> StateID {
3035        self.to_state_id(1)
3036    }
3037
3038    /// Convert the given state identifier to the state's index. The state's
3039    /// index corresponds to the position in which it appears in the transition
3040    /// table. When a DFA is NOT premultiplied, then a state's identifier is
3041    /// also its index. When a DFA is premultiplied, then a state's identifier
3042    /// is equal to `index * alphabet_len`. This routine reverses that.
3043    pub(crate) fn to_index(&self, id: StateID) -> usize {
3044        self.tt.to_index(id)
3045    }
3046
3047    /// Convert an index to a state (in the range 0..self.state_len()) to an
3048    /// actual state identifier.
3049    ///
3050    /// This is useful when using a `Vec<T>` as an efficient map keyed by state
3051    /// to some other information (such as a remapped state ID).
3052    #[cfg(feature = "dfa-build")]
3053    pub(crate) fn to_state_id(&self, index: usize) -> StateID {
3054        self.tt.to_state_id(index)
3055    }
3056
3057    /// Return the table of state IDs for this DFA's start states.
3058    pub(crate) fn starts(&self) -> StartStateIter<'_> {
3059        self.st.iter()
3060    }
3061
3062    /// Returns the index of the match state for the given ID. If the
3063    /// given ID does not correspond to a match state, then this may
3064    /// panic or produce an incorrect result.
3065    #[cfg_attr(feature = "perf-inline", inline(always))]
3066    fn match_state_index(&self, id: StateID) -> usize {
3067        debug_assert!(self.is_match_state(id));
3068        // This is one of the places where we rely on the fact that match
3069        // states are contiguous in the transition table. Namely, that the
3070        // first match state ID always corresponds to dfa.special.min_match.
3071        // From there, since we know the stride, we can compute the overall
3072        // index of any match state given the match state's ID.
3073        let min = self.special().min_match.as_usize();
3074        // CORRECTNESS: We're allowed to produce an incorrect result or panic,
3075        // so both the subtraction and the unchecked StateID construction is
3076        // OK.
3077        self.to_index(StateID::new_unchecked(id.as_usize() - min))
3078    }
3079
3080    /// Returns the index of the accelerator state for the given ID. If the
3081    /// given ID does not correspond to an accelerator state, then this may
3082    /// panic or produce an incorrect result.
3083    fn accelerator_index(&self, id: StateID) -> usize {
3084        let min = self.special().min_accel.as_usize();
3085        // CORRECTNESS: We're allowed to produce an incorrect result or panic,
3086        // so both the subtraction and the unchecked StateID construction is
3087        // OK.
3088        self.to_index(StateID::new_unchecked(id.as_usize() - min))
3089    }
3090
3091    /// Return the accelerators for this DFA.
3092    fn accels(&self) -> Accels<&[u32]> {
3093        self.accels.as_ref()
3094    }
3095
3096    /// Return this DFA's transition table as a slice.
3097    fn trans(&self) -> &[StateID] {
3098        self.tt.table()
3099    }
3100}
3101
3102impl<T: AsRef<[u32]>> fmt::Debug for DFA<T> {
3103    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3104        writeln!(f, "dense::DFA(")?;
3105        for state in self.states() {
3106            fmt_state_indicator(f, self, state.id())?;
3107            let id = if f.alternate() {
3108                state.id().as_usize()
3109            } else {
3110                self.to_index(state.id())
3111            };
3112            write!(f, "{id:06?}: ")?;
3113            state.fmt(f)?;
3114            write!(f, "\n")?;
3115        }
3116        writeln!(f, "")?;
3117        for (i, (start_id, anchored, sty)) in self.starts().enumerate() {
3118            let id = if f.alternate() {
3119                start_id.as_usize()
3120            } else {
3121                self.to_index(start_id)
3122            };
3123            if i % self.st.stride == 0 {
3124                match anchored {
3125                    Anchored::No => writeln!(f, "START-GROUP(unanchored)")?,
3126                    Anchored::Yes => writeln!(f, "START-GROUP(anchored)")?,
3127                    Anchored::Pattern(pid) => {
3128                        writeln!(f, "START_GROUP(pattern: {pid:?})")?
3129                    }
3130                }
3131            }
3132            writeln!(f, "  {sty:?} => {id:06?}")?;
3133        }
3134        if self.pattern_len() > 1 {
3135            writeln!(f, "")?;
3136            for i in 0..self.ms.len() {
3137                let id = self.ms.match_state_id(self, i);
3138                let id = if f.alternate() {
3139                    id.as_usize()
3140                } else {
3141                    self.to_index(id)
3142                };
3143                write!(f, "MATCH({id:06?}): ")?;
3144                for (i, &pid) in self.ms.pattern_id_slice(i).iter().enumerate()
3145                {
3146                    if i > 0 {
3147                        write!(f, ", ")?;
3148                    }
3149                    write!(f, "{pid:?}")?;
3150                }
3151                writeln!(f, "")?;
3152            }
3153        }
3154        writeln!(f, "state length: {:?}", self.state_len())?;
3155        writeln!(f, "pattern length: {:?}", self.pattern_len())?;
3156        writeln!(f, "flags: {:?}", self.flags)?;
3157        writeln!(f, ")")?;
3158        Ok(())
3159    }
3160}
3161
3162// SAFETY: We assert that our implementation of each method is correct.
3163unsafe impl<T: AsRef<[u32]>> Automaton for DFA<T> {
3164    #[cfg_attr(feature = "perf-inline", inline(always))]
3165    fn is_special_state(&self, id: StateID) -> bool {
3166        self.special.is_special_state(id)
3167    }
3168
3169    #[cfg_attr(feature = "perf-inline", inline(always))]
3170    fn is_dead_state(&self, id: StateID) -> bool {
3171        self.special.is_dead_state(id)
3172    }
3173
3174    #[cfg_attr(feature = "perf-inline", inline(always))]
3175    fn is_quit_state(&self, id: StateID) -> bool {
3176        self.special.is_quit_state(id)
3177    }
3178
3179    #[cfg_attr(feature = "perf-inline", inline(always))]
3180    fn is_match_state(&self, id: StateID) -> bool {
3181        self.special.is_match_state(id)
3182    }
3183
3184    #[cfg_attr(feature = "perf-inline", inline(always))]
3185    fn is_start_state(&self, id: StateID) -> bool {
3186        self.special.is_start_state(id)
3187    }
3188
3189    #[cfg_attr(feature = "perf-inline", inline(always))]
3190    fn is_accel_state(&self, id: StateID) -> bool {
3191        self.special.is_accel_state(id)
3192    }
3193
3194    #[cfg_attr(feature = "perf-inline", inline(always))]
3195    fn next_state(&self, current: StateID, input: u8) -> StateID {
3196        let input = self.byte_classes().get(input);
3197        let o = current.as_usize() + usize::from(input);
3198        self.trans()[o]
3199    }
3200
3201    #[cfg_attr(feature = "perf-inline", inline(always))]
3202    unsafe fn next_state_unchecked(
3203        &self,
3204        current: StateID,
3205        byte: u8,
3206    ) -> StateID {
3207        // We don't (or shouldn't) need an unchecked variant for the byte
3208        // class mapping, since bound checks should be omitted automatically
3209        // by virtue of its representation. If this ends up not being true as
3210        // confirmed by codegen, please file an issue. ---AG
3211        let class = self.byte_classes().get(byte);
3212        let o = current.as_usize() + usize::from(class);
3213        let next = *self.trans().get_unchecked(o);
3214        next
3215    }
3216
3217    #[cfg_attr(feature = "perf-inline", inline(always))]
3218    fn next_eoi_state(&self, current: StateID) -> StateID {
3219        let eoi = self.byte_classes().eoi().as_usize();
3220        let o = current.as_usize() + eoi;
3221        self.trans()[o]
3222    }
3223
3224    #[cfg_attr(feature = "perf-inline", inline(always))]
3225    fn pattern_len(&self) -> usize {
3226        self.ms.pattern_len
3227    }
3228
3229    #[cfg_attr(feature = "perf-inline", inline(always))]
3230    fn match_len(&self, id: StateID) -> usize {
3231        self.match_pattern_len(id)
3232    }
3233
3234    #[cfg_attr(feature = "perf-inline", inline(always))]
3235    fn match_pattern(&self, id: StateID, match_index: usize) -> PatternID {
3236        // This is an optimization for the very common case of a DFA with a
3237        // single pattern. This conditional avoids a somewhat more costly path
3238        // that finds the pattern ID from the state machine, which requires
3239        // a bit of slicing/pointer-chasing. This optimization tends to only
3240        // matter when matches are frequent.
3241        if self.ms.pattern_len == 1 {
3242            return PatternID::ZERO;
3243        }
3244        let state_index = self.match_state_index(id);
3245        self.ms.pattern_id(state_index, match_index)
3246    }
3247
3248    #[cfg_attr(feature = "perf-inline", inline(always))]
3249    fn has_empty(&self) -> bool {
3250        self.flags.has_empty
3251    }
3252
3253    #[cfg_attr(feature = "perf-inline", inline(always))]
3254    fn is_utf8(&self) -> bool {
3255        self.flags.is_utf8
3256    }
3257
3258    #[cfg_attr(feature = "perf-inline", inline(always))]
3259    fn is_always_start_anchored(&self) -> bool {
3260        self.flags.is_always_start_anchored
3261    }
3262
3263    #[cfg_attr(feature = "perf-inline", inline(always))]
3264    fn start_state(
3265        &self,
3266        config: &start::Config,
3267    ) -> Result<StateID, StartError> {
3268        let anchored = config.get_anchored();
3269        let start = match config.get_look_behind() {
3270            None => Start::Text,
3271            Some(byte) => {
3272                if !self.quitset.is_empty() && self.quitset.contains(byte) {
3273                    return Err(StartError::quit(byte));
3274                }
3275                self.st.start_map.get(byte)
3276            }
3277        };
3278        self.st.start(anchored, start)
3279    }
3280
3281    #[cfg_attr(feature = "perf-inline", inline(always))]
3282    fn universal_start_state(&self, mode: Anchored) -> Option<StateID> {
3283        match mode {
3284            Anchored::No => self.st.universal_start_unanchored,
3285            Anchored::Yes => self.st.universal_start_anchored,
3286            Anchored::Pattern(_) => None,
3287        }
3288    }
3289
3290    #[cfg_attr(feature = "perf-inline", inline(always))]
3291    fn accelerator(&self, id: StateID) -> &[u8] {
3292        if !self.is_accel_state(id) {
3293            return &[];
3294        }
3295        self.accels.needles(self.accelerator_index(id))
3296    }
3297
3298    #[cfg_attr(feature = "perf-inline", inline(always))]
3299    fn get_prefilter(&self) -> Option<&Prefilter> {
3300        self.pre.as_ref()
3301    }
3302}
3303
3304/// The transition table portion of a dense DFA.
3305///
3306/// The transition table is the core part of the DFA in that it describes how
3307/// to move from one state to another based on the input sequence observed.
3308#[derive(Clone)]
3309pub(crate) struct TransitionTable<T> {
3310    /// A contiguous region of memory representing the transition table in
3311    /// row-major order. The representation is dense. That is, every state
3312    /// has precisely the same number of transitions. The maximum number of
3313    /// transitions per state is 257 (256 for each possible byte value, plus 1
3314    /// for the special EOI transition). If a DFA has been instructed to use
3315    /// byte classes (the default), then the number of transitions is usually
3316    /// substantially fewer.
3317    ///
3318    /// In practice, T is either `Vec<u32>` or `&[u32]`.
3319    table: T,
3320    /// A set of equivalence classes, where a single equivalence class
3321    /// represents a set of bytes that never discriminate between a match
3322    /// and a non-match in the DFA. Each equivalence class corresponds to a
3323    /// single character in this DFA's alphabet, where the maximum number of
3324    /// characters is 257 (each possible value of a byte plus the special
3325    /// EOI transition). Consequently, the number of equivalence classes
3326    /// corresponds to the number of transitions for each DFA state. Note
3327    /// though that the *space* used by each DFA state in the transition table
3328    /// may be larger. The total space used by each DFA state is known as the
3329    /// stride.
3330    ///
3331    /// The only time the number of equivalence classes is fewer than 257 is if
3332    /// the DFA's kind uses byte classes (which is the default). Equivalence
3333    /// classes should generally only be disabled when debugging, so that
3334    /// the transitions themselves aren't obscured. Disabling them has no
3335    /// other benefit, since the equivalence class map is always used while
3336    /// searching. In the vast majority of cases, the number of equivalence
3337    /// classes is substantially smaller than 257, particularly when large
3338    /// Unicode classes aren't used.
3339    classes: ByteClasses,
3340    /// The stride of each DFA state, expressed as a power-of-two exponent.
3341    ///
3342    /// The stride of a DFA corresponds to the total amount of space used by
3343    /// each DFA state in the transition table. This may be bigger than the
3344    /// size of a DFA's alphabet, since the stride is always the smallest
3345    /// power of two greater than or equal to the alphabet size.
3346    ///
3347    /// While this wastes space, this avoids the need for integer division
3348    /// to convert between premultiplied state IDs and their corresponding
3349    /// indices. Instead, we can use simple bit-shifts.
3350    ///
3351    /// See the docs for the `stride2` method for more details.
3352    ///
3353    /// The minimum `stride2` value is `1` (corresponding to a stride of `2`)
3354    /// while the maximum `stride2` value is `9` (corresponding to a stride of
3355    /// `512`). The maximum is not `8` since the maximum alphabet size is `257`
3356    /// when accounting for the special EOI transition. However, an alphabet
3357    /// length of that size is exceptionally rare since the alphabet is shrunk
3358    /// into equivalence classes.
3359    stride2: usize,
3360}
3361
3362impl<'a> TransitionTable<&'a [u32]> {
3363    /// Deserialize a transition table starting at the beginning of `slice`.
3364    /// Upon success, return the total number of bytes read along with the
3365    /// transition table.
3366    ///
3367    /// If there was a problem deserializing any part of the transition table,
3368    /// then this returns an error. Notably, if the given slice does not have
3369    /// the same alignment as `StateID`, then this will return an error (among
3370    /// other possible errors).
3371    ///
3372    /// This is guaranteed to execute in constant time.
3373    ///
3374    /// # Safety
3375    ///
3376    /// This routine is not safe because it does not check the validity of the
3377    /// transition table itself. In particular, the transition table can be
3378    /// quite large, so checking its validity can be somewhat expensive. An
3379    /// invalid transition table is not safe because other code may rely on the
3380    /// transition table being correct (such as explicit bounds check elision).
3381    /// Therefore, an invalid transition table can lead to undefined behavior.
3382    ///
3383    /// Callers that use this function must either pass on the safety invariant
3384    /// or guarantee that the bytes given contain a valid transition table.
3385    /// This guarantee is upheld by the bytes written by `write_to`.
3386    unsafe fn from_bytes_unchecked(
3387        mut slice: &'a [u8],
3388    ) -> Result<(TransitionTable<&'a [u32]>, usize), DeserializeError> {
3389        let slice_start = slice.as_ptr().as_usize();
3390
3391        let (state_len, nr) =
3392            wire::try_read_u32_as_usize(slice, "state length")?;
3393        slice = &slice[nr..];
3394
3395        let (stride2, nr) = wire::try_read_u32_as_usize(slice, "stride2")?;
3396        slice = &slice[nr..];
3397
3398        let (classes, nr) = ByteClasses::from_bytes(slice)?;
3399        slice = &slice[nr..];
3400
3401        // The alphabet length (determined by the byte class map) cannot be
3402        // bigger than the stride (total space used by each DFA state).
3403        if stride2 > 9 {
3404            return Err(DeserializeError::generic(
3405                "dense DFA has invalid stride2 (too big)",
3406            ));
3407        }
3408        // It also cannot be zero, since even a DFA that never matches anything
3409        // has a non-zero number of states with at least two equivalence
3410        // classes: one for all 256 byte values and another for the EOI
3411        // sentinel.
3412        if stride2 < 1 {
3413            return Err(DeserializeError::generic(
3414                "dense DFA has invalid stride2 (too small)",
3415            ));
3416        }
3417        // This is OK since 1 <= stride2 <= 9.
3418        let stride =
3419            1usize.checked_shl(u32::try_from(stride2).unwrap()).unwrap();
3420        if classes.alphabet_len() > stride {
3421            return Err(DeserializeError::generic(
3422                "alphabet size cannot be bigger than transition table stride",
3423            ));
3424        }
3425
3426        let trans_len =
3427            wire::shl(state_len, stride2, "dense table transition length")?;
3428        let table_bytes_len = wire::mul(
3429            trans_len,
3430            StateID::SIZE,
3431            "dense table state byte length",
3432        )?;
3433        wire::check_slice_len(slice, table_bytes_len, "transition table")?;
3434        wire::check_alignment::<StateID>(slice)?;
3435        let table_bytes = &slice[..table_bytes_len];
3436        slice = &slice[table_bytes_len..];
3437        // SAFETY: Since StateID is always representable as a u32, all we need
3438        // to do is ensure that we have the proper length and alignment. We've
3439        // checked both above, so the cast below is safe.
3440        //
3441        // N.B. This is the only not-safe code in this function.
3442        let table = core::slice::from_raw_parts(
3443            table_bytes.as_ptr().cast::<u32>(),
3444            trans_len,
3445        );
3446        let tt = TransitionTable { table, classes, stride2 };
3447        Ok((tt, slice.as_ptr().as_usize() - slice_start))
3448    }
3449}
3450
3451#[cfg(feature = "dfa-build")]
3452impl TransitionTable<Vec<u32>> {
3453    /// Create a minimal transition table with just two states: a dead state
3454    /// and a quit state. The alphabet length and stride of the transition
3455    /// table is determined by the given set of equivalence classes.
3456    fn minimal(classes: ByteClasses) -> TransitionTable<Vec<u32>> {
3457        let mut tt = TransitionTable {
3458            table: vec![],
3459            classes,
3460            stride2: classes.stride2(),
3461        };
3462        // Two states, regardless of alphabet size, can always fit into u32.
3463        tt.add_empty_state().unwrap(); // dead state
3464        tt.add_empty_state().unwrap(); // quit state
3465        tt
3466    }
3467
3468    /// Set a transition in this table. Both the `from` and `to` states must
3469    /// already exist, otherwise this panics. `unit` should correspond to the
3470    /// transition out of `from` to set to `to`.
3471    fn set(&mut self, from: StateID, unit: alphabet::Unit, to: StateID) {
3472        assert!(self.is_valid(from), "invalid 'from' state");
3473        assert!(self.is_valid(to), "invalid 'to' state");
3474        self.table[from.as_usize() + self.classes.get_by_unit(unit)] =
3475            to.as_u32();
3476    }
3477
3478    /// Add an empty state (a state where all transitions lead to a dead state)
3479    /// and return its identifier. The identifier returned is guaranteed to
3480    /// not point to any other existing state.
3481    ///
3482    /// If adding a state would exhaust the state identifier space, then this
3483    /// returns an error.
3484    fn add_empty_state(&mut self) -> Result<StateID, BuildError> {
3485        // Normally, to get a fresh state identifier, we would just
3486        // take the index of the next state added to the transition
3487        // table. However, we actually perform an optimization here
3488        // that pre-multiplies state IDs by the stride, such that they
3489        // point immediately at the beginning of their transitions in
3490        // the transition table. This avoids an extra multiplication
3491        // instruction for state lookup at search time.
3492        //
3493        // Premultiplied identifiers means that instead of your matching
3494        // loop looking something like this:
3495        //
3496        //   state = dfa.start
3497        //   for byte in haystack:
3498        //       next = dfa.transitions[state * stride + byte]
3499        //       if dfa.is_match(next):
3500        //           return true
3501        //   return false
3502        //
3503        // it can instead look like this:
3504        //
3505        //   state = dfa.start
3506        //   for byte in haystack:
3507        //       next = dfa.transitions[state + byte]
3508        //       if dfa.is_match(next):
3509        //           return true
3510        //   return false
3511        //
3512        // In other words, we save a multiplication instruction in the
3513        // critical path. This turns out to be a decent performance win.
3514        // The cost of using premultiplied state ids is that they can
3515        // require a bigger state id representation. (And they also make
3516        // the code a bit more complex, especially during minimization and
3517        // when reshuffling states, as one needs to convert back and forth
3518        // between state IDs and state indices.)
3519        //
3520        // To do this, we simply take the index of the state into the
3521        // entire transition table, rather than the index of the state
3522        // itself. e.g., If the stride is 64, then the ID of the 3rd state
3523        // is 192, not 2.
3524        let next = self.table.len();
3525        let id =
3526            StateID::new(next).map_err(|_| BuildError::too_many_states())?;
3527        self.table.extend(iter::repeat(0).take(self.stride()));
3528        Ok(id)
3529    }
3530
3531    /// Swap the two states given in this transition table.
3532    ///
3533    /// This routine does not do anything to check the correctness of this
3534    /// swap. Callers must ensure that other states pointing to id1 and id2 are
3535    /// updated appropriately.
3536    ///
3537    /// Both id1 and id2 must point to valid states, otherwise this panics.
3538    fn swap(&mut self, id1: StateID, id2: StateID) {
3539        assert!(self.is_valid(id1), "invalid 'id1' state: {id1:?}");
3540        assert!(self.is_valid(id2), "invalid 'id2' state: {id2:?}");
3541        // We only need to swap the parts of the state that are used. So if the
3542        // stride is 64, but the alphabet length is only 33, then we save a lot
3543        // of work.
3544        for b in 0..self.classes.alphabet_len() {
3545            self.table.swap(id1.as_usize() + b, id2.as_usize() + b);
3546        }
3547    }
3548
3549    /// Remap the transitions for the state given according to the function
3550    /// given. This applies the given map function to every transition in the
3551    /// given state and changes the transition in place to the result of the
3552    /// map function for that transition.
3553    fn remap(&mut self, id: StateID, map: impl Fn(StateID) -> StateID) {
3554        for byte in 0..self.alphabet_len() {
3555            let i = id.as_usize() + byte;
3556            let next = self.table()[i];
3557            self.table_mut()[id.as_usize() + byte] = map(next);
3558        }
3559    }
3560
3561    /// Truncate the states in this transition table to the given length.
3562    ///
3563    /// This routine does not do anything to check the correctness of this
3564    /// truncation. Callers must ensure that other states pointing to truncated
3565    /// states are updated appropriately.
3566    fn truncate(&mut self, len: usize) {
3567        self.table.truncate(len << self.stride2);
3568    }
3569}
3570
3571impl<T: AsRef<[u32]>> TransitionTable<T> {
3572    /// Writes a serialized form of this transition table to the buffer given.
3573    /// If the buffer is too small, then an error is returned. To determine
3574    /// how big the buffer must be, use `write_to_len`.
3575    fn write_to<E: Endian>(
3576        &self,
3577        mut dst: &mut [u8],
3578    ) -> Result<usize, SerializeError> {
3579        let nwrite = self.write_to_len();
3580        if dst.len() < nwrite {
3581            return Err(SerializeError::buffer_too_small("transition table"));
3582        }
3583        dst = &mut dst[..nwrite];
3584
3585        // write state length
3586        // Unwrap is OK since number of states is guaranteed to fit in a u32.
3587        E::write_u32(u32::try_from(self.len()).unwrap(), dst);
3588        dst = &mut dst[size_of::<u32>()..];
3589
3590        // write state stride (as power of 2)
3591        // Unwrap is OK since stride2 is guaranteed to be <= 9.
3592        E::write_u32(u32::try_from(self.stride2).unwrap(), dst);
3593        dst = &mut dst[size_of::<u32>()..];
3594
3595        // write byte class map
3596        let n = self.classes.write_to(dst)?;
3597        dst = &mut dst[n..];
3598
3599        // write actual transitions
3600        for &sid in self.table() {
3601            let n = wire::write_state_id::<E>(sid, &mut dst);
3602            dst = &mut dst[n..];
3603        }
3604        Ok(nwrite)
3605    }
3606
3607    /// Returns the number of bytes the serialized form of this transition
3608    /// table will use.
3609    fn write_to_len(&self) -> usize {
3610        size_of::<u32>()   // state length
3611        + size_of::<u32>() // stride2
3612        + self.classes.write_to_len()
3613        + (self.table().len() * StateID::SIZE)
3614    }
3615
3616    /// Validates that every state ID in this transition table is valid.
3617    ///
3618    /// That is, every state ID can be used to correctly index a state in this
3619    /// table.
3620    fn validate(&self, dfa: &DFA<T>) -> Result<(), DeserializeError> {
3621        let sp = &dfa.special;
3622        for state in self.states() {
3623            // We check that the ID itself is well formed. That is, if it's
3624            // a special state then it must actually be a quit, dead, accel,
3625            // match or start state.
3626            if sp.is_special_state(state.id()) {
3627                let is_actually_special = sp.is_dead_state(state.id())
3628                    || sp.is_quit_state(state.id())
3629                    || sp.is_match_state(state.id())
3630                    || sp.is_start_state(state.id())
3631                    || sp.is_accel_state(state.id());
3632                if !is_actually_special {
3633                    // This is kind of a cryptic error message...
3634                    return Err(DeserializeError::generic(
3635                        "found dense state tagged as special but \
3636                         wasn't actually special",
3637                    ));
3638                }
3639                if sp.is_match_state(state.id())
3640                    && dfa.match_len(state.id()) == 0
3641                {
3642                    return Err(DeserializeError::generic(
3643                        "found match state with zero pattern IDs",
3644                    ));
3645                }
3646            }
3647            for (_, to) in state.transitions() {
3648                if !self.is_valid(to) {
3649                    return Err(DeserializeError::generic(
3650                        "found invalid state ID in transition table",
3651                    ));
3652                }
3653            }
3654        }
3655        Ok(())
3656    }
3657
3658    /// Converts this transition table to a borrowed value.
3659    fn as_ref(&self) -> TransitionTable<&'_ [u32]> {
3660        TransitionTable {
3661            table: self.table.as_ref(),
3662            classes: self.classes.clone(),
3663            stride2: self.stride2,
3664        }
3665    }
3666
3667    /// Converts this transition table to an owned value.
3668    #[cfg(feature = "alloc")]
3669    fn to_owned(&self) -> TransitionTable<alloc::vec::Vec<u32>> {
3670        TransitionTable {
3671            table: self.table.as_ref().to_vec(),
3672            classes: self.classes.clone(),
3673            stride2: self.stride2,
3674        }
3675    }
3676
3677    /// Return the state for the given ID. If the given ID is not valid, then
3678    /// this panics.
3679    fn state(&self, id: StateID) -> State<'_> {
3680        assert!(self.is_valid(id));
3681
3682        let i = id.as_usize();
3683        State {
3684            id,
3685            stride2: self.stride2,
3686            transitions: &self.table()[i..i + self.alphabet_len()],
3687        }
3688    }
3689
3690    /// Returns an iterator over all states in this transition table.
3691    ///
3692    /// This iterator yields a tuple for each state. The first element of the
3693    /// tuple corresponds to a state's identifier, and the second element
3694    /// corresponds to the state itself (comprised of its transitions).
3695    fn states(&self) -> StateIter<'_, T> {
3696        StateIter {
3697            tt: self,
3698            it: self.table().chunks(self.stride()).enumerate(),
3699        }
3700    }
3701
3702    /// Convert a state identifier to an index to a state (in the range
3703    /// 0..self.len()).
3704    ///
3705    /// This is useful when using a `Vec<T>` as an efficient map keyed by state
3706    /// to some other information (such as a remapped state ID).
3707    ///
3708    /// If the given ID is not valid, then this may panic or produce an
3709    /// incorrect index.
3710    fn to_index(&self, id: StateID) -> usize {
3711        id.as_usize() >> self.stride2
3712    }
3713
3714    /// Convert an index to a state (in the range 0..self.len()) to an actual
3715    /// state identifier.
3716    ///
3717    /// This is useful when using a `Vec<T>` as an efficient map keyed by state
3718    /// to some other information (such as a remapped state ID).
3719    ///
3720    /// If the given index is not in the specified range, then this may panic
3721    /// or produce an incorrect state ID.
3722    fn to_state_id(&self, index: usize) -> StateID {
3723        // CORRECTNESS: If the given index is not valid, then it is not
3724        // required for this to panic or return a valid state ID.
3725        StateID::new_unchecked(index << self.stride2)
3726    }
3727
3728    /// Returns the state ID for the state immediately following the one given.
3729    ///
3730    /// This does not check whether the state ID returned is invalid. In fact,
3731    /// if the state ID given is the last state in this DFA, then the state ID
3732    /// returned is guaranteed to be invalid.
3733    #[cfg(feature = "dfa-build")]
3734    fn next_state_id(&self, id: StateID) -> StateID {
3735        self.to_state_id(self.to_index(id).checked_add(1).unwrap())
3736    }
3737
3738    /// Returns the state ID for the state immediately preceding the one given.
3739    ///
3740    /// If the dead ID given (which is zero), then this panics.
3741    #[cfg(feature = "dfa-build")]
3742    fn prev_state_id(&self, id: StateID) -> StateID {
3743        self.to_state_id(self.to_index(id).checked_sub(1).unwrap())
3744    }
3745
3746    /// Returns the table as a slice of state IDs.
3747    fn table(&self) -> &[StateID] {
3748        wire::u32s_to_state_ids(self.table.as_ref())
3749    }
3750
3751    /// Returns the total number of states in this transition table.
3752    ///
3753    /// Note that a DFA always has at least two states: the dead and quit
3754    /// states. In particular, the dead state always has ID 0 and is
3755    /// correspondingly always the first state. The dead state is never a match
3756    /// state.
3757    fn len(&self) -> usize {
3758        self.table().len() >> self.stride2
3759    }
3760
3761    /// Returns the total stride for every state in this DFA. This corresponds
3762    /// to the total number of transitions used by each state in this DFA's
3763    /// transition table.
3764    fn stride(&self) -> usize {
3765        1 << self.stride2
3766    }
3767
3768    /// Returns the total number of elements in the alphabet for this
3769    /// transition table. This is always less than or equal to `self.stride()`.
3770    /// It is only equal when the alphabet length is a power of 2. Otherwise,
3771    /// it is always strictly less.
3772    fn alphabet_len(&self) -> usize {
3773        self.classes.alphabet_len()
3774    }
3775
3776    /// Returns true if and only if the given state ID is valid for this
3777    /// transition table. Validity in this context means that the given ID can
3778    /// be used as a valid offset with `self.stride()` to index this transition
3779    /// table.
3780    fn is_valid(&self, id: StateID) -> bool {
3781        let id = id.as_usize();
3782        id < self.table().len() && id % self.stride() == 0
3783    }
3784
3785    /// Return the memory usage, in bytes, of this transition table.
3786    ///
3787    /// This does not include the size of a `TransitionTable` value itself.
3788    fn memory_usage(&self) -> usize {
3789        self.table().len() * StateID::SIZE
3790    }
3791}
3792
3793#[cfg(feature = "dfa-build")]
3794impl<T: AsMut<[u32]>> TransitionTable<T> {
3795    /// Returns the table as a slice of state IDs.
3796    fn table_mut(&mut self) -> &mut [StateID] {
3797        wire::u32s_to_state_ids_mut(self.table.as_mut())
3798    }
3799}
3800
3801/// The set of all possible starting states in a DFA.
3802///
3803/// The set of starting states corresponds to the possible choices one can make
3804/// in terms of starting a DFA. That is, before following the first transition,
3805/// you first need to select the state that you start in.
3806///
3807/// Normally, a DFA converted from an NFA that has a single starting state
3808/// would itself just have one starting state. However, our support for look
3809/// around generally requires more starting states. The correct starting state
3810/// is chosen based on certain properties of the position at which we begin
3811/// our search.
3812///
3813/// Before listing those properties, we first must define two terms:
3814///
3815/// * `haystack` - The bytes to execute the search. The search always starts
3816///   at the beginning of `haystack` and ends before or at the end of
3817///   `haystack`.
3818/// * `context` - The (possibly empty) bytes surrounding `haystack`. `haystack`
3819///   must be contained within `context` such that `context` is at least as big
3820///   as `haystack`.
3821///
3822/// This split is crucial for dealing with look-around. For example, consider
3823/// the context `foobarbaz`, the haystack `bar` and the regex `^bar$`. This
3824/// regex should _not_ match the haystack since `bar` does not appear at the
3825/// beginning of the input. Similarly, the regex `\Bbar\B` should match the
3826/// haystack because `bar` is not surrounded by word boundaries. But a search
3827/// that does not take context into account would not permit `\B` to match
3828/// since the beginning of any string matches a word boundary. Similarly, a
3829/// search that does not take context into account when searching `^bar$` in
3830/// the haystack `bar` would produce a match when it shouldn't.
3831///
3832/// Thus, it follows that the starting state is chosen based on the following
3833/// criteria, derived from the position at which the search starts in the
3834/// `context` (corresponding to the start of `haystack`):
3835///
3836/// 1. If the search starts at the beginning of `context`, then the `Text`
3837///    start state is used. (Since `^` corresponds to
3838///    `hir::Anchor::Start`.)
3839/// 2. If the search starts at a position immediately following a line
3840///    terminator, then the `Line` start state is used. (Since `(?m:^)`
3841///    corresponds to `hir::Anchor::StartLF`.)
3842/// 3. If the search starts at a position immediately following a byte
3843///    classified as a "word" character (`[_0-9a-zA-Z]`), then the `WordByte`
3844///    start state is used. (Since `(?-u:\b)` corresponds to a word boundary.)
3845/// 4. Otherwise, if the search starts at a position immediately following
3846///    a byte that is not classified as a "word" character (`[^_0-9a-zA-Z]`),
3847///    then the `NonWordByte` start state is used. (Since `(?-u:\B)`
3848///    corresponds to a not-word-boundary.)
3849///
3850/// (N.B. Unicode word boundaries are not supported by the DFA because they
3851/// require multi-byte look-around and this is difficult to support in a DFA.)
3852///
3853/// To further complicate things, we also support constructing individual
3854/// anchored start states for each pattern in the DFA. (Which is required to
3855/// implement overlapping regexes correctly, but is also generally useful.)
3856/// Thus, when individual start states for each pattern are enabled, then the
3857/// total number of start states represented is `4 + (4 * #patterns)`, where
3858/// the 4 comes from each of the 4 possibilities above. The first 4 represents
3859/// the starting states for the entire DFA, which support searching for
3860/// multiple patterns simultaneously (possibly unanchored).
3861///
3862/// If individual start states are disabled, then this will only store 4
3863/// start states. Typically, individual start states are only enabled when
3864/// constructing the reverse DFA for regex matching. But they are also useful
3865/// for building DFAs that can search for a specific pattern or even to support
3866/// both anchored and unanchored searches with the same DFA.
3867///
3868/// Note though that while the start table always has either `4` or
3869/// `4 + (4 * #patterns)` starting state *ids*, the total number of states
3870/// might be considerably smaller. That is, many of the IDs may be duplicative.
3871/// (For example, if a regex doesn't have a `\b` sub-pattern, then there's no
3872/// reason to generate a unique starting state for handling word boundaries.
3873/// Similarly for start/end anchors.)
3874#[derive(Clone)]
3875pub(crate) struct StartTable<T> {
3876    /// The initial start state IDs.
3877    ///
3878    /// In practice, T is either `Vec<u32>` or `&[u32]`.
3879    ///
3880    /// The first `2 * stride` (currently always 8) entries always correspond
3881    /// to the starts states for the entire DFA, with the first 4 entries being
3882    /// for unanchored searches and the second 4 entries being for anchored
3883    /// searches. To keep things simple, we always use 8 entries even if the
3884    /// `StartKind` is not both.
3885    ///
3886    /// After that, there are `stride * patterns` state IDs, where `patterns`
3887    /// may be zero in the case of a DFA with no patterns or in the case where
3888    /// the DFA was built without enabling starting states for each pattern.
3889    table: T,
3890    /// The starting state configuration supported. When 'both', both
3891    /// unanchored and anchored searches work. When 'unanchored', anchored
3892    /// searches panic. When 'anchored', unanchored searches panic.
3893    kind: StartKind,
3894    /// The start state configuration for every possible byte.
3895    start_map: StartByteMap,
3896    /// The number of starting state IDs per pattern.
3897    stride: usize,
3898    /// The total number of patterns for which starting states are encoded.
3899    /// This is `None` for DFAs that were built without start states for each
3900    /// pattern. Thus, one cannot use this field to say how many patterns
3901    /// are in the DFA in all cases. It is specific to how many patterns are
3902    /// represented in this start table.
3903    pattern_len: Option<usize>,
3904    /// The universal starting state for unanchored searches. This is only
3905    /// present when the DFA supports unanchored searches and when all starting
3906    /// state IDs for an unanchored search are equivalent.
3907    universal_start_unanchored: Option<StateID>,
3908    /// The universal starting state for anchored searches. This is only
3909    /// present when the DFA supports anchored searches and when all starting
3910    /// state IDs for an anchored search are equivalent.
3911    universal_start_anchored: Option<StateID>,
3912}
3913
3914#[cfg(feature = "dfa-build")]
3915impl StartTable<Vec<u32>> {
3916    /// Create a valid set of start states all pointing to the dead state.
3917    ///
3918    /// When the corresponding DFA is constructed with start states for each
3919    /// pattern, then `patterns` should be the number of patterns. Otherwise,
3920    /// it should be zero.
3921    ///
3922    /// If the total table size could exceed the allocatable limit, then this
3923    /// returns an error. In practice, this is unlikely to be able to occur,
3924    /// since it's likely that allocation would have failed long before it got
3925    /// to this point.
3926    fn dead(
3927        kind: StartKind,
3928        lookm: &LookMatcher,
3929        pattern_len: Option<usize>,
3930    ) -> Result<StartTable<Vec<u32>>, BuildError> {
3931        if let Some(len) = pattern_len {
3932            assert!(len <= PatternID::LIMIT);
3933        }
3934        let stride = Start::len();
3935        // OK because 2*4 is never going to overflow anything.
3936        let starts_len = stride.checked_mul(2).unwrap();
3937        let pattern_starts_len =
3938            match stride.checked_mul(pattern_len.unwrap_or(0)) {
3939                Some(x) => x,
3940                None => return Err(BuildError::too_many_start_states()),
3941            };
3942        let table_len = match starts_len.checked_add(pattern_starts_len) {
3943            Some(x) => x,
3944            None => return Err(BuildError::too_many_start_states()),
3945        };
3946        if let Err(_) = isize::try_from(table_len) {
3947            return Err(BuildError::too_many_start_states());
3948        }
3949        let table = vec![DEAD.as_u32(); table_len];
3950        let start_map = StartByteMap::new(lookm);
3951        Ok(StartTable {
3952            table,
3953            kind,
3954            start_map,
3955            stride,
3956            pattern_len,
3957            universal_start_unanchored: None,
3958            universal_start_anchored: None,
3959        })
3960    }
3961}
3962
3963impl<'a> StartTable<&'a [u32]> {
3964    /// Deserialize a table of start state IDs starting at the beginning of
3965    /// `slice`. Upon success, return the total number of bytes read along with
3966    /// the table of starting state IDs.
3967    ///
3968    /// If there was a problem deserializing any part of the starting IDs,
3969    /// then this returns an error. Notably, if the given slice does not have
3970    /// the same alignment as `StateID`, then this will return an error (among
3971    /// other possible errors).
3972    ///
3973    /// This is guaranteed to execute in constant time.
3974    ///
3975    /// # Safety
3976    ///
3977    /// This routine is not safe because it does not check the validity of the
3978    /// starting state IDs themselves. In particular, the number of starting
3979    /// IDs can be of variable length, so it's possible that checking their
3980    /// validity cannot be done in constant time. An invalid starting state
3981    /// ID is not safe because other code may rely on the starting IDs being
3982    /// correct (such as explicit bounds check elision). Therefore, an invalid
3983    /// start ID can lead to undefined behavior.
3984    ///
3985    /// Callers that use this function must either pass on the safety invariant
3986    /// or guarantee that the bytes given contain valid starting state IDs.
3987    /// This guarantee is upheld by the bytes written by `write_to`.
3988    unsafe fn from_bytes_unchecked(
3989        mut slice: &'a [u8],
3990    ) -> Result<(StartTable<&'a [u32]>, usize), DeserializeError> {
3991        let slice_start = slice.as_ptr().as_usize();
3992
3993        let (kind, nr) = StartKind::from_bytes(slice)?;
3994        slice = &slice[nr..];
3995
3996        let (start_map, nr) = StartByteMap::from_bytes(slice)?;
3997        slice = &slice[nr..];
3998
3999        let (stride, nr) =
4000            wire::try_read_u32_as_usize(slice, "start table stride")?;
4001        slice = &slice[nr..];
4002        if stride != Start::len() {
4003            return Err(DeserializeError::generic(
4004                "invalid starting table stride",
4005            ));
4006        }
4007
4008        let (maybe_pattern_len, nr) =
4009            wire::try_read_u32_as_usize(slice, "start table patterns")?;
4010        slice = &slice[nr..];
4011        let pattern_len = if maybe_pattern_len.as_u32() == u32::MAX {
4012            None
4013        } else {
4014            Some(maybe_pattern_len)
4015        };
4016        if pattern_len.map_or(false, |len| len > PatternID::LIMIT) {
4017            return Err(DeserializeError::generic(
4018                "invalid number of patterns",
4019            ));
4020        }
4021
4022        let (universal_unanchored, nr) =
4023            wire::try_read_u32(slice, "universal unanchored start")?;
4024        slice = &slice[nr..];
4025        let universal_start_unanchored = if universal_unanchored == u32::MAX {
4026            None
4027        } else {
4028            Some(StateID::try_from(universal_unanchored).map_err(|e| {
4029                DeserializeError::state_id_error(
4030                    e,
4031                    "universal unanchored start",
4032                )
4033            })?)
4034        };
4035
4036        let (universal_anchored, nr) =
4037            wire::try_read_u32(slice, "universal anchored start")?;
4038        slice = &slice[nr..];
4039        let universal_start_anchored = if universal_anchored == u32::MAX {
4040            None
4041        } else {
4042            Some(StateID::try_from(universal_anchored).map_err(|e| {
4043                DeserializeError::state_id_error(e, "universal anchored start")
4044            })?)
4045        };
4046
4047        let pattern_table_size = wire::mul(
4048            stride,
4049            pattern_len.unwrap_or(0),
4050            "invalid pattern length",
4051        )?;
4052        // Our start states always start with a two stride of start states for
4053        // the entire automaton. The first stride is for unanchored starting
4054        // states and the second stride is for anchored starting states. What
4055        // follows it are an optional set of start states for each pattern.
4056        let start_state_len = wire::add(
4057            wire::mul(2, stride, "start state stride too big")?,
4058            pattern_table_size,
4059            "invalid 'any' pattern starts size",
4060        )?;
4061        let table_bytes_len = wire::mul(
4062            start_state_len,
4063            StateID::SIZE,
4064            "pattern table bytes length",
4065        )?;
4066        wire::check_slice_len(slice, table_bytes_len, "start ID table")?;
4067        wire::check_alignment::<StateID>(slice)?;
4068        let table_bytes = &slice[..table_bytes_len];
4069        slice = &slice[table_bytes_len..];
4070        // SAFETY: Since StateID is always representable as a u32, all we need
4071        // to do is ensure that we have the proper length and alignment. We've
4072        // checked both above, so the cast below is safe.
4073        //
4074        // N.B. This is the only not-safe code in this function.
4075        let table = core::slice::from_raw_parts(
4076            table_bytes.as_ptr().cast::<u32>(),
4077            start_state_len,
4078        );
4079        let st = StartTable {
4080            table,
4081            kind,
4082            start_map,
4083            stride,
4084            pattern_len,
4085            universal_start_unanchored,
4086            universal_start_anchored,
4087        };
4088        Ok((st, slice.as_ptr().as_usize() - slice_start))
4089    }
4090}
4091
4092impl<T: AsRef<[u32]>> StartTable<T> {
4093    /// Writes a serialized form of this start table to the buffer given. If
4094    /// the buffer is too small, then an error is returned. To determine how
4095    /// big the buffer must be, use `write_to_len`.
4096    fn write_to<E: Endian>(
4097        &self,
4098        mut dst: &mut [u8],
4099    ) -> Result<usize, SerializeError> {
4100        let nwrite = self.write_to_len();
4101        if dst.len() < nwrite {
4102            return Err(SerializeError::buffer_too_small(
4103                "starting table ids",
4104            ));
4105        }
4106        dst = &mut dst[..nwrite];
4107
4108        // write start kind
4109        let nw = self.kind.write_to::<E>(dst)?;
4110        dst = &mut dst[nw..];
4111        // write start byte map
4112        let nw = self.start_map.write_to(dst)?;
4113        dst = &mut dst[nw..];
4114        // write stride
4115        // Unwrap is OK since the stride is always 4 (currently).
4116        E::write_u32(u32::try_from(self.stride).unwrap(), dst);
4117        dst = &mut dst[size_of::<u32>()..];
4118        // write pattern length
4119        // Unwrap is OK since number of patterns is guaranteed to fit in a u32.
4120        E::write_u32(
4121            u32::try_from(self.pattern_len.unwrap_or(0xFFFF_FFFF)).unwrap(),
4122            dst,
4123        );
4124        dst = &mut dst[size_of::<u32>()..];
4125        // write universal start unanchored state id, u32::MAX if absent
4126        E::write_u32(
4127            self.universal_start_unanchored
4128                .map_or(u32::MAX, |sid| sid.as_u32()),
4129            dst,
4130        );
4131        dst = &mut dst[size_of::<u32>()..];
4132        // write universal start anchored state id, u32::MAX if absent
4133        E::write_u32(
4134            self.universal_start_anchored.map_or(u32::MAX, |sid| sid.as_u32()),
4135            dst,
4136        );
4137        dst = &mut dst[size_of::<u32>()..];
4138        // write start IDs
4139        for &sid in self.table() {
4140            let n = wire::write_state_id::<E>(sid, &mut dst);
4141            dst = &mut dst[n..];
4142        }
4143        Ok(nwrite)
4144    }
4145
4146    /// Returns the number of bytes the serialized form of this start ID table
4147    /// will use.
4148    fn write_to_len(&self) -> usize {
4149        self.kind.write_to_len()
4150        + self.start_map.write_to_len()
4151        + size_of::<u32>() // stride
4152        + size_of::<u32>() // # patterns
4153        + size_of::<u32>() // universal unanchored start
4154        + size_of::<u32>() // universal anchored start
4155        + (self.table().len() * StateID::SIZE)
4156    }
4157
4158    /// Validates that every state ID in this start table is valid by checking
4159    /// it against the given transition table (which must be for the same DFA).
4160    ///
4161    /// That is, every state ID can be used to correctly index a state.
4162    fn validate(&self, dfa: &DFA<T>) -> Result<(), DeserializeError> {
4163        let tt = &dfa.tt;
4164        if !self.universal_start_unanchored.map_or(true, |s| tt.is_valid(s)) {
4165            return Err(DeserializeError::generic(
4166                "found invalid universal unanchored starting state ID",
4167            ));
4168        }
4169        if !self.universal_start_anchored.map_or(true, |s| tt.is_valid(s)) {
4170            return Err(DeserializeError::generic(
4171                "found invalid universal anchored starting state ID",
4172            ));
4173        }
4174        for &id in self.table() {
4175            if !tt.is_valid(id) {
4176                return Err(DeserializeError::generic(
4177                    "found invalid starting state ID",
4178                ));
4179            }
4180        }
4181        Ok(())
4182    }
4183
4184    /// Converts this start list to a borrowed value.
4185    fn as_ref(&self) -> StartTable<&'_ [u32]> {
4186        StartTable {
4187            table: self.table.as_ref(),
4188            kind: self.kind,
4189            start_map: self.start_map.clone(),
4190            stride: self.stride,
4191            pattern_len: self.pattern_len,
4192            universal_start_unanchored: self.universal_start_unanchored,
4193            universal_start_anchored: self.universal_start_anchored,
4194        }
4195    }
4196
4197    /// Converts this start list to an owned value.
4198    #[cfg(feature = "alloc")]
4199    fn to_owned(&self) -> StartTable<alloc::vec::Vec<u32>> {
4200        StartTable {
4201            table: self.table.as_ref().to_vec(),
4202            kind: self.kind,
4203            start_map: self.start_map.clone(),
4204            stride: self.stride,
4205            pattern_len: self.pattern_len,
4206            universal_start_unanchored: self.universal_start_unanchored,
4207            universal_start_anchored: self.universal_start_anchored,
4208        }
4209    }
4210
4211    /// Return the start state for the given input and starting configuration.
4212    /// This returns an error if the input configuration is not supported by
4213    /// this DFA. For example, requesting an unanchored search when the DFA was
4214    /// not built with unanchored starting states. Or asking for an anchored
4215    /// pattern search with an invalid pattern ID or on a DFA that was not
4216    /// built with start states for each pattern.
4217    #[cfg_attr(feature = "perf-inline", inline(always))]
4218    fn start(
4219        &self,
4220        anchored: Anchored,
4221        start: Start,
4222    ) -> Result<StateID, StartError> {
4223        let start_index = start.as_usize();
4224        let index = match anchored {
4225            Anchored::No => {
4226                if !self.kind.has_unanchored() {
4227                    return Err(StartError::unsupported_anchored(anchored));
4228                }
4229                start_index
4230            }
4231            Anchored::Yes => {
4232                if !self.kind.has_anchored() {
4233                    return Err(StartError::unsupported_anchored(anchored));
4234                }
4235                self.stride + start_index
4236            }
4237            Anchored::Pattern(pid) => {
4238                let len = match self.pattern_len {
4239                    None => {
4240                        return Err(StartError::unsupported_anchored(anchored))
4241                    }
4242                    Some(len) => len,
4243                };
4244                if pid.as_usize() >= len {
4245                    return Ok(DEAD);
4246                }
4247                (2 * self.stride)
4248                    + (self.stride * pid.as_usize())
4249                    + start_index
4250            }
4251        };
4252        Ok(self.table()[index])
4253    }
4254
4255    /// Returns an iterator over all start state IDs in this table.
4256    ///
4257    /// Each item is a triple of: start state ID, the start state type and the
4258    /// pattern ID (if any).
4259    fn iter(&self) -> StartStateIter<'_> {
4260        StartStateIter { st: self.as_ref(), i: 0 }
4261    }
4262
4263    /// Returns the table as a slice of state IDs.
4264    fn table(&self) -> &[StateID] {
4265        wire::u32s_to_state_ids(self.table.as_ref())
4266    }
4267
4268    /// Return the memory usage, in bytes, of this start list.
4269    ///
4270    /// This does not include the size of a `StartList` value itself.
4271    fn memory_usage(&self) -> usize {
4272        self.table().len() * StateID::SIZE
4273    }
4274}
4275
4276#[cfg(feature = "dfa-build")]
4277impl<T: AsMut<[u32]>> StartTable<T> {
4278    /// Set the start state for the given index and pattern.
4279    ///
4280    /// If the pattern ID or state ID are not valid, then this will panic.
4281    fn set_start(&mut self, anchored: Anchored, start: Start, id: StateID) {
4282        let start_index = start.as_usize();
4283        let index = match anchored {
4284            Anchored::No => start_index,
4285            Anchored::Yes => self.stride + start_index,
4286            Anchored::Pattern(pid) => {
4287                let pid = pid.as_usize();
4288                let len = self
4289                    .pattern_len
4290                    .expect("start states for each pattern enabled");
4291                assert!(pid < len, "invalid pattern ID {pid:?}");
4292                self.stride
4293                    .checked_mul(pid)
4294                    .unwrap()
4295                    .checked_add(self.stride.checked_mul(2).unwrap())
4296                    .unwrap()
4297                    .checked_add(start_index)
4298                    .unwrap()
4299            }
4300        };
4301        self.table_mut()[index] = id;
4302    }
4303
4304    /// Returns the table as a mutable slice of state IDs.
4305    fn table_mut(&mut self) -> &mut [StateID] {
4306        wire::u32s_to_state_ids_mut(self.table.as_mut())
4307    }
4308}
4309
4310/// An iterator over start state IDs.
4311///
4312/// This iterator yields a triple of start state ID, the anchored mode and the
4313/// start state type. If a pattern ID is relevant, then the anchored mode will
4314/// contain it. Start states with an anchored mode containing a pattern ID will
4315/// only occur when the DFA was compiled with start states for each pattern
4316/// (which is disabled by default).
4317pub(crate) struct StartStateIter<'a> {
4318    st: StartTable<&'a [u32]>,
4319    i: usize,
4320}
4321
4322impl<'a> Iterator for StartStateIter<'a> {
4323    type Item = (StateID, Anchored, Start);
4324
4325    fn next(&mut self) -> Option<(StateID, Anchored, Start)> {
4326        let i = self.i;
4327        let table = self.st.table();
4328        if i >= table.len() {
4329            return None;
4330        }
4331        self.i += 1;
4332
4333        // This unwrap is okay since the stride of the starting state table
4334        // must always match the number of start state types.
4335        let start_type = Start::from_usize(i % self.st.stride).unwrap();
4336        let anchored = if i < self.st.stride {
4337            Anchored::No
4338        } else if i < (2 * self.st.stride) {
4339            Anchored::Yes
4340        } else {
4341            let pid = (i - (2 * self.st.stride)) / self.st.stride;
4342            Anchored::Pattern(PatternID::new(pid).unwrap())
4343        };
4344        Some((table[i], anchored, start_type))
4345    }
4346}
4347
4348/// This type represents that patterns that should be reported whenever a DFA
4349/// enters a match state. This structure exists to support DFAs that search for
4350/// matches for multiple regexes.
4351///
4352/// This structure relies on the fact that all match states in a DFA occur
4353/// contiguously in the DFA's transition table. (See dfa/special.rs for a more
4354/// detailed breakdown of the representation.) Namely, when a match occurs, we
4355/// know its state ID. Since we know the start and end of the contiguous region
4356/// of match states, we can use that to compute the position at which the match
4357/// state occurs. That in turn is used as an offset into this structure.
4358#[derive(Clone, Debug)]
4359struct MatchStates<T> {
4360    /// Slices is a flattened sequence of pairs, where each pair points to a
4361    /// sub-slice of pattern_ids. The first element of the pair is an offset
4362    /// into pattern_ids and the second element of the pair is the number
4363    /// of 32-bit pattern IDs starting at that position. That is, each pair
4364    /// corresponds to a single DFA match state and its corresponding match
4365    /// IDs. The number of pairs always corresponds to the number of distinct
4366    /// DFA match states.
4367    ///
4368    /// In practice, T is either Vec<u32> or &[u32].
4369    slices: T,
4370    /// A flattened sequence of pattern IDs for each DFA match state. The only
4371    /// way to correctly read this sequence is indirectly via `slices`.
4372    ///
4373    /// In practice, T is either Vec<u32> or &[u32].
4374    pattern_ids: T,
4375    /// The total number of unique patterns represented by these match states.
4376    pattern_len: usize,
4377}
4378
4379impl<'a> MatchStates<&'a [u32]> {
4380    unsafe fn from_bytes_unchecked(
4381        mut slice: &'a [u8],
4382    ) -> Result<(MatchStates<&'a [u32]>, usize), DeserializeError> {
4383        let slice_start = slice.as_ptr().as_usize();
4384
4385        // Read the total number of match states.
4386        let (state_len, nr) =
4387            wire::try_read_u32_as_usize(slice, "match state length")?;
4388        slice = &slice[nr..];
4389
4390        // Read the slice start/length pairs.
4391        let pair_len = wire::mul(2, state_len, "match state offset pairs")?;
4392        let slices_bytes_len = wire::mul(
4393            pair_len,
4394            PatternID::SIZE,
4395            "match state slice offset byte length",
4396        )?;
4397        wire::check_slice_len(slice, slices_bytes_len, "match state slices")?;
4398        wire::check_alignment::<PatternID>(slice)?;
4399        let slices_bytes = &slice[..slices_bytes_len];
4400        slice = &slice[slices_bytes_len..];
4401        // SAFETY: Since PatternID is always representable as a u32, all we
4402        // need to do is ensure that we have the proper length and alignment.
4403        // We've checked both above, so the cast below is safe.
4404        //
4405        // N.B. This is one of the few not-safe snippets in this function,
4406        // so we mark it explicitly to call it out.
4407        let slices = core::slice::from_raw_parts(
4408            slices_bytes.as_ptr().cast::<u32>(),
4409            pair_len,
4410        );
4411
4412        // Read the total number of unique pattern IDs (which is always 1 more
4413        // than the maximum pattern ID in this automaton, since pattern IDs are
4414        // handed out contiguously starting at 0).
4415        let (pattern_len, nr) =
4416            wire::try_read_u32_as_usize(slice, "pattern length")?;
4417        slice = &slice[nr..];
4418
4419        // Now read the pattern ID length. We don't need to store this
4420        // explicitly, but we need it to know how many pattern IDs to read.
4421        let (idlen, nr) =
4422            wire::try_read_u32_as_usize(slice, "pattern ID length")?;
4423        slice = &slice[nr..];
4424
4425        // Read the actual pattern IDs.
4426        let pattern_ids_len =
4427            wire::mul(idlen, PatternID::SIZE, "pattern ID byte length")?;
4428        wire::check_slice_len(slice, pattern_ids_len, "match pattern IDs")?;
4429        wire::check_alignment::<PatternID>(slice)?;
4430        let pattern_ids_bytes = &slice[..pattern_ids_len];
4431        slice = &slice[pattern_ids_len..];
4432        // SAFETY: Since PatternID is always representable as a u32, all we
4433        // need to do is ensure that we have the proper length and alignment.
4434        // We've checked both above, so the cast below is safe.
4435        //
4436        // N.B. This is one of the few not-safe snippets in this function,
4437        // so we mark it explicitly to call it out.
4438        let pattern_ids = core::slice::from_raw_parts(
4439            pattern_ids_bytes.as_ptr().cast::<u32>(),
4440            idlen,
4441        );
4442
4443        let ms = MatchStates { slices, pattern_ids, pattern_len };
4444        Ok((ms, slice.as_ptr().as_usize() - slice_start))
4445    }
4446}
4447
4448#[cfg(feature = "dfa-build")]
4449impl MatchStates<Vec<u32>> {
4450    fn empty(pattern_len: usize) -> MatchStates<Vec<u32>> {
4451        assert!(pattern_len <= PatternID::LIMIT);
4452        MatchStates { slices: vec![], pattern_ids: vec![], pattern_len }
4453    }
4454
4455    fn new(
4456        matches: &BTreeMap<StateID, Vec<PatternID>>,
4457        pattern_len: usize,
4458    ) -> Result<MatchStates<Vec<u32>>, BuildError> {
4459        let mut m = MatchStates::empty(pattern_len);
4460        for (_, pids) in matches.iter() {
4461            let start = PatternID::new(m.pattern_ids.len())
4462                .map_err(|_| BuildError::too_many_match_pattern_ids())?;
4463            m.slices.push(start.as_u32());
4464            // This is always correct since the number of patterns in a single
4465            // match state can never exceed maximum number of allowable
4466            // patterns. Why? Because a pattern can only appear once in a
4467            // particular match state, by construction. (And since our pattern
4468            // ID limit is one less than u32::MAX, we're guaranteed that the
4469            // length fits in a u32.)
4470            m.slices.push(u32::try_from(pids.len()).unwrap());
4471            for &pid in pids {
4472                m.pattern_ids.push(pid.as_u32());
4473            }
4474        }
4475        m.pattern_len = pattern_len;
4476        Ok(m)
4477    }
4478
4479    fn new_with_map(
4480        &self,
4481        matches: &BTreeMap<StateID, Vec<PatternID>>,
4482    ) -> Result<MatchStates<Vec<u32>>, BuildError> {
4483        MatchStates::new(matches, self.pattern_len)
4484    }
4485}
4486
4487impl<T: AsRef<[u32]>> MatchStates<T> {
4488    /// Writes a serialized form of these match states to the buffer given. If
4489    /// the buffer is too small, then an error is returned. To determine how
4490    /// big the buffer must be, use `write_to_len`.
4491    fn write_to<E: Endian>(
4492        &self,
4493        mut dst: &mut [u8],
4494    ) -> Result<usize, SerializeError> {
4495        let nwrite = self.write_to_len();
4496        if dst.len() < nwrite {
4497            return Err(SerializeError::buffer_too_small("match states"));
4498        }
4499        dst = &mut dst[..nwrite];
4500
4501        // write state ID length
4502        // Unwrap is OK since number of states is guaranteed to fit in a u32.
4503        E::write_u32(u32::try_from(self.len()).unwrap(), dst);
4504        dst = &mut dst[size_of::<u32>()..];
4505
4506        // write slice offset pairs
4507        for &pid in self.slices() {
4508            let n = wire::write_pattern_id::<E>(pid, &mut dst);
4509            dst = &mut dst[n..];
4510        }
4511
4512        // write unique pattern ID length
4513        // Unwrap is OK since number of patterns is guaranteed to fit in a u32.
4514        E::write_u32(u32::try_from(self.pattern_len).unwrap(), dst);
4515        dst = &mut dst[size_of::<u32>()..];
4516
4517        // write pattern ID length
4518        // Unwrap is OK since we check at construction (and deserialization)
4519        // that the number of patterns is representable as a u32.
4520        E::write_u32(u32::try_from(self.pattern_ids().len()).unwrap(), dst);
4521        dst = &mut dst[size_of::<u32>()..];
4522
4523        // write pattern IDs
4524        for &pid in self.pattern_ids() {
4525            let n = wire::write_pattern_id::<E>(pid, &mut dst);
4526            dst = &mut dst[n..];
4527        }
4528
4529        Ok(nwrite)
4530    }
4531
4532    /// Returns the number of bytes the serialized form of these match states
4533    /// will use.
4534    fn write_to_len(&self) -> usize {
4535        size_of::<u32>()   // match state length
4536        + (self.slices().len() * PatternID::SIZE)
4537        + size_of::<u32>() // unique pattern ID length
4538        + size_of::<u32>() // pattern ID length
4539        + (self.pattern_ids().len() * PatternID::SIZE)
4540    }
4541
4542    /// Validates that the match state info is itself internally consistent and
4543    /// consistent with the recorded match state region in the given DFA.
4544    fn validate(&self, dfa: &DFA<T>) -> Result<(), DeserializeError> {
4545        if self.len() != dfa.special.match_len(dfa.stride()) {
4546            return Err(DeserializeError::generic(
4547                "match state length mismatch",
4548            ));
4549        }
4550        for si in 0..self.len() {
4551            let start = self.slices()[si * 2].as_usize();
4552            let len = self.slices()[si * 2 + 1].as_usize();
4553            if start >= self.pattern_ids().len() {
4554                return Err(DeserializeError::generic(
4555                    "invalid pattern ID start offset",
4556                ));
4557            }
4558            if start + len > self.pattern_ids().len() {
4559                return Err(DeserializeError::generic(
4560                    "invalid pattern ID length",
4561                ));
4562            }
4563            for mi in 0..len {
4564                let pid = self.pattern_id(si, mi);
4565                if pid.as_usize() >= self.pattern_len {
4566                    return Err(DeserializeError::generic(
4567                        "invalid pattern ID",
4568                    ));
4569                }
4570            }
4571        }
4572        Ok(())
4573    }
4574
4575    /// Converts these match states back into their map form. This is useful
4576    /// when shuffling states, as the normal MatchStates representation is not
4577    /// amenable to easy state swapping. But with this map, to swap id1 and
4578    /// id2, all you need to do is:
4579    ///
4580    /// if let Some(pids) = map.remove(&id1) {
4581    ///     map.insert(id2, pids);
4582    /// }
4583    ///
4584    /// Once shuffling is done, use MatchStates::new to convert back.
4585    #[cfg(feature = "dfa-build")]
4586    fn to_map(&self, dfa: &DFA<T>) -> BTreeMap<StateID, Vec<PatternID>> {
4587        let mut map = BTreeMap::new();
4588        for i in 0..self.len() {
4589            let mut pids = vec![];
4590            for j in 0..self.pattern_len(i) {
4591                pids.push(self.pattern_id(i, j));
4592            }
4593            map.insert(self.match_state_id(dfa, i), pids);
4594        }
4595        map
4596    }
4597
4598    /// Converts these match states to a borrowed value.
4599    fn as_ref(&self) -> MatchStates<&'_ [u32]> {
4600        MatchStates {
4601            slices: self.slices.as_ref(),
4602            pattern_ids: self.pattern_ids.as_ref(),
4603            pattern_len: self.pattern_len,
4604        }
4605    }
4606
4607    /// Converts these match states to an owned value.
4608    #[cfg(feature = "alloc")]
4609    fn to_owned(&self) -> MatchStates<alloc::vec::Vec<u32>> {
4610        MatchStates {
4611            slices: self.slices.as_ref().to_vec(),
4612            pattern_ids: self.pattern_ids.as_ref().to_vec(),
4613            pattern_len: self.pattern_len,
4614        }
4615    }
4616
4617    /// Returns the match state ID given the match state index. (Where the
4618    /// first match state corresponds to index 0.)
4619    ///
4620    /// This panics if there is no match state at the given index.
4621    fn match_state_id(&self, dfa: &DFA<T>, index: usize) -> StateID {
4622        assert!(dfa.special.matches(), "no match states to index");
4623        // This is one of the places where we rely on the fact that match
4624        // states are contiguous in the transition table. Namely, that the
4625        // first match state ID always corresponds to dfa.special.min_start.
4626        // From there, since we know the stride, we can compute the ID of any
4627        // match state given its index.
4628        let stride2 = u32::try_from(dfa.stride2()).unwrap();
4629        let offset = index.checked_shl(stride2).unwrap();
4630        let id = dfa.special.min_match.as_usize().checked_add(offset).unwrap();
4631        let sid = StateID::new(id).unwrap();
4632        assert!(dfa.is_match_state(sid));
4633        sid
4634    }
4635
4636    /// Returns the pattern ID at the given match index for the given match
4637    /// state.
4638    ///
4639    /// The match state index is the state index minus the state index of the
4640    /// first match state in the DFA.
4641    ///
4642    /// The match index is the index of the pattern ID for the given state.
4643    /// The index must be less than `self.pattern_len(state_index)`.
4644    #[cfg_attr(feature = "perf-inline", inline(always))]
4645    fn pattern_id(&self, state_index: usize, match_index: usize) -> PatternID {
4646        self.pattern_id_slice(state_index)[match_index]
4647    }
4648
4649    /// Returns the number of patterns in the given match state.
4650    ///
4651    /// The match state index is the state index minus the state index of the
4652    /// first match state in the DFA.
4653    #[cfg_attr(feature = "perf-inline", inline(always))]
4654    fn pattern_len(&self, state_index: usize) -> usize {
4655        self.slices()[state_index * 2 + 1].as_usize()
4656    }
4657
4658    /// Returns all of the pattern IDs for the given match state index.
4659    ///
4660    /// The match state index is the state index minus the state index of the
4661    /// first match state in the DFA.
4662    #[cfg_attr(feature = "perf-inline", inline(always))]
4663    fn pattern_id_slice(&self, state_index: usize) -> &[PatternID] {
4664        let start = self.slices()[state_index * 2].as_usize();
4665        let len = self.pattern_len(state_index);
4666        &self.pattern_ids()[start..start + len]
4667    }
4668
4669    /// Returns the pattern ID offset slice of u32 as a slice of PatternID.
4670    #[cfg_attr(feature = "perf-inline", inline(always))]
4671    fn slices(&self) -> &[PatternID] {
4672        wire::u32s_to_pattern_ids(self.slices.as_ref())
4673    }
4674
4675    /// Returns the total number of match states.
4676    #[cfg_attr(feature = "perf-inline", inline(always))]
4677    fn len(&self) -> usize {
4678        assert_eq!(0, self.slices().len() % 2);
4679        self.slices().len() / 2
4680    }
4681
4682    /// Returns the pattern ID slice of u32 as a slice of PatternID.
4683    #[cfg_attr(feature = "perf-inline", inline(always))]
4684    fn pattern_ids(&self) -> &[PatternID] {
4685        wire::u32s_to_pattern_ids(self.pattern_ids.as_ref())
4686    }
4687
4688    /// Return the memory usage, in bytes, of these match pairs.
4689    fn memory_usage(&self) -> usize {
4690        (self.slices().len() + self.pattern_ids().len()) * PatternID::SIZE
4691    }
4692}
4693
4694/// A common set of flags for both dense and sparse DFAs. This primarily
4695/// centralizes the serialization format of these flags at a bitset.
4696#[derive(Clone, Copy, Debug)]
4697pub(crate) struct Flags {
4698    /// Whether the DFA can match the empty string. When this is false, all
4699    /// matches returned by this DFA are guaranteed to have non-zero length.
4700    pub(crate) has_empty: bool,
4701    /// Whether the DFA should only produce matches with spans that correspond
4702    /// to valid UTF-8. This also includes omitting any zero-width matches that
4703    /// split the UTF-8 encoding of a codepoint.
4704    pub(crate) is_utf8: bool,
4705    /// Whether the DFA is always anchored or not, regardless of `Input`
4706    /// configuration. This is useful for avoiding a reverse scan even when
4707    /// executing unanchored searches.
4708    pub(crate) is_always_start_anchored: bool,
4709}
4710
4711impl Flags {
4712    /// Creates a set of flags for a DFA from an NFA.
4713    ///
4714    /// N.B. This constructor was defined at the time of writing because all
4715    /// of the flags are derived directly from the NFA. If this changes in the
4716    /// future, we might be more thoughtful about how the `Flags` value is
4717    /// itself built.
4718    #[cfg(feature = "dfa-build")]
4719    fn from_nfa(nfa: &thompson::NFA) -> Flags {
4720        Flags {
4721            has_empty: nfa.has_empty(),
4722            is_utf8: nfa.is_utf8(),
4723            is_always_start_anchored: nfa.is_always_start_anchored(),
4724        }
4725    }
4726
4727    /// Deserializes the flags from the given slice. On success, this also
4728    /// returns the number of bytes read from the slice.
4729    pub(crate) fn from_bytes(
4730        slice: &[u8],
4731    ) -> Result<(Flags, usize), DeserializeError> {
4732        let (bits, nread) = wire::try_read_u32(slice, "flag bitset")?;
4733        let flags = Flags {
4734            has_empty: bits & (1 << 0) != 0,
4735            is_utf8: bits & (1 << 1) != 0,
4736            is_always_start_anchored: bits & (1 << 2) != 0,
4737        };
4738        Ok((flags, nread))
4739    }
4740
4741    /// Writes these flags to the given byte slice. If the buffer is too small,
4742    /// then an error is returned. To determine how big the buffer must be,
4743    /// use `write_to_len`.
4744    pub(crate) fn write_to<E: Endian>(
4745        &self,
4746        dst: &mut [u8],
4747    ) -> Result<usize, SerializeError> {
4748        fn bool_to_int(b: bool) -> u32 {
4749            if b {
4750                1
4751            } else {
4752                0
4753            }
4754        }
4755
4756        let nwrite = self.write_to_len();
4757        if dst.len() < nwrite {
4758            return Err(SerializeError::buffer_too_small("flag bitset"));
4759        }
4760        let bits = (bool_to_int(self.has_empty) << 0)
4761            | (bool_to_int(self.is_utf8) << 1)
4762            | (bool_to_int(self.is_always_start_anchored) << 2);
4763        E::write_u32(bits, dst);
4764        Ok(nwrite)
4765    }
4766
4767    /// Returns the number of bytes the serialized form of these flags
4768    /// will use.
4769    pub(crate) fn write_to_len(&self) -> usize {
4770        size_of::<u32>()
4771    }
4772}
4773
4774/// An iterator over all states in a DFA.
4775///
4776/// This iterator yields a tuple for each state. The first element of the
4777/// tuple corresponds to a state's identifier, and the second element
4778/// corresponds to the state itself (comprised of its transitions).
4779///
4780/// `'a` corresponding to the lifetime of original DFA, `T` corresponds to
4781/// the type of the transition table itself.
4782pub(crate) struct StateIter<'a, T> {
4783    tt: &'a TransitionTable<T>,
4784    it: iter::Enumerate<slice::Chunks<'a, StateID>>,
4785}
4786
4787impl<'a, T: AsRef<[u32]>> Iterator for StateIter<'a, T> {
4788    type Item = State<'a>;
4789
4790    fn next(&mut self) -> Option<State<'a>> {
4791        self.it.next().map(|(index, _)| {
4792            let id = self.tt.to_state_id(index);
4793            self.tt.state(id)
4794        })
4795    }
4796}
4797
4798/// An immutable representation of a single DFA state.
4799///
4800/// `'a` corresponding to the lifetime of a DFA's transition table.
4801pub(crate) struct State<'a> {
4802    id: StateID,
4803    stride2: usize,
4804    transitions: &'a [StateID],
4805}
4806
4807impl<'a> State<'a> {
4808    /// Return an iterator over all transitions in this state. This yields
4809    /// a number of transitions equivalent to the alphabet length of the
4810    /// corresponding DFA.
4811    ///
4812    /// Each transition is represented by a tuple. The first element is
4813    /// the input byte for that transition and the second element is the
4814    /// transitions itself.
4815    pub(crate) fn transitions(&self) -> StateTransitionIter<'_> {
4816        StateTransitionIter {
4817            len: self.transitions.len(),
4818            it: self.transitions.iter().enumerate(),
4819        }
4820    }
4821
4822    /// Return an iterator over a sparse representation of the transitions in
4823    /// this state. Only non-dead transitions are returned.
4824    ///
4825    /// The "sparse" representation in this case corresponds to a sequence of
4826    /// triples. The first two elements of the triple comprise an inclusive
4827    /// byte range while the last element corresponds to the transition taken
4828    /// for all bytes in the range.
4829    ///
4830    /// This is somewhat more condensed than the classical sparse
4831    /// representation (where you have an element for every non-dead
4832    /// transition), but in practice, checking if a byte is in a range is very
4833    /// cheap and using ranges tends to conserve quite a bit more space.
4834    pub(crate) fn sparse_transitions(&self) -> StateSparseTransitionIter<'_> {
4835        StateSparseTransitionIter { dense: self.transitions(), cur: None }
4836    }
4837
4838    /// Returns the identifier for this state.
4839    pub(crate) fn id(&self) -> StateID {
4840        self.id
4841    }
4842
4843    /// Analyzes this state to determine whether it can be accelerated. If so,
4844    /// it returns an accelerator that contains at least one byte.
4845    #[cfg(feature = "dfa-build")]
4846    fn accelerate(&self, classes: &ByteClasses) -> Option<Accel> {
4847        // We just try to add bytes to our accelerator. Once adding fails
4848        // (because we've added too many bytes), then give up.
4849        let mut accel = Accel::new();
4850        for (class, id) in self.transitions() {
4851            if id == self.id() {
4852                continue;
4853            }
4854            for unit in classes.elements(class) {
4855                if let Some(byte) = unit.as_u8() {
4856                    if !accel.add(byte) {
4857                        return None;
4858                    }
4859                }
4860            }
4861        }
4862        if accel.is_empty() {
4863            None
4864        } else {
4865            Some(accel)
4866        }
4867    }
4868}
4869
4870impl<'a> fmt::Debug for State<'a> {
4871    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4872        for (i, (start, end, sid)) in self.sparse_transitions().enumerate() {
4873            let id = if f.alternate() {
4874                sid.as_usize()
4875            } else {
4876                sid.as_usize() >> self.stride2
4877            };
4878            if i > 0 {
4879                write!(f, ", ")?;
4880            }
4881            if start == end {
4882                write!(f, "{start:?} => {id:?}")?;
4883            } else {
4884                write!(f, "{start:?}-{end:?} => {id:?}")?;
4885            }
4886        }
4887        Ok(())
4888    }
4889}
4890
4891/// An iterator over all transitions in a single DFA state. This yields
4892/// a number of transitions equivalent to the alphabet length of the
4893/// corresponding DFA.
4894///
4895/// Each transition is represented by a tuple. The first element is the input
4896/// byte for that transition and the second element is the transition itself.
4897#[derive(Debug)]
4898pub(crate) struct StateTransitionIter<'a> {
4899    len: usize,
4900    it: iter::Enumerate<slice::Iter<'a, StateID>>,
4901}
4902
4903impl<'a> Iterator for StateTransitionIter<'a> {
4904    type Item = (alphabet::Unit, StateID);
4905
4906    fn next(&mut self) -> Option<(alphabet::Unit, StateID)> {
4907        self.it.next().map(|(i, &id)| {
4908            let unit = if i + 1 == self.len {
4909                alphabet::Unit::eoi(i)
4910            } else {
4911                let b = u8::try_from(i)
4912                    .expect("raw byte alphabet is never exceeded");
4913                alphabet::Unit::u8(b)
4914            };
4915            (unit, id)
4916        })
4917    }
4918}
4919
4920/// An iterator over all non-DEAD transitions in a single DFA state using a
4921/// sparse representation.
4922///
4923/// Each transition is represented by a triple. The first two elements of the
4924/// triple comprise an inclusive byte range while the last element corresponds
4925/// to the transition taken for all bytes in the range.
4926///
4927/// As a convenience, this always returns `alphabet::Unit` values of the same
4928/// type. That is, you'll never get a (byte, EOI) or a (EOI, byte). Only (byte,
4929/// byte) and (EOI, EOI) values are yielded.
4930#[derive(Debug)]
4931pub(crate) struct StateSparseTransitionIter<'a> {
4932    dense: StateTransitionIter<'a>,
4933    cur: Option<(alphabet::Unit, alphabet::Unit, StateID)>,
4934}
4935
4936impl<'a> Iterator for StateSparseTransitionIter<'a> {
4937    type Item = (alphabet::Unit, alphabet::Unit, StateID);
4938
4939    fn next(&mut self) -> Option<(alphabet::Unit, alphabet::Unit, StateID)> {
4940        while let Some((unit, next)) = self.dense.next() {
4941            let (prev_start, prev_end, prev_next) = match self.cur {
4942                Some(t) => t,
4943                None => {
4944                    self.cur = Some((unit, unit, next));
4945                    continue;
4946                }
4947            };
4948            if prev_next == next && !unit.is_eoi() {
4949                self.cur = Some((prev_start, unit, prev_next));
4950            } else {
4951                self.cur = Some((unit, unit, next));
4952                if prev_next != DEAD {
4953                    return Some((prev_start, prev_end, prev_next));
4954                }
4955            }
4956        }
4957        if let Some((start, end, next)) = self.cur.take() {
4958            if next != DEAD {
4959                return Some((start, end, next));
4960            }
4961        }
4962        None
4963    }
4964}
4965
4966/// An error that occurred during the construction of a DFA.
4967///
4968/// This error does not provide many introspection capabilities. There are
4969/// generally only two things you can do with it:
4970///
4971/// * Obtain a human readable message via its `std::fmt::Display` impl.
4972/// * Access an underlying [`nfa::thompson::BuildError`](thompson::BuildError)
4973/// type from its `source` method via the `std::error::Error` trait. This error
4974/// only occurs when using convenience routines for building a DFA directly
4975/// from a pattern string.
4976///
4977/// When the `std` feature is enabled, this implements the `std::error::Error`
4978/// trait.
4979#[cfg(feature = "dfa-build")]
4980#[derive(Clone, Debug)]
4981pub struct BuildError {
4982    kind: BuildErrorKind,
4983}
4984
4985#[cfg(feature = "dfa-build")]
4986impl BuildError {
4987    /// Returns true if and only if this error corresponds to an error with DFA
4988    /// construction that occurred because of exceeding a size limit.
4989    ///
4990    /// While this can occur when size limits like [`Config::dfa_size_limit`]
4991    /// or [`Config::determinize_size_limit`] are exceeded, this can also occur
4992    /// when the number of states or patterns exceeds a hard-coded maximum.
4993    /// (Where these maximums are derived based on the values representable by
4994    /// [`StateID`] and [`PatternID`].)
4995    ///
4996    /// This predicate is useful in contexts where you want to distinguish
4997    /// between errors related to something provided by an end user (for
4998    /// example, an invalid regex pattern) and errors related to configured
4999    /// heuristics. For example, building a DFA might be an optimization that
5000    /// you want to skip if construction fails because of an exceeded size
5001    /// limit, but where you want to bubble up an error if it fails for some
5002    /// other reason.
5003    ///
5004    /// # Example
5005    ///
5006    /// ```
5007    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
5008    /// # if !cfg!(target_pointer_width = "64") { return Ok(()); } // see #1039
5009    /// use regex_automata::{dfa::{dense, Automaton}, Input};
5010    ///
5011    /// let err = dense::Builder::new()
5012    ///     .configure(dense::Config::new()
5013    ///         .determinize_size_limit(Some(100_000))
5014    ///     )
5015    ///     .build(r"\w{20}")
5016    ///     .unwrap_err();
5017    /// // This error occurs because a size limit was exceeded.
5018    /// // But things are otherwise valid.
5019    /// assert!(err.is_size_limit_exceeded());
5020    ///
5021    /// let err = dense::Builder::new()
5022    ///     .build(r"\bxyz\b")
5023    ///     .unwrap_err();
5024    /// // This error occurs because a Unicode word boundary
5025    /// // was used without enabling heuristic support for it.
5026    /// // So... not related to size limits.
5027    /// assert!(!err.is_size_limit_exceeded());
5028    ///
5029    /// let err = dense::Builder::new()
5030    ///     .build(r"(xyz")
5031    ///     .unwrap_err();
5032    /// // This error occurs because the pattern is invalid.
5033    /// // So... not related to size limits.
5034    /// assert!(!err.is_size_limit_exceeded());
5035    ///
5036    /// # Ok::<(), Box<dyn std::error::Error>>(())
5037    /// ```
5038    #[inline]
5039    pub fn is_size_limit_exceeded(&self) -> bool {
5040        use self::BuildErrorKind::*;
5041
5042        match self.kind {
5043            NFA(_) | Unsupported(_) => false,
5044            TooManyStates
5045            | TooManyStartStates
5046            | TooManyMatchPatternIDs
5047            | DFAExceededSizeLimit { .. }
5048            | DeterminizeExceededSizeLimit { .. } => true,
5049        }
5050    }
5051}
5052
5053/// The kind of error that occurred during the construction of a DFA.
5054///
5055/// Note that this error is non-exhaustive. Adding new variants is not
5056/// considered a breaking change.
5057#[cfg(feature = "dfa-build")]
5058#[derive(Clone, Debug)]
5059enum BuildErrorKind {
5060    /// An error that occurred while constructing an NFA as a precursor step
5061    /// before a DFA is compiled.
5062    NFA(thompson::BuildError),
5063    /// An error that occurred because an unsupported regex feature was used.
5064    /// The message string describes which unsupported feature was used.
5065    ///
5066    /// The primary regex feature that is unsupported by DFAs is the Unicode
5067    /// word boundary look-around assertion (`\b`). This can be worked around
5068    /// by either using an ASCII word boundary (`(?-u:\b)`) or by enabling
5069    /// Unicode word boundaries when building a DFA.
5070    Unsupported(&'static str),
5071    /// An error that occurs if too many states are produced while building a
5072    /// DFA.
5073    TooManyStates,
5074    /// An error that occurs if too many start states are needed while building
5075    /// a DFA.
5076    ///
5077    /// This is a kind of oddball error that occurs when building a DFA with
5078    /// start states enabled for each pattern and enough patterns to cause
5079    /// the table of start states to overflow `usize`.
5080    TooManyStartStates,
5081    /// This is another oddball error that can occur if there are too many
5082    /// patterns spread out across too many match states.
5083    TooManyMatchPatternIDs,
5084    /// An error that occurs if the DFA got too big during determinization.
5085    DFAExceededSizeLimit { limit: usize },
5086    /// An error that occurs if auxiliary storage (not the DFA) used during
5087    /// determinization got too big.
5088    DeterminizeExceededSizeLimit { limit: usize },
5089}
5090
5091#[cfg(feature = "dfa-build")]
5092impl BuildError {
5093    /// Return the kind of this error.
5094    fn kind(&self) -> &BuildErrorKind {
5095        &self.kind
5096    }
5097
5098    pub(crate) fn nfa(err: thompson::BuildError) -> BuildError {
5099        BuildError { kind: BuildErrorKind::NFA(err) }
5100    }
5101
5102    pub(crate) fn unsupported_dfa_word_boundary_unicode() -> BuildError {
5103        let msg = "cannot build DFAs for regexes with Unicode word \
5104                   boundaries; switch to ASCII word boundaries, or \
5105                   heuristically enable Unicode word boundaries or use a \
5106                   different regex engine";
5107        BuildError { kind: BuildErrorKind::Unsupported(msg) }
5108    }
5109
5110    pub(crate) fn too_many_states() -> BuildError {
5111        BuildError { kind: BuildErrorKind::TooManyStates }
5112    }
5113
5114    pub(crate) fn too_many_start_states() -> BuildError {
5115        BuildError { kind: BuildErrorKind::TooManyStartStates }
5116    }
5117
5118    pub(crate) fn too_many_match_pattern_ids() -> BuildError {
5119        BuildError { kind: BuildErrorKind::TooManyMatchPatternIDs }
5120    }
5121
5122    pub(crate) fn dfa_exceeded_size_limit(limit: usize) -> BuildError {
5123        BuildError { kind: BuildErrorKind::DFAExceededSizeLimit { limit } }
5124    }
5125
5126    pub(crate) fn determinize_exceeded_size_limit(limit: usize) -> BuildError {
5127        BuildError {
5128            kind: BuildErrorKind::DeterminizeExceededSizeLimit { limit },
5129        }
5130    }
5131}
5132
5133#[cfg(all(feature = "std", feature = "dfa-build"))]
5134impl std::error::Error for BuildError {
5135    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
5136        match self.kind() {
5137            BuildErrorKind::NFA(ref err) => Some(err),
5138            _ => None,
5139        }
5140    }
5141}
5142
5143#[cfg(feature = "dfa-build")]
5144impl core::fmt::Display for BuildError {
5145    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
5146        match self.kind() {
5147            BuildErrorKind::NFA(_) => write!(f, "error building NFA"),
5148            BuildErrorKind::Unsupported(ref msg) => {
5149                write!(f, "unsupported regex feature for DFAs: {msg}")
5150            }
5151            BuildErrorKind::TooManyStates => write!(
5152                f,
5153                "number of DFA states exceeds limit of {}",
5154                StateID::LIMIT,
5155            ),
5156            BuildErrorKind::TooManyStartStates => {
5157                let stride = Start::len();
5158                // The start table has `stride` entries for starting states for
5159                // the entire DFA, and then `stride` entries for each pattern
5160                // if start states for each pattern are enabled (which is the
5161                // only way this error can occur). Thus, the total number of
5162                // patterns that can fit in the table is `stride` less than
5163                // what we can allocate.
5164                let max = usize::try_from(core::isize::MAX).unwrap();
5165                let limit = (max - stride) / stride;
5166                write!(
5167                    f,
5168                    "compiling DFA with start states exceeds pattern \
5169                     pattern limit of {}",
5170                    limit,
5171                )
5172            }
5173            BuildErrorKind::TooManyMatchPatternIDs => write!(
5174                f,
5175                "compiling DFA with total patterns in all match states \
5176                 exceeds limit of {}",
5177                PatternID::LIMIT,
5178            ),
5179            BuildErrorKind::DFAExceededSizeLimit { limit } => write!(
5180                f,
5181                "DFA exceeded size limit of {limit:?} during determinization",
5182            ),
5183            BuildErrorKind::DeterminizeExceededSizeLimit { limit } => {
5184                write!(f, "determinization exceeded size limit of {limit:?}")
5185            }
5186        }
5187    }
5188}
5189
5190#[cfg(all(test, feature = "syntax", feature = "dfa-build"))]
5191mod tests {
5192    use crate::{Input, MatchError};
5193
5194    use super::*;
5195
5196    #[test]
5197    fn errors_with_unicode_word_boundary() {
5198        let pattern = r"\b";
5199        assert!(Builder::new().build(pattern).is_err());
5200    }
5201
5202    #[test]
5203    fn roundtrip_never_match() {
5204        let dfa = DFA::never_match().unwrap();
5205        let (buf, _) = dfa.to_bytes_native_endian();
5206        let dfa: DFA<&[u32]> = DFA::from_bytes(&buf).unwrap().0;
5207
5208        assert_eq!(None, dfa.try_search_fwd(&Input::new("foo12345")).unwrap());
5209    }
5210
5211    #[test]
5212    fn roundtrip_always_match() {
5213        use crate::HalfMatch;
5214
5215        let dfa = DFA::always_match().unwrap();
5216        let (buf, _) = dfa.to_bytes_native_endian();
5217        let dfa: DFA<&[u32]> = DFA::from_bytes(&buf).unwrap().0;
5218
5219        assert_eq!(
5220            Some(HalfMatch::must(0, 0)),
5221            dfa.try_search_fwd(&Input::new("foo12345")).unwrap()
5222        );
5223    }
5224
5225    // See the analogous test in src/hybrid/dfa.rs.
5226    #[test]
5227    fn heuristic_unicode_reverse() {
5228        let dfa = DFA::builder()
5229            .configure(DFA::config().unicode_word_boundary(true))
5230            .thompson(thompson::Config::new().reverse(true))
5231            .build(r"\b[0-9]+\b")
5232            .unwrap();
5233
5234        let input = Input::new("β123").range(2..);
5235        let expected = MatchError::quit(0xB2, 1);
5236        let got = dfa.try_search_rev(&input);
5237        assert_eq!(Err(expected), got);
5238
5239        let input = Input::new("123β").range(..3);
5240        let expected = MatchError::quit(0xCE, 3);
5241        let got = dfa.try_search_rev(&input);
5242        assert_eq!(Err(expected), got);
5243    }
5244
5245    // This panics in `TransitionTable::validate` if the match states are not
5246    // validated first.
5247    //
5248    // See: https://github.com/rust-lang/regex/pull/1295
5249    #[test]
5250    fn regression_validation_order() {
5251        let mut dfa = DFA::new("abc").unwrap();
5252        dfa.ms = MatchStates {
5253            slices: vec![],
5254            pattern_ids: vec![],
5255            pattern_len: 1,
5256        };
5257        let (buf, _) = dfa.to_bytes_native_endian();
5258        DFA::from_bytes(&buf).unwrap_err();
5259    }
5260}