regex_automata/dfa/dense.rs
1/*!
2Types and routines specific to dense DFAs.
3
4This module is the home of [`dense::DFA`](DFA).
5
6This module also contains a [`dense::Builder`](Builder) and a
7[`dense::Config`](Config) for building and configuring a dense DFA.
8*/
9
10#[cfg(feature = "dfa-build")]
11use core::cmp;
12use core::{fmt, iter, mem::size_of, slice};
13
14#[cfg(feature = "dfa-build")]
15use alloc::{
16 collections::{BTreeMap, BTreeSet},
17 vec,
18 vec::Vec,
19};
20
21#[cfg(feature = "dfa-build")]
22use crate::{
23 dfa::{
24 accel::Accel, determinize, minimize::Minimizer, remapper::Remapper,
25 sparse,
26 },
27 nfa::thompson,
28 util::{look::LookMatcher, search::MatchKind},
29};
30use crate::{
31 dfa::{
32 accel::Accels,
33 automaton::{fmt_state_indicator, Automaton, StartError},
34 special::Special,
35 start::StartKind,
36 DEAD,
37 },
38 util::{
39 alphabet::{self, ByteClasses, ByteSet},
40 int::{Pointer, Usize},
41 prefilter::Prefilter,
42 primitives::{PatternID, StateID},
43 search::Anchored,
44 start::{self, Start, StartByteMap},
45 wire::{self, DeserializeError, Endian, SerializeError},
46 },
47};
48
49/// The label that is pre-pended to a serialized DFA.
50const LABEL: &str = "rust-regex-automata-dfa-dense";
51
52/// The format version of dense regexes. This version gets incremented when a
53/// change occurs. A change may not necessarily be a breaking change, but the
54/// version does permit good error messages in the case where a breaking change
55/// is made.
56const VERSION: u32 = 2;
57
58/// The configuration used for compiling a dense DFA.
59///
60/// As a convenience, [`DFA::config`] is an alias for [`Config::new`]. The
61/// advantage of the former is that it often lets you avoid importing the
62/// `Config` type directly.
63///
64/// A dense DFA configuration is a simple data object that is typically used
65/// with [`dense::Builder::configure`](self::Builder::configure).
66///
67/// The default configuration guarantees that a search will never return
68/// a "quit" error, although it is possible for a search to fail if
69/// [`Config::starts_for_each_pattern`] wasn't enabled (which it is
70/// not by default) and an [`Anchored::Pattern`] mode is requested via
71/// [`Input`](crate::Input).
72#[cfg(feature = "dfa-build")]
73#[derive(Clone, Debug, Default)]
74pub struct Config {
75 // As with other configuration types in this crate, we put all our knobs
76 // in options so that we can distinguish between "default" and "not set."
77 // This makes it possible to easily combine multiple configurations
78 // without default values overwriting explicitly specified values. See the
79 // 'overwrite' method.
80 //
81 // For docs on the fields below, see the corresponding method setters.
82 accelerate: Option<bool>,
83 pre: Option<Option<Prefilter>>,
84 minimize: Option<bool>,
85 match_kind: Option<MatchKind>,
86 start_kind: Option<StartKind>,
87 starts_for_each_pattern: Option<bool>,
88 byte_classes: Option<bool>,
89 unicode_word_boundary: Option<bool>,
90 quitset: Option<ByteSet>,
91 specialize_start_states: Option<bool>,
92 dfa_size_limit: Option<Option<usize>>,
93 determinize_size_limit: Option<Option<usize>>,
94}
95
96#[cfg(feature = "dfa-build")]
97impl Config {
98 /// Return a new default dense DFA compiler configuration.
99 pub fn new() -> Config {
100 Config::default()
101 }
102
103 /// Enable state acceleration.
104 ///
105 /// When enabled, DFA construction will analyze each state to determine
106 /// whether it is eligible for simple acceleration. Acceleration typically
107 /// occurs when most of a state's transitions loop back to itself, leaving
108 /// only a select few bytes that will exit the state. When this occurs,
109 /// other routines like `memchr` can be used to look for those bytes which
110 /// may be much faster than traversing the DFA.
111 ///
112 /// Callers may elect to disable this if consistent performance is more
113 /// desirable than variable performance. Namely, acceleration can sometimes
114 /// make searching slower than it otherwise would be if the transitions
115 /// that leave accelerated states are traversed frequently.
116 ///
117 /// See [`Automaton::accelerator`] for an example.
118 ///
119 /// This is enabled by default.
120 pub fn accelerate(mut self, yes: bool) -> Config {
121 self.accelerate = Some(yes);
122 self
123 }
124
125 /// Set a prefilter to be used whenever a start state is entered.
126 ///
127 /// A [`Prefilter`] in this context is meant to accelerate searches by
128 /// looking for literal prefixes that every match for the corresponding
129 /// pattern (or patterns) must start with. Once a prefilter produces a
130 /// match, the underlying search routine continues on to try and confirm
131 /// the match.
132 ///
133 /// Be warned that setting a prefilter does not guarantee that the search
134 /// will be faster. While it's usually a good bet, if the prefilter
135 /// produces a lot of false positive candidates (i.e., positions matched
136 /// by the prefilter but not by the regex), then the overall result can
137 /// be slower than if you had just executed the regex engine without any
138 /// prefilters.
139 ///
140 /// Note that unless [`Config::specialize_start_states`] has been
141 /// explicitly set, then setting this will also enable (when `pre` is
142 /// `Some`) or disable (when `pre` is `None`) start state specialization.
143 /// This occurs because without start state specialization, a prefilter
144 /// is likely to be less effective. And without a prefilter, start state
145 /// specialization is usually pointless.
146 ///
147 /// **WARNING:** Note that prefilters are not preserved as part of
148 /// serialization. Serializing a DFA will drop its prefilter.
149 ///
150 /// By default no prefilter is set.
151 ///
152 /// # Example
153 ///
154 /// ```
155 /// use regex_automata::{
156 /// dfa::{dense::DFA, Automaton},
157 /// util::prefilter::Prefilter,
158 /// Input, HalfMatch, MatchKind,
159 /// };
160 ///
161 /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["foo", "bar"]);
162 /// let re = DFA::builder()
163 /// .configure(DFA::config().prefilter(pre))
164 /// .build(r"(foo|bar)[a-z]+")?;
165 /// let input = Input::new("foo1 barfox bar");
166 /// assert_eq!(
167 /// Some(HalfMatch::must(0, 11)),
168 /// re.try_search_fwd(&input)?,
169 /// );
170 ///
171 /// # Ok::<(), Box<dyn std::error::Error>>(())
172 /// ```
173 ///
174 /// Be warned though that an incorrect prefilter can lead to incorrect
175 /// results!
176 ///
177 /// ```
178 /// use regex_automata::{
179 /// dfa::{dense::DFA, Automaton},
180 /// util::prefilter::Prefilter,
181 /// Input, HalfMatch, MatchKind,
182 /// };
183 ///
184 /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["foo", "car"]);
185 /// let re = DFA::builder()
186 /// .configure(DFA::config().prefilter(pre))
187 /// .build(r"(foo|bar)[a-z]+")?;
188 /// let input = Input::new("foo1 barfox bar");
189 /// assert_eq!(
190 /// // No match reported even though there clearly is one!
191 /// None,
192 /// re.try_search_fwd(&input)?,
193 /// );
194 ///
195 /// # Ok::<(), Box<dyn std::error::Error>>(())
196 /// ```
197 pub fn prefilter(mut self, pre: Option<Prefilter>) -> Config {
198 self.pre = Some(pre);
199 if self.specialize_start_states.is_none() {
200 self.specialize_start_states =
201 Some(self.get_prefilter().is_some());
202 }
203 self
204 }
205
206 /// Minimize the DFA.
207 ///
208 /// When enabled, the DFA built will be minimized such that it is as small
209 /// as possible.
210 ///
211 /// Whether one enables minimization or not depends on the types of costs
212 /// you're willing to pay and how much you care about its benefits. In
213 /// particular, minimization has worst case `O(n*k*logn)` time and `O(k*n)`
214 /// space, where `n` is the number of DFA states and `k` is the alphabet
215 /// size. In practice, minimization can be quite costly in terms of both
216 /// space and time, so it should only be done if you're willing to wait
217 /// longer to produce a DFA. In general, you might want a minimal DFA in
218 /// the following circumstances:
219 ///
220 /// 1. You would like to optimize for the size of the automaton. This can
221 /// manifest in one of two ways. Firstly, if you're converting the
222 /// DFA into Rust code (or a table embedded in the code), then a minimal
223 /// DFA will translate into a corresponding reduction in code size, and
224 /// thus, also the final compiled binary size. Secondly, if you are
225 /// building many DFAs and putting them on the heap, you'll be able to
226 /// fit more if they are smaller. Note though that building a minimal
227 /// DFA itself requires additional space; you only realize the space
228 /// savings once the minimal DFA is constructed (at which point, the
229 /// space used for minimization is freed).
230 /// 2. You've observed that a smaller DFA results in faster match
231 /// performance. Naively, this isn't guaranteed since there is no
232 /// inherent difference between matching with a bigger-than-minimal
233 /// DFA and a minimal DFA. However, a smaller DFA may make use of your
234 /// CPU's cache more efficiently.
235 /// 3. You are trying to establish an equivalence between regular
236 /// languages. The standard method for this is to build a minimal DFA
237 /// for each language and then compare them. If the DFAs are equivalent
238 /// (up to state renaming), then the languages are equivalent.
239 ///
240 /// Typically, minimization only makes sense as an offline process. That
241 /// is, one might minimize a DFA before serializing it to persistent
242 /// storage. In practical terms, minimization can take around an order of
243 /// magnitude more time than compiling the initial DFA via determinization.
244 ///
245 /// This option is disabled by default.
246 pub fn minimize(mut self, yes: bool) -> Config {
247 self.minimize = Some(yes);
248 self
249 }
250
251 /// Set the desired match semantics.
252 ///
253 /// The default is [`MatchKind::LeftmostFirst`], which corresponds to the
254 /// match semantics of Perl-like regex engines. That is, when multiple
255 /// patterns would match at the same leftmost position, the pattern that
256 /// appears first in the concrete syntax is chosen.
257 ///
258 /// Currently, the only other kind of match semantics supported is
259 /// [`MatchKind::All`]. This corresponds to classical DFA construction
260 /// where all possible matches are added to the DFA.
261 ///
262 /// Typically, `All` is used when one wants to execute an overlapping
263 /// search and `LeftmostFirst` otherwise. In particular, it rarely makes
264 /// sense to use `All` with the various "leftmost" find routines, since the
265 /// leftmost routines depend on the `LeftmostFirst` automata construction
266 /// strategy. Specifically, `LeftmostFirst` adds dead states to the DFA
267 /// as a way to terminate the search and report a match. `LeftmostFirst`
268 /// also supports non-greedy matches using this strategy where as `All`
269 /// does not.
270 ///
271 /// # Example: overlapping search
272 ///
273 /// This example shows the typical use of `MatchKind::All`, which is to
274 /// report overlapping matches.
275 ///
276 /// ```
277 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
278 /// use regex_automata::{
279 /// dfa::{Automaton, OverlappingState, dense},
280 /// HalfMatch, Input, MatchKind,
281 /// };
282 ///
283 /// let dfa = dense::Builder::new()
284 /// .configure(dense::Config::new().match_kind(MatchKind::All))
285 /// .build_many(&[r"\w+$", r"\S+$"])?;
286 /// let input = Input::new("@foo");
287 /// let mut state = OverlappingState::start();
288 ///
289 /// let expected = Some(HalfMatch::must(1, 4));
290 /// dfa.try_search_overlapping_fwd(&input, &mut state)?;
291 /// assert_eq!(expected, state.get_match());
292 ///
293 /// // The first pattern also matches at the same position, so re-running
294 /// // the search will yield another match. Notice also that the first
295 /// // pattern is returned after the second. This is because the second
296 /// // pattern begins its match before the first, is therefore an earlier
297 /// // match and is thus reported first.
298 /// let expected = Some(HalfMatch::must(0, 4));
299 /// dfa.try_search_overlapping_fwd(&input, &mut state)?;
300 /// assert_eq!(expected, state.get_match());
301 ///
302 /// # Ok::<(), Box<dyn std::error::Error>>(())
303 /// ```
304 ///
305 /// # Example: reverse automaton to find start of match
306 ///
307 /// Another example for using `MatchKind::All` is for constructing a
308 /// reverse automaton to find the start of a match. `All` semantics are
309 /// used for this in order to find the longest possible match, which
310 /// corresponds to the leftmost starting position.
311 ///
312 /// Note that if you need the starting position then
313 /// [`dfa::regex::Regex`](crate::dfa::regex::Regex) will handle this for
314 /// you, so it's usually not necessary to do this yourself.
315 ///
316 /// ```
317 /// use regex_automata::{
318 /// dfa::{dense, Automaton, StartKind},
319 /// nfa::thompson::NFA,
320 /// Anchored, HalfMatch, Input, MatchKind,
321 /// };
322 ///
323 /// let haystack = "123foobar456".as_bytes();
324 /// let pattern = r"[a-z]+r";
325 ///
326 /// let dfa_fwd = dense::DFA::new(pattern)?;
327 /// let dfa_rev = dense::Builder::new()
328 /// .thompson(NFA::config().reverse(true))
329 /// .configure(dense::Config::new()
330 /// // This isn't strictly necessary since both anchored and
331 /// // unanchored searches are supported by default. But since
332 /// // finding the start-of-match only requires anchored searches,
333 /// // we can get rid of the unanchored configuration and possibly
334 /// // slim down our DFA considerably.
335 /// .start_kind(StartKind::Anchored)
336 /// .match_kind(MatchKind::All)
337 /// )
338 /// .build(pattern)?;
339 /// let expected_fwd = HalfMatch::must(0, 9);
340 /// let expected_rev = HalfMatch::must(0, 3);
341 /// let got_fwd = dfa_fwd.try_search_fwd(&Input::new(haystack))?.unwrap();
342 /// // Here we don't specify the pattern to search for since there's only
343 /// // one pattern and we're doing a leftmost search. But if this were an
344 /// // overlapping search, you'd need to specify the pattern that matched
345 /// // in the forward direction. (Otherwise, you might wind up finding the
346 /// // starting position of a match of some other pattern.) That in turn
347 /// // requires building the reverse automaton with starts_for_each_pattern
348 /// // enabled. Indeed, this is what Regex does internally.
349 /// let input = Input::new(haystack)
350 /// .range(..got_fwd.offset())
351 /// .anchored(Anchored::Yes);
352 /// let got_rev = dfa_rev.try_search_rev(&input)?.unwrap();
353 /// assert_eq!(expected_fwd, got_fwd);
354 /// assert_eq!(expected_rev, got_rev);
355 ///
356 /// # Ok::<(), Box<dyn std::error::Error>>(())
357 /// ```
358 pub fn match_kind(mut self, kind: MatchKind) -> Config {
359 self.match_kind = Some(kind);
360 self
361 }
362
363 /// The type of starting state configuration to use for a DFA.
364 ///
365 /// By default, the starting state configuration is [`StartKind::Both`].
366 ///
367 /// # Example
368 ///
369 /// ```
370 /// use regex_automata::{
371 /// dfa::{dense::DFA, Automaton, StartKind},
372 /// Anchored, HalfMatch, Input,
373 /// };
374 ///
375 /// let haystack = "quux foo123";
376 /// let expected = HalfMatch::must(0, 11);
377 ///
378 /// // By default, DFAs support both anchored and unanchored searches.
379 /// let dfa = DFA::new(r"[0-9]+")?;
380 /// let input = Input::new(haystack);
381 /// assert_eq!(Some(expected), dfa.try_search_fwd(&input)?);
382 ///
383 /// // But if we only need anchored searches, then we can build a DFA
384 /// // that only supports anchored searches. This leads to a smaller DFA
385 /// // (potentially significantly smaller in some cases), but a DFA that
386 /// // will panic if you try to use it with an unanchored search.
387 /// let dfa = DFA::builder()
388 /// .configure(DFA::config().start_kind(StartKind::Anchored))
389 /// .build(r"[0-9]+")?;
390 /// let input = Input::new(haystack)
391 /// .range(8..)
392 /// .anchored(Anchored::Yes);
393 /// assert_eq!(Some(expected), dfa.try_search_fwd(&input)?);
394 ///
395 /// # Ok::<(), Box<dyn std::error::Error>>(())
396 /// ```
397 pub fn start_kind(mut self, kind: StartKind) -> Config {
398 self.start_kind = Some(kind);
399 self
400 }
401
402 /// Whether to compile a separate start state for each pattern in the
403 /// automaton.
404 ///
405 /// When enabled, a separate **anchored** start state is added for each
406 /// pattern in the DFA. When this start state is used, then the DFA will
407 /// only search for matches for the pattern specified, even if there are
408 /// other patterns in the DFA.
409 ///
410 /// The main downside of this option is that it can potentially increase
411 /// the size of the DFA and/or increase the time it takes to build the DFA.
412 ///
413 /// There are a few reasons one might want to enable this (it's disabled
414 /// by default):
415 ///
416 /// 1. When looking for the start of an overlapping match (using a
417 /// reverse DFA), doing it correctly requires starting the reverse search
418 /// using the starting state of the pattern that matched in the forward
419 /// direction. Indeed, when building a [`Regex`](crate::dfa::regex::Regex),
420 /// it will automatically enable this option when building the reverse DFA
421 /// internally.
422 /// 2. When you want to use a DFA with multiple patterns to both search
423 /// for matches of any pattern or to search for anchored matches of one
424 /// particular pattern while using the same DFA. (Otherwise, you would need
425 /// to compile a new DFA for each pattern.)
426 /// 3. Since the start states added for each pattern are anchored, if you
427 /// compile an unanchored DFA with one pattern while also enabling this
428 /// option, then you can use the same DFA to perform anchored or unanchored
429 /// searches. The latter you get with the standard search APIs. The former
430 /// you get from the various `_at` search methods that allow you specify a
431 /// pattern ID to search for.
432 ///
433 /// By default this is disabled.
434 ///
435 /// # Example
436 ///
437 /// This example shows how to use this option to permit the same DFA to
438 /// run both anchored and unanchored searches for a single pattern.
439 ///
440 /// ```
441 /// use regex_automata::{
442 /// dfa::{dense, Automaton},
443 /// Anchored, HalfMatch, PatternID, Input,
444 /// };
445 ///
446 /// let dfa = dense::Builder::new()
447 /// .configure(dense::Config::new().starts_for_each_pattern(true))
448 /// .build(r"foo[0-9]+")?;
449 /// let haystack = "quux foo123";
450 ///
451 /// // Here's a normal unanchored search. Notice that we use 'None' for the
452 /// // pattern ID. Since the DFA was built as an unanchored machine, it
453 /// // use its default unanchored starting state.
454 /// let expected = HalfMatch::must(0, 11);
455 /// let input = Input::new(haystack);
456 /// assert_eq!(Some(expected), dfa.try_search_fwd(&input)?);
457 /// // But now if we explicitly specify the pattern to search ('0' being
458 /// // the only pattern in the DFA), then it will use the starting state
459 /// // for that specific pattern which is always anchored. Since the
460 /// // pattern doesn't have a match at the beginning of the haystack, we
461 /// // find nothing.
462 /// let input = Input::new(haystack)
463 /// .anchored(Anchored::Pattern(PatternID::must(0)));
464 /// assert_eq!(None, dfa.try_search_fwd(&input)?);
465 /// // And finally, an anchored search is not the same as putting a '^' at
466 /// // beginning of the pattern. An anchored search can only match at the
467 /// // beginning of the *search*, which we can change:
468 /// let input = Input::new(haystack)
469 /// .anchored(Anchored::Pattern(PatternID::must(0)))
470 /// .range(5..);
471 /// assert_eq!(Some(expected), dfa.try_search_fwd(&input)?);
472 ///
473 /// # Ok::<(), Box<dyn std::error::Error>>(())
474 /// ```
475 pub fn starts_for_each_pattern(mut self, yes: bool) -> Config {
476 self.starts_for_each_pattern = Some(yes);
477 self
478 }
479
480 /// Whether to attempt to shrink the size of the DFA's alphabet or not.
481 ///
482 /// This option is enabled by default and should never be disabled unless
483 /// one is debugging a generated DFA.
484 ///
485 /// When enabled, the DFA will use a map from all possible bytes to their
486 /// corresponding equivalence class. Each equivalence class represents a
487 /// set of bytes that does not discriminate between a match and a non-match
488 /// in the DFA. For example, the pattern `[ab]+` has at least two
489 /// equivalence classes: a set containing `a` and `b` and a set containing
490 /// every byte except for `a` and `b`. `a` and `b` are in the same
491 /// equivalence class because they never discriminate between a match and a
492 /// non-match.
493 ///
494 /// The advantage of this map is that the size of the transition table
495 /// can be reduced drastically from `#states * 256 * sizeof(StateID)` to
496 /// `#states * k * sizeof(StateID)` where `k` is the number of equivalence
497 /// classes (rounded up to the nearest power of 2). As a result, total
498 /// space usage can decrease substantially. Moreover, since a smaller
499 /// alphabet is used, DFA compilation becomes faster as well.
500 ///
501 /// **WARNING:** This is only useful for debugging DFAs. Disabling this
502 /// does not yield any speed advantages. Namely, even when this is
503 /// disabled, a byte class map is still used while searching. The only
504 /// difference is that every byte will be forced into its own distinct
505 /// equivalence class. This is useful for debugging the actual generated
506 /// transitions because it lets one see the transitions defined on actual
507 /// bytes instead of the equivalence classes.
508 pub fn byte_classes(mut self, yes: bool) -> Config {
509 self.byte_classes = Some(yes);
510 self
511 }
512
513 /// Heuristically enable Unicode word boundaries.
514 ///
515 /// When set, this will attempt to implement Unicode word boundaries as if
516 /// they were ASCII word boundaries. This only works when the search input
517 /// is ASCII only. If a non-ASCII byte is observed while searching, then a
518 /// [`MatchError::quit`](crate::MatchError::quit) error is returned.
519 ///
520 /// A possible alternative to enabling this option is to simply use an
521 /// ASCII word boundary, e.g., via `(?-u:\b)`. The main reason to use this
522 /// option is if you absolutely need Unicode support. This option lets one
523 /// use a fast search implementation (a DFA) for some potentially very
524 /// common cases, while providing the option to fall back to some other
525 /// regex engine to handle the general case when an error is returned.
526 ///
527 /// If the pattern provided has no Unicode word boundary in it, then this
528 /// option has no effect. (That is, quitting on a non-ASCII byte only
529 /// occurs when this option is enabled _and_ a Unicode word boundary is
530 /// present in the pattern.)
531 ///
532 /// This is almost equivalent to setting all non-ASCII bytes to be quit
533 /// bytes. The only difference is that this will cause non-ASCII bytes to
534 /// be quit bytes _only_ when a Unicode word boundary is present in the
535 /// pattern.
536 ///
537 /// When enabling this option, callers _must_ be prepared to handle
538 /// a [`MatchError`](crate::MatchError) error during search.
539 /// When using a [`Regex`](crate::dfa::regex::Regex), this corresponds
540 /// to using the `try_` suite of methods. Alternatively, if
541 /// callers can guarantee that their input is ASCII only, then a
542 /// [`MatchError::quit`](crate::MatchError::quit) error will never be
543 /// returned while searching.
544 ///
545 /// This is disabled by default.
546 ///
547 /// # Example
548 ///
549 /// This example shows how to heuristically enable Unicode word boundaries
550 /// in a pattern. It also shows what happens when a search comes across a
551 /// non-ASCII byte.
552 ///
553 /// ```
554 /// use regex_automata::{
555 /// dfa::{Automaton, dense},
556 /// HalfMatch, Input, MatchError,
557 /// };
558 ///
559 /// let dfa = dense::Builder::new()
560 /// .configure(dense::Config::new().unicode_word_boundary(true))
561 /// .build(r"\b[0-9]+\b")?;
562 ///
563 /// // The match occurs before the search ever observes the snowman
564 /// // character, so no error occurs.
565 /// let haystack = "foo 123 ☃".as_bytes();
566 /// let expected = Some(HalfMatch::must(0, 7));
567 /// let got = dfa.try_search_fwd(&Input::new(haystack))?;
568 /// assert_eq!(expected, got);
569 ///
570 /// // Notice that this search fails, even though the snowman character
571 /// // occurs after the ending match offset. This is because search
572 /// // routines read one byte past the end of the search to account for
573 /// // look-around, and indeed, this is required here to determine whether
574 /// // the trailing \b matches.
575 /// let haystack = "foo 123 ☃".as_bytes();
576 /// let expected = MatchError::quit(0xE2, 8);
577 /// let got = dfa.try_search_fwd(&Input::new(haystack));
578 /// assert_eq!(Err(expected), got);
579 ///
580 /// // Another example is executing a search where the span of the haystack
581 /// // we specify is all ASCII, but there is non-ASCII just before it. This
582 /// // correctly also reports an error.
583 /// let input = Input::new("β123").range(2..);
584 /// let expected = MatchError::quit(0xB2, 1);
585 /// let got = dfa.try_search_fwd(&input);
586 /// assert_eq!(Err(expected), got);
587 ///
588 /// // And similarly for the trailing word boundary.
589 /// let input = Input::new("123β").range(..3);
590 /// let expected = MatchError::quit(0xCE, 3);
591 /// let got = dfa.try_search_fwd(&input);
592 /// assert_eq!(Err(expected), got);
593 ///
594 /// # Ok::<(), Box<dyn std::error::Error>>(())
595 /// ```
596 pub fn unicode_word_boundary(mut self, yes: bool) -> Config {
597 // We have a separate option for this instead of just setting the
598 // appropriate quit bytes here because we don't want to set quit bytes
599 // for every regex. We only want to set them when the regex contains a
600 // Unicode word boundary.
601 self.unicode_word_boundary = Some(yes);
602 self
603 }
604
605 /// Add a "quit" byte to the DFA.
606 ///
607 /// When a quit byte is seen during search time, then search will return
608 /// a [`MatchError::quit`](crate::MatchError::quit) error indicating the
609 /// offset at which the search stopped.
610 ///
611 /// A quit byte will always overrule any other aspects of a regex. For
612 /// example, if the `x` byte is added as a quit byte and the regex `\w` is
613 /// used, then observing `x` will cause the search to quit immediately
614 /// despite the fact that `x` is in the `\w` class.
615 ///
616 /// This mechanism is primarily useful for heuristically enabling certain
617 /// features like Unicode word boundaries in a DFA. Namely, if the input
618 /// to search is ASCII, then a Unicode word boundary can be implemented
619 /// via an ASCII word boundary with no change in semantics. Thus, a DFA
620 /// can attempt to match a Unicode word boundary but give up as soon as it
621 /// observes a non-ASCII byte. Indeed, if callers set all non-ASCII bytes
622 /// to be quit bytes, then Unicode word boundaries will be permitted when
623 /// building DFAs. Of course, callers should enable
624 /// [`Config::unicode_word_boundary`] if they want this behavior instead.
625 /// (The advantage being that non-ASCII quit bytes will only be added if a
626 /// Unicode word boundary is in the pattern.)
627 ///
628 /// When enabling this option, callers _must_ be prepared to handle a
629 /// [`MatchError`](crate::MatchError) error during search. When using a
630 /// [`Regex`](crate::dfa::regex::Regex), this corresponds to using the
631 /// `try_` suite of methods.
632 ///
633 /// By default, there are no quit bytes set.
634 ///
635 /// # Panics
636 ///
637 /// This panics if heuristic Unicode word boundaries are enabled and any
638 /// non-ASCII byte is removed from the set of quit bytes. Namely, enabling
639 /// Unicode word boundaries requires setting every non-ASCII byte to a quit
640 /// byte. So if the caller attempts to undo any of that, then this will
641 /// panic.
642 ///
643 /// # Example
644 ///
645 /// This example shows how to cause a search to terminate if it sees a
646 /// `\n` byte. This could be useful if, for example, you wanted to prevent
647 /// a user supplied pattern from matching across a line boundary.
648 ///
649 /// ```
650 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
651 /// use regex_automata::{dfa::{Automaton, dense}, Input, MatchError};
652 ///
653 /// let dfa = dense::Builder::new()
654 /// .configure(dense::Config::new().quit(b'\n', true))
655 /// .build(r"foo\p{any}+bar")?;
656 ///
657 /// let haystack = "foo\nbar".as_bytes();
658 /// // Normally this would produce a match, since \p{any} contains '\n'.
659 /// // But since we instructed the automaton to enter a quit state if a
660 /// // '\n' is observed, this produces a match error instead.
661 /// let expected = MatchError::quit(b'\n', 3);
662 /// let got = dfa.try_search_fwd(&Input::new(haystack)).unwrap_err();
663 /// assert_eq!(expected, got);
664 ///
665 /// # Ok::<(), Box<dyn std::error::Error>>(())
666 /// ```
667 pub fn quit(mut self, byte: u8, yes: bool) -> Config {
668 if self.get_unicode_word_boundary() && !byte.is_ascii() && !yes {
669 panic!(
670 "cannot set non-ASCII byte to be non-quit when \
671 Unicode word boundaries are enabled"
672 );
673 }
674 if self.quitset.is_none() {
675 self.quitset = Some(ByteSet::empty());
676 }
677 if yes {
678 self.quitset.as_mut().unwrap().add(byte);
679 } else {
680 self.quitset.as_mut().unwrap().remove(byte);
681 }
682 self
683 }
684
685 /// Enable specializing start states in the DFA.
686 ///
687 /// When start states are specialized, an implementor of a search routine
688 /// using a lazy DFA can tell when the search has entered a starting state.
689 /// When start states aren't specialized, then it is impossible to know
690 /// whether the search has entered a start state.
691 ///
692 /// Ideally, this option wouldn't need to exist and we could always
693 /// specialize start states. The problem is that start states can be quite
694 /// active. This in turn means that an efficient search routine is likely
695 /// to ping-pong between a heavily optimized hot loop that handles most
696 /// states and to a less optimized specialized handling of start states.
697 /// This causes branches to get heavily mispredicted and overall can
698 /// materially decrease throughput. Therefore, specializing start states
699 /// should only be enabled when it is needed.
700 ///
701 /// Knowing whether a search is in a start state is typically useful when a
702 /// prefilter is active for the search. A prefilter is typically only run
703 /// when in a start state and a prefilter can greatly accelerate a search.
704 /// Therefore, the possible cost of specializing start states is worth it
705 /// in this case. Otherwise, if you have no prefilter, there is likely no
706 /// reason to specialize start states.
707 ///
708 /// This is disabled by default, but note that it is automatically
709 /// enabled (or disabled) if [`Config::prefilter`] is set. Namely, unless
710 /// `specialize_start_states` has already been set, [`Config::prefilter`]
711 /// will automatically enable or disable it based on whether a prefilter
712 /// is present or not, respectively. This is done because a prefilter's
713 /// effectiveness is rooted in being executed whenever the DFA is in a
714 /// start state, and that's only possible to do when they are specialized.
715 ///
716 /// Note that it is plausibly reasonable to _disable_ this option
717 /// explicitly while _enabling_ a prefilter. In that case, a prefilter
718 /// will still be run at the beginning of a search, but never again. This
719 /// in theory could strike a good balance if you're in a situation where a
720 /// prefilter is likely to produce many false positive candidates.
721 ///
722 /// # Example
723 ///
724 /// This example shows how to enable start state specialization and then
725 /// shows how to check whether a state is a start state or not.
726 ///
727 /// ```
728 /// use regex_automata::{dfa::{Automaton, dense::DFA}, Input};
729 ///
730 /// let dfa = DFA::builder()
731 /// .configure(DFA::config().specialize_start_states(true))
732 /// .build(r"[a-z]+")?;
733 ///
734 /// let haystack = "123 foobar 4567".as_bytes();
735 /// let sid = dfa.start_state_forward(&Input::new(haystack))?;
736 /// // The ID returned by 'start_state_forward' will always be tagged as
737 /// // a start state when start state specialization is enabled.
738 /// assert!(dfa.is_special_state(sid));
739 /// assert!(dfa.is_start_state(sid));
740 ///
741 /// # Ok::<(), Box<dyn std::error::Error>>(())
742 /// ```
743 ///
744 /// Compare the above with the default DFA configuration where start states
745 /// are _not_ specialized. In this case, the start state is not tagged at
746 /// all:
747 ///
748 /// ```
749 /// use regex_automata::{dfa::{Automaton, dense::DFA}, Input};
750 ///
751 /// let dfa = DFA::new(r"[a-z]+")?;
752 ///
753 /// let haystack = "123 foobar 4567";
754 /// let sid = dfa.start_state_forward(&Input::new(haystack))?;
755 /// // Start states are not special in the default configuration!
756 /// assert!(!dfa.is_special_state(sid));
757 /// assert!(!dfa.is_start_state(sid));
758 ///
759 /// # Ok::<(), Box<dyn std::error::Error>>(())
760 /// ```
761 pub fn specialize_start_states(mut self, yes: bool) -> Config {
762 self.specialize_start_states = Some(yes);
763 self
764 }
765
766 /// Set a size limit on the total heap used by a DFA.
767 ///
768 /// This size limit is expressed in bytes and is applied during
769 /// determinization of an NFA into a DFA. If the DFA's heap usage, and only
770 /// the DFA, exceeds this configured limit, then determinization is stopped
771 /// and an error is returned.
772 ///
773 /// This limit does not apply to auxiliary storage used during
774 /// determinization that isn't part of the generated DFA.
775 ///
776 /// This limit is only applied during determinization. Currently, there is
777 /// no way to post-pone this check to after minimization if minimization
778 /// was enabled.
779 ///
780 /// The total limit on heap used during determinization is the sum of the
781 /// DFA and determinization size limits.
782 ///
783 /// The default is no limit.
784 ///
785 /// # Example
786 ///
787 /// This example shows a DFA that fails to build because of a configured
788 /// size limit. This particular example also serves as a cautionary tale
789 /// demonstrating just how big DFAs with large Unicode character classes
790 /// can get.
791 ///
792 /// ```
793 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
794 /// use regex_automata::{dfa::{dense, Automaton}, Input};
795 ///
796 /// // 6MB isn't enough!
797 /// dense::Builder::new()
798 /// .configure(dense::Config::new().dfa_size_limit(Some(6_000_000)))
799 /// .build(r"\w{20}")
800 /// .unwrap_err();
801 ///
802 /// // ... but 7MB probably is!
803 /// // (Note that DFA sizes aren't necessarily stable between releases.)
804 /// let dfa = dense::Builder::new()
805 /// .configure(dense::Config::new().dfa_size_limit(Some(7_000_000)))
806 /// .build(r"\w{20}")?;
807 /// let haystack = "A".repeat(20).into_bytes();
808 /// assert!(dfa.try_search_fwd(&Input::new(&haystack))?.is_some());
809 ///
810 /// # Ok::<(), Box<dyn std::error::Error>>(())
811 /// ```
812 ///
813 /// While one needs a little more than 6MB to represent `\w{20}`, it
814 /// turns out that you only need a little more than 6KB to represent
815 /// `(?-u:\w{20})`. So only use Unicode if you need it!
816 ///
817 /// As with [`Config::determinize_size_limit`], the size of a DFA is
818 /// influenced by other factors, such as what start state configurations
819 /// to support. For example, if you only need unanchored searches and not
820 /// anchored searches, then configuring the DFA to only support unanchored
821 /// searches can reduce its size. By default, DFAs support both unanchored
822 /// and anchored searches.
823 ///
824 /// ```
825 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
826 /// use regex_automata::{dfa::{dense, Automaton, StartKind}, Input};
827 ///
828 /// // 3MB isn't enough!
829 /// dense::Builder::new()
830 /// .configure(dense::Config::new()
831 /// .dfa_size_limit(Some(3_000_000))
832 /// .start_kind(StartKind::Unanchored)
833 /// )
834 /// .build(r"\w{20}")
835 /// .unwrap_err();
836 ///
837 /// // ... but 4MB probably is!
838 /// // (Note that DFA sizes aren't necessarily stable between releases.)
839 /// let dfa = dense::Builder::new()
840 /// .configure(dense::Config::new()
841 /// .dfa_size_limit(Some(4_000_000))
842 /// .start_kind(StartKind::Unanchored)
843 /// )
844 /// .build(r"\w{20}")?;
845 /// let haystack = "A".repeat(20).into_bytes();
846 /// assert!(dfa.try_search_fwd(&Input::new(&haystack))?.is_some());
847 ///
848 /// # Ok::<(), Box<dyn std::error::Error>>(())
849 /// ```
850 pub fn dfa_size_limit(mut self, bytes: Option<usize>) -> Config {
851 self.dfa_size_limit = Some(bytes);
852 self
853 }
854
855 /// Set a size limit on the total heap used by determinization.
856 ///
857 /// This size limit is expressed in bytes and is applied during
858 /// determinization of an NFA into a DFA. If the heap used for auxiliary
859 /// storage during determinization (memory that is not in the DFA but
860 /// necessary for building the DFA) exceeds this configured limit, then
861 /// determinization is stopped and an error is returned.
862 ///
863 /// This limit does not apply to heap used by the DFA itself.
864 ///
865 /// The total limit on heap used during determinization is the sum of the
866 /// DFA and determinization size limits.
867 ///
868 /// The default is no limit.
869 ///
870 /// # Example
871 ///
872 /// This example shows a DFA that fails to build because of a
873 /// configured size limit on the amount of heap space used by
874 /// determinization. This particular example complements the example for
875 /// [`Config::dfa_size_limit`] by demonstrating that not only does Unicode
876 /// potentially make DFAs themselves big, but it also results in more
877 /// auxiliary storage during determinization. (Although, auxiliary storage
878 /// is still not as much as the DFA itself.)
879 ///
880 /// ```
881 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
882 /// # if !cfg!(target_pointer_width = "64") { return Ok(()); } // see #1039
883 /// use regex_automata::{dfa::{dense, Automaton}, Input};
884 ///
885 /// // 700KB isn't enough!
886 /// dense::Builder::new()
887 /// .configure(dense::Config::new()
888 /// .determinize_size_limit(Some(700_000))
889 /// )
890 /// .build(r"\w{20}")
891 /// .unwrap_err();
892 ///
893 /// // ... but 800KB probably is!
894 /// // (Note that auxiliary storage sizes aren't necessarily stable between
895 /// // releases.)
896 /// let dfa = dense::Builder::new()
897 /// .configure(dense::Config::new()
898 /// .determinize_size_limit(Some(800_000))
899 /// )
900 /// .build(r"\w{20}")?;
901 /// let haystack = "A".repeat(20).into_bytes();
902 /// assert!(dfa.try_search_fwd(&Input::new(&haystack))?.is_some());
903 ///
904 /// # Ok::<(), Box<dyn std::error::Error>>(())
905 /// ```
906 ///
907 /// Note that some parts of the configuration on a DFA can have a
908 /// big impact on how big the DFA is, and thus, how much memory is
909 /// used. For example, the default setting for [`Config::start_kind`] is
910 /// [`StartKind::Both`]. But if you only need an anchored search, for
911 /// example, then it can be much cheaper to build a DFA that only supports
912 /// anchored searches. (Running an unanchored search with it would panic.)
913 ///
914 /// ```
915 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
916 /// # if !cfg!(target_pointer_width = "64") { return Ok(()); } // see #1039
917 /// use regex_automata::{
918 /// dfa::{dense, Automaton, StartKind},
919 /// Anchored, Input,
920 /// };
921 ///
922 /// // 200KB isn't enough!
923 /// dense::Builder::new()
924 /// .configure(dense::Config::new()
925 /// .determinize_size_limit(Some(200_000))
926 /// .start_kind(StartKind::Anchored)
927 /// )
928 /// .build(r"\w{20}")
929 /// .unwrap_err();
930 ///
931 /// // ... but 300KB probably is!
932 /// // (Note that auxiliary storage sizes aren't necessarily stable between
933 /// // releases.)
934 /// let dfa = dense::Builder::new()
935 /// .configure(dense::Config::new()
936 /// .determinize_size_limit(Some(300_000))
937 /// .start_kind(StartKind::Anchored)
938 /// )
939 /// .build(r"\w{20}")?;
940 /// let haystack = "A".repeat(20).into_bytes();
941 /// let input = Input::new(&haystack).anchored(Anchored::Yes);
942 /// assert!(dfa.try_search_fwd(&input)?.is_some());
943 ///
944 /// # Ok::<(), Box<dyn std::error::Error>>(())
945 /// ```
946 pub fn determinize_size_limit(mut self, bytes: Option<usize>) -> Config {
947 self.determinize_size_limit = Some(bytes);
948 self
949 }
950
951 /// Returns whether this configuration has enabled simple state
952 /// acceleration.
953 pub fn get_accelerate(&self) -> bool {
954 self.accelerate.unwrap_or(true)
955 }
956
957 /// Returns the prefilter attached to this configuration, if any.
958 pub fn get_prefilter(&self) -> Option<&Prefilter> {
959 self.pre.as_ref().unwrap_or(&None).as_ref()
960 }
961
962 /// Returns whether this configuration has enabled the expensive process
963 /// of minimizing a DFA.
964 pub fn get_minimize(&self) -> bool {
965 self.minimize.unwrap_or(false)
966 }
967
968 /// Returns the match semantics set in this configuration.
969 pub fn get_match_kind(&self) -> MatchKind {
970 self.match_kind.unwrap_or(MatchKind::LeftmostFirst)
971 }
972
973 /// Returns the starting state configuration for a DFA.
974 pub fn get_starts(&self) -> StartKind {
975 self.start_kind.unwrap_or(StartKind::Both)
976 }
977
978 /// Returns whether this configuration has enabled anchored starting states
979 /// for every pattern in the DFA.
980 pub fn get_starts_for_each_pattern(&self) -> bool {
981 self.starts_for_each_pattern.unwrap_or(false)
982 }
983
984 /// Returns whether this configuration has enabled byte classes or not.
985 /// This is typically a debugging oriented option, as disabling it confers
986 /// no speed benefit.
987 pub fn get_byte_classes(&self) -> bool {
988 self.byte_classes.unwrap_or(true)
989 }
990
991 /// Returns whether this configuration has enabled heuristic Unicode word
992 /// boundary support. When enabled, it is possible for a search to return
993 /// an error.
994 pub fn get_unicode_word_boundary(&self) -> bool {
995 self.unicode_word_boundary.unwrap_or(false)
996 }
997
998 /// Returns whether this configuration will instruct the DFA to enter a
999 /// quit state whenever the given byte is seen during a search. When at
1000 /// least one byte has this enabled, it is possible for a search to return
1001 /// an error.
1002 pub fn get_quit(&self, byte: u8) -> bool {
1003 self.quitset.map_or(false, |q| q.contains(byte))
1004 }
1005
1006 /// Returns whether this configuration will instruct the DFA to
1007 /// "specialize" start states. When enabled, the DFA will mark start states
1008 /// as "special" so that search routines using the DFA can detect when
1009 /// it's in a start state and do some kind of optimization (like run a
1010 /// prefilter).
1011 pub fn get_specialize_start_states(&self) -> bool {
1012 self.specialize_start_states.unwrap_or(false)
1013 }
1014
1015 /// Returns the DFA size limit of this configuration if one was set.
1016 /// The size limit is total number of bytes on the heap that a DFA is
1017 /// permitted to use. If the DFA exceeds this limit during construction,
1018 /// then construction is stopped and an error is returned.
1019 pub fn get_dfa_size_limit(&self) -> Option<usize> {
1020 self.dfa_size_limit.unwrap_or(None)
1021 }
1022
1023 /// Returns the determinization size limit of this configuration if one
1024 /// was set. The size limit is total number of bytes on the heap that
1025 /// determinization is permitted to use. If determinization exceeds this
1026 /// limit during construction, then construction is stopped and an error is
1027 /// returned.
1028 ///
1029 /// This is different from the DFA size limit in that this only applies to
1030 /// the auxiliary storage used during determinization. Once determinization
1031 /// is complete, this memory is freed.
1032 ///
1033 /// The limit on the total heap memory used is the sum of the DFA and
1034 /// determinization size limits.
1035 pub fn get_determinize_size_limit(&self) -> Option<usize> {
1036 self.determinize_size_limit.unwrap_or(None)
1037 }
1038
1039 /// Overwrite the default configuration such that the options in `o` are
1040 /// always used. If an option in `o` is not set, then the corresponding
1041 /// option in `self` is used. If it's not set in `self` either, then it
1042 /// remains not set.
1043 pub(crate) fn overwrite(&self, o: Config) -> Config {
1044 Config {
1045 accelerate: o.accelerate.or(self.accelerate),
1046 pre: o.pre.or_else(|| self.pre.clone()),
1047 minimize: o.minimize.or(self.minimize),
1048 match_kind: o.match_kind.or(self.match_kind),
1049 start_kind: o.start_kind.or(self.start_kind),
1050 starts_for_each_pattern: o
1051 .starts_for_each_pattern
1052 .or(self.starts_for_each_pattern),
1053 byte_classes: o.byte_classes.or(self.byte_classes),
1054 unicode_word_boundary: o
1055 .unicode_word_boundary
1056 .or(self.unicode_word_boundary),
1057 quitset: o.quitset.or(self.quitset),
1058 specialize_start_states: o
1059 .specialize_start_states
1060 .or(self.specialize_start_states),
1061 dfa_size_limit: o.dfa_size_limit.or(self.dfa_size_limit),
1062 determinize_size_limit: o
1063 .determinize_size_limit
1064 .or(self.determinize_size_limit),
1065 }
1066 }
1067}
1068
1069/// A builder for constructing a deterministic finite automaton from regular
1070/// expressions.
1071///
1072/// This builder provides two main things:
1073///
1074/// 1. It provides a few different `build` routines for actually constructing
1075/// a DFA from different kinds of inputs. The most convenient is
1076/// [`Builder::build`], which builds a DFA directly from a pattern string. The
1077/// most flexible is [`Builder::build_from_nfa`], which builds a DFA straight
1078/// from an NFA.
1079/// 2. The builder permits configuring a number of things.
1080/// [`Builder::configure`] is used with [`Config`] to configure aspects of
1081/// the DFA and the construction process itself. [`Builder::syntax`] and
1082/// [`Builder::thompson`] permit configuring the regex parser and Thompson NFA
1083/// construction, respectively. The syntax and thompson configurations only
1084/// apply when building from a pattern string.
1085///
1086/// This builder always constructs a *single* DFA. As such, this builder
1087/// can only be used to construct regexes that either detect the presence
1088/// of a match or find the end location of a match. A single DFA cannot
1089/// produce both the start and end of a match. For that information, use a
1090/// [`Regex`](crate::dfa::regex::Regex), which can be similarly configured
1091/// using [`regex::Builder`](crate::dfa::regex::Builder). The main reason to
1092/// use a DFA directly is if the end location of a match is enough for your use
1093/// case. Namely, a `Regex` will construct two DFAs instead of one, since a
1094/// second reverse DFA is needed to find the start of a match.
1095///
1096/// Note that if one wants to build a sparse DFA, you must first build a dense
1097/// DFA and convert that to a sparse DFA. There is no way to build a sparse
1098/// DFA without first building a dense DFA.
1099///
1100/// # Example
1101///
1102/// This example shows how to build a minimized DFA that completely disables
1103/// Unicode. That is:
1104///
1105/// * Things such as `\w`, `.` and `\b` are no longer Unicode-aware. `\w`
1106/// and `\b` are ASCII-only while `.` matches any byte except for `\n`
1107/// (instead of any UTF-8 encoding of a Unicode scalar value except for
1108/// `\n`). Things that are Unicode only, such as `\pL`, are not allowed.
1109/// * The pattern itself is permitted to match invalid UTF-8. For example,
1110/// things like `[^a]` that match any byte except for `a` are permitted.
1111///
1112/// ```
1113/// use regex_automata::{
1114/// dfa::{Automaton, dense},
1115/// util::syntax,
1116/// HalfMatch, Input,
1117/// };
1118///
1119/// let dfa = dense::Builder::new()
1120/// .configure(dense::Config::new().minimize(false))
1121/// .syntax(syntax::Config::new().unicode(false).utf8(false))
1122/// .build(r"foo[^b]ar.*")?;
1123///
1124/// let haystack = b"\xFEfoo\xFFar\xE2\x98\xFF\n";
1125/// let expected = Some(HalfMatch::must(0, 10));
1126/// let got = dfa.try_search_fwd(&Input::new(haystack))?;
1127/// assert_eq!(expected, got);
1128///
1129/// # Ok::<(), Box<dyn std::error::Error>>(())
1130/// ```
1131#[cfg(feature = "dfa-build")]
1132#[derive(Clone, Debug)]
1133pub struct Builder {
1134 config: Config,
1135 #[cfg(feature = "syntax")]
1136 thompson: thompson::Compiler,
1137}
1138
1139#[cfg(feature = "dfa-build")]
1140impl Builder {
1141 /// Create a new dense DFA builder with the default configuration.
1142 pub fn new() -> Builder {
1143 Builder {
1144 config: Config::default(),
1145 #[cfg(feature = "syntax")]
1146 thompson: thompson::Compiler::new(),
1147 }
1148 }
1149
1150 /// Build a DFA from the given pattern.
1151 ///
1152 /// If there was a problem parsing or compiling the pattern, then an error
1153 /// is returned.
1154 #[cfg(feature = "syntax")]
1155 pub fn build(&self, pattern: &str) -> Result<OwnedDFA, BuildError> {
1156 self.build_many(&[pattern])
1157 }
1158
1159 /// Build a DFA from the given patterns.
1160 ///
1161 /// When matches are returned, the pattern ID corresponds to the index of
1162 /// the pattern in the slice given.
1163 #[cfg(feature = "syntax")]
1164 pub fn build_many<P: AsRef<str>>(
1165 &self,
1166 patterns: &[P],
1167 ) -> Result<OwnedDFA, BuildError> {
1168 let nfa = self
1169 .thompson
1170 .clone()
1171 // We can always forcefully disable captures because DFAs do not
1172 // support them.
1173 .configure(
1174 thompson::Config::new()
1175 .which_captures(thompson::WhichCaptures::None),
1176 )
1177 .build_many(patterns)
1178 .map_err(BuildError::nfa)?;
1179 self.build_from_nfa(&nfa)
1180 }
1181
1182 /// Build a DFA from the given NFA.
1183 ///
1184 /// # Example
1185 ///
1186 /// This example shows how to build a DFA if you already have an NFA in
1187 /// hand.
1188 ///
1189 /// ```
1190 /// use regex_automata::{
1191 /// dfa::{Automaton, dense},
1192 /// nfa::thompson::NFA,
1193 /// HalfMatch, Input,
1194 /// };
1195 ///
1196 /// let haystack = "foo123bar".as_bytes();
1197 ///
1198 /// // This shows how to set non-default options for building an NFA.
1199 /// let nfa = NFA::compiler()
1200 /// .configure(NFA::config().shrink(true))
1201 /// .build(r"[0-9]+")?;
1202 /// let dfa = dense::Builder::new().build_from_nfa(&nfa)?;
1203 /// let expected = Some(HalfMatch::must(0, 6));
1204 /// let got = dfa.try_search_fwd(&Input::new(haystack))?;
1205 /// assert_eq!(expected, got);
1206 ///
1207 /// # Ok::<(), Box<dyn std::error::Error>>(())
1208 /// ```
1209 pub fn build_from_nfa(
1210 &self,
1211 nfa: &thompson::NFA,
1212 ) -> Result<OwnedDFA, BuildError> {
1213 let mut quitset = self.config.quitset.unwrap_or(ByteSet::empty());
1214 if self.config.get_unicode_word_boundary()
1215 && nfa.look_set_any().contains_word_unicode()
1216 {
1217 for b in 0x80..=0xFF {
1218 quitset.add(b);
1219 }
1220 }
1221 let classes = if !self.config.get_byte_classes() {
1222 // DFAs will always use the equivalence class map, but enabling
1223 // this option is useful for debugging. Namely, this will cause all
1224 // transitions to be defined over their actual bytes instead of an
1225 // opaque equivalence class identifier. The former is much easier
1226 // to grok as a human.
1227 ByteClasses::singletons()
1228 } else {
1229 let mut set = nfa.byte_class_set().clone();
1230 // It is important to distinguish any "quit" bytes from all other
1231 // bytes. Otherwise, a non-quit byte may end up in the same
1232 // class as a quit byte, and thus cause the DFA to stop when it
1233 // shouldn't.
1234 //
1235 // Test case:
1236 //
1237 // regex-cli find match dense --unicode-word-boundary \
1238 // -p '^#' -p '\b10\.55\.182\.100\b' -y @conn.json.1000x.log
1239 if !quitset.is_empty() {
1240 set.add_set(&quitset);
1241 }
1242 set.byte_classes()
1243 };
1244
1245 let mut dfa = DFA::initial(
1246 classes,
1247 nfa.pattern_len(),
1248 self.config.get_starts(),
1249 nfa.look_matcher(),
1250 self.config.get_starts_for_each_pattern(),
1251 self.config.get_prefilter().map(|p| p.clone()),
1252 quitset,
1253 Flags::from_nfa(&nfa),
1254 )?;
1255 determinize::Config::new()
1256 .match_kind(self.config.get_match_kind())
1257 .quit(quitset)
1258 .dfa_size_limit(self.config.get_dfa_size_limit())
1259 .determinize_size_limit(self.config.get_determinize_size_limit())
1260 .run(nfa, &mut dfa)?;
1261 if self.config.get_minimize() {
1262 dfa.minimize();
1263 }
1264 if self.config.get_accelerate() {
1265 dfa.accelerate();
1266 }
1267 // The state shuffling done before this point always assumes that start
1268 // states should be marked as "special," even though it isn't the
1269 // default configuration. State shuffling is complex enough as it is,
1270 // so it's simpler to just "fix" our special state ID ranges to not
1271 // include starting states after-the-fact.
1272 if !self.config.get_specialize_start_states() {
1273 dfa.special.set_no_special_start_states();
1274 }
1275 // Look for and set the universal starting states.
1276 dfa.set_universal_starts();
1277 dfa.tt.table.shrink_to_fit();
1278 dfa.st.table.shrink_to_fit();
1279 dfa.ms.slices.shrink_to_fit();
1280 dfa.ms.pattern_ids.shrink_to_fit();
1281 Ok(dfa)
1282 }
1283
1284 /// Apply the given dense DFA configuration options to this builder.
1285 pub fn configure(&mut self, config: Config) -> &mut Builder {
1286 self.config = self.config.overwrite(config);
1287 self
1288 }
1289
1290 /// Set the syntax configuration for this builder using
1291 /// [`syntax::Config`](crate::util::syntax::Config).
1292 ///
1293 /// This permits setting things like case insensitivity, Unicode and multi
1294 /// line mode.
1295 ///
1296 /// These settings only apply when constructing a DFA directly from a
1297 /// pattern.
1298 #[cfg(feature = "syntax")]
1299 pub fn syntax(
1300 &mut self,
1301 config: crate::util::syntax::Config,
1302 ) -> &mut Builder {
1303 self.thompson.syntax(config);
1304 self
1305 }
1306
1307 /// Set the Thompson NFA configuration for this builder using
1308 /// [`nfa::thompson::Config`](crate::nfa::thompson::Config).
1309 ///
1310 /// This permits setting things like whether the DFA should match the regex
1311 /// in reverse or if additional time should be spent shrinking the size of
1312 /// the NFA.
1313 ///
1314 /// These settings only apply when constructing a DFA directly from a
1315 /// pattern.
1316 #[cfg(feature = "syntax")]
1317 pub fn thompson(&mut self, config: thompson::Config) -> &mut Builder {
1318 self.thompson.configure(config);
1319 self
1320 }
1321}
1322
1323#[cfg(feature = "dfa-build")]
1324impl Default for Builder {
1325 fn default() -> Builder {
1326 Builder::new()
1327 }
1328}
1329
1330/// A convenience alias for an owned DFA. We use this particular instantiation
1331/// a lot in this crate, so it's worth giving it a name. This instantiation
1332/// is commonly used for mutable APIs on the DFA while building it. The main
1333/// reason for making DFAs generic is no_std support, and more generally,
1334/// making it possible to load a DFA from an arbitrary slice of bytes.
1335#[cfg(feature = "alloc")]
1336pub(crate) type OwnedDFA = DFA<alloc::vec::Vec<u32>>;
1337
1338/// A dense table-based deterministic finite automaton (DFA).
1339///
1340/// All dense DFAs have one or more start states, zero or more match states
1341/// and a transition table that maps the current state and the current byte
1342/// of input to the next state. A DFA can use this information to implement
1343/// fast searching. In particular, the use of a dense DFA generally makes the
1344/// trade off that match speed is the most valuable characteristic, even if
1345/// building the DFA may take significant time *and* space. (More concretely,
1346/// building a DFA takes time and space that is exponential in the size of the
1347/// pattern in the worst case.) As such, the processing of every byte of input
1348/// is done with a small constant number of operations that does not vary with
1349/// the pattern, its size or the size of the alphabet. If your needs don't line
1350/// up with this trade off, then a dense DFA may not be an adequate solution to
1351/// your problem.
1352///
1353/// In contrast, a [`sparse::DFA`] makes the opposite
1354/// trade off: it uses less space but will execute a variable number of
1355/// instructions per byte at match time, which makes it slower for matching.
1356/// (Note that space usage is still exponential in the size of the pattern in
1357/// the worst case.)
1358///
1359/// A DFA can be built using the default configuration via the
1360/// [`DFA::new`] constructor. Otherwise, one can
1361/// configure various aspects via [`dense::Builder`](Builder).
1362///
1363/// A single DFA fundamentally supports the following operations:
1364///
1365/// 1. Detection of a match.
1366/// 2. Location of the end of a match.
1367/// 3. In the case of a DFA with multiple patterns, which pattern matched is
1368/// reported as well.
1369///
1370/// A notable absence from the above list of capabilities is the location of
1371/// the *start* of a match. In order to provide both the start and end of
1372/// a match, *two* DFAs are required. This functionality is provided by a
1373/// [`Regex`](crate::dfa::regex::Regex).
1374///
1375/// # Type parameters
1376///
1377/// A `DFA` has one type parameter, `T`, which is used to represent state IDs,
1378/// pattern IDs and accelerators. `T` is typically a `Vec<u32>` or a `&[u32]`.
1379///
1380/// # The `Automaton` trait
1381///
1382/// This type implements the [`Automaton`] trait, which means it can be used
1383/// for searching. For example:
1384///
1385/// ```
1386/// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
1387///
1388/// let dfa = DFA::new("foo[0-9]+")?;
1389/// let expected = HalfMatch::must(0, 8);
1390/// assert_eq!(Some(expected), dfa.try_search_fwd(&Input::new("foo12345"))?);
1391/// # Ok::<(), Box<dyn std::error::Error>>(())
1392/// ```
1393#[derive(Clone)]
1394pub struct DFA<T> {
1395 /// The transition table for this DFA. This includes the transitions
1396 /// themselves, along with the stride, number of states and the equivalence
1397 /// class mapping.
1398 tt: TransitionTable<T>,
1399 /// The set of starting state identifiers for this DFA. The starting state
1400 /// IDs act as pointers into the transition table. The specific starting
1401 /// state chosen for each search is dependent on the context at which the
1402 /// search begins.
1403 st: StartTable<T>,
1404 /// The set of match states and the patterns that match for each
1405 /// corresponding match state.
1406 ///
1407 /// This structure is technically only needed because of support for
1408 /// multi-regexes. Namely, multi-regexes require answering not just whether
1409 /// a match exists, but _which_ patterns match. So we need to store the
1410 /// matching pattern IDs for each match state. We do this even when there
1411 /// is only one pattern for the sake of simplicity. In practice, this uses
1412 /// up very little space for the case of one pattern.
1413 ms: MatchStates<T>,
1414 /// Information about which states are "special." Special states are states
1415 /// that are dead, quit, matching, starting or accelerated. For more info,
1416 /// see the docs for `Special`.
1417 special: Special,
1418 /// The accelerators for this DFA.
1419 ///
1420 /// If a state is accelerated, then there exist only a small number of
1421 /// bytes that can cause the DFA to leave the state. This permits searching
1422 /// to use optimized routines to find those specific bytes instead of using
1423 /// the transition table.
1424 ///
1425 /// All accelerated states exist in a contiguous range in the DFA's
1426 /// transition table. See dfa/special.rs for more details on how states are
1427 /// arranged.
1428 accels: Accels<T>,
1429 /// Any prefilter attached to this DFA.
1430 ///
1431 /// Note that currently prefilters are not serialized. When deserializing
1432 /// a DFA from bytes, this is always set to `None`.
1433 pre: Option<Prefilter>,
1434 /// The set of "quit" bytes for this DFA.
1435 ///
1436 /// This is only used when computing the start state for a particular
1437 /// position in a haystack. Namely, in the case where there is a quit
1438 /// byte immediately before the start of the search, this set needs to be
1439 /// explicitly consulted. In all other cases, quit bytes are detected by
1440 /// the DFA itself, by transitioning all quit bytes to a special "quit
1441 /// state."
1442 quitset: ByteSet,
1443 /// Various flags describing the behavior of this DFA.
1444 flags: Flags,
1445}
1446
1447#[cfg(feature = "dfa-build")]
1448impl OwnedDFA {
1449 /// Parse the given regular expression using a default configuration and
1450 /// return the corresponding DFA.
1451 ///
1452 /// If you want a non-default configuration, then use the
1453 /// [`dense::Builder`](Builder) to set your own configuration.
1454 ///
1455 /// # Example
1456 ///
1457 /// ```
1458 /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input};
1459 ///
1460 /// let dfa = dense::DFA::new("foo[0-9]+bar")?;
1461 /// let expected = Some(HalfMatch::must(0, 11));
1462 /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345bar"))?);
1463 /// # Ok::<(), Box<dyn std::error::Error>>(())
1464 /// ```
1465 #[cfg(feature = "syntax")]
1466 pub fn new(pattern: &str) -> Result<OwnedDFA, BuildError> {
1467 Builder::new().build(pattern)
1468 }
1469
1470 /// Parse the given regular expressions using a default configuration and
1471 /// return the corresponding multi-DFA.
1472 ///
1473 /// If you want a non-default configuration, then use the
1474 /// [`dense::Builder`](Builder) to set your own configuration.
1475 ///
1476 /// # Example
1477 ///
1478 /// ```
1479 /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input};
1480 ///
1481 /// let dfa = dense::DFA::new_many(&["[0-9]+", "[a-z]+"])?;
1482 /// let expected = Some(HalfMatch::must(1, 3));
1483 /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345bar"))?);
1484 /// # Ok::<(), Box<dyn std::error::Error>>(())
1485 /// ```
1486 #[cfg(feature = "syntax")]
1487 pub fn new_many<P: AsRef<str>>(
1488 patterns: &[P],
1489 ) -> Result<OwnedDFA, BuildError> {
1490 Builder::new().build_many(patterns)
1491 }
1492}
1493
1494#[cfg(feature = "dfa-build")]
1495impl OwnedDFA {
1496 /// Create a new DFA that matches every input.
1497 ///
1498 /// # Example
1499 ///
1500 /// ```
1501 /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input};
1502 ///
1503 /// let dfa = dense::DFA::always_match()?;
1504 ///
1505 /// let expected = Some(HalfMatch::must(0, 0));
1506 /// assert_eq!(expected, dfa.try_search_fwd(&Input::new(""))?);
1507 /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo"))?);
1508 /// # Ok::<(), Box<dyn std::error::Error>>(())
1509 /// ```
1510 pub fn always_match() -> Result<OwnedDFA, BuildError> {
1511 let nfa = thompson::NFA::always_match();
1512 Builder::new().build_from_nfa(&nfa)
1513 }
1514
1515 /// Create a new DFA that never matches any input.
1516 ///
1517 /// # Example
1518 ///
1519 /// ```
1520 /// use regex_automata::{dfa::{Automaton, dense}, Input};
1521 ///
1522 /// let dfa = dense::DFA::never_match()?;
1523 /// assert_eq!(None, dfa.try_search_fwd(&Input::new(""))?);
1524 /// assert_eq!(None, dfa.try_search_fwd(&Input::new("foo"))?);
1525 /// # Ok::<(), Box<dyn std::error::Error>>(())
1526 /// ```
1527 pub fn never_match() -> Result<OwnedDFA, BuildError> {
1528 let nfa = thompson::NFA::never_match();
1529 Builder::new().build_from_nfa(&nfa)
1530 }
1531
1532 /// Create an initial DFA with the given equivalence classes, pattern
1533 /// length and whether anchored starting states are enabled for each
1534 /// pattern. An initial DFA can be further mutated via determinization.
1535 fn initial(
1536 classes: ByteClasses,
1537 pattern_len: usize,
1538 starts: StartKind,
1539 lookm: &LookMatcher,
1540 starts_for_each_pattern: bool,
1541 pre: Option<Prefilter>,
1542 quitset: ByteSet,
1543 flags: Flags,
1544 ) -> Result<OwnedDFA, BuildError> {
1545 let start_pattern_len =
1546 if starts_for_each_pattern { Some(pattern_len) } else { None };
1547 Ok(DFA {
1548 tt: TransitionTable::minimal(classes),
1549 st: StartTable::dead(starts, lookm, start_pattern_len)?,
1550 ms: MatchStates::empty(pattern_len),
1551 special: Special::new(),
1552 accels: Accels::empty(),
1553 pre,
1554 quitset,
1555 flags,
1556 })
1557 }
1558}
1559
1560#[cfg(feature = "dfa-build")]
1561impl DFA<&[u32]> {
1562 /// Return a new default dense DFA compiler configuration.
1563 ///
1564 /// This is a convenience routine to avoid needing to import the [`Config`]
1565 /// type when customizing the construction of a dense DFA.
1566 pub fn config() -> Config {
1567 Config::new()
1568 }
1569
1570 /// Create a new dense DFA builder with the default configuration.
1571 ///
1572 /// This is a convenience routine to avoid needing to import the
1573 /// [`Builder`] type in common cases.
1574 pub fn builder() -> Builder {
1575 Builder::new()
1576 }
1577}
1578
1579impl<T: AsRef<[u32]>> DFA<T> {
1580 /// Cheaply return a borrowed version of this dense DFA. Specifically,
1581 /// the DFA returned always uses `&[u32]` for its transition table.
1582 pub fn as_ref(&self) -> DFA<&'_ [u32]> {
1583 DFA {
1584 tt: self.tt.as_ref(),
1585 st: self.st.as_ref(),
1586 ms: self.ms.as_ref(),
1587 special: self.special,
1588 accels: self.accels(),
1589 pre: self.pre.clone(),
1590 quitset: self.quitset,
1591 flags: self.flags,
1592 }
1593 }
1594
1595 /// Return an owned version of this sparse DFA. Specifically, the DFA
1596 /// returned always uses `Vec<u32>` for its transition table.
1597 ///
1598 /// Effectively, this returns a dense DFA whose transition table lives on
1599 /// the heap.
1600 #[cfg(feature = "alloc")]
1601 pub fn to_owned(&self) -> OwnedDFA {
1602 DFA {
1603 tt: self.tt.to_owned(),
1604 st: self.st.to_owned(),
1605 ms: self.ms.to_owned(),
1606 special: self.special,
1607 accels: self.accels().to_owned(),
1608 pre: self.pre.clone(),
1609 quitset: self.quitset,
1610 flags: self.flags,
1611 }
1612 }
1613
1614 /// Returns the starting state configuration for this DFA.
1615 ///
1616 /// The default is [`StartKind::Both`], which means the DFA supports both
1617 /// unanchored and anchored searches. However, this can generally lead to
1618 /// bigger DFAs. Therefore, a DFA might be compiled with support for just
1619 /// unanchored or anchored searches. In that case, running a search with
1620 /// an unsupported configuration will panic.
1621 pub fn start_kind(&self) -> StartKind {
1622 self.st.kind
1623 }
1624
1625 /// Returns the start byte map used for computing the `Start` configuration
1626 /// at the beginning of a search.
1627 pub(crate) fn start_map(&self) -> &StartByteMap {
1628 &self.st.start_map
1629 }
1630
1631 /// Returns true only if this DFA has starting states for each pattern.
1632 ///
1633 /// When a DFA has starting states for each pattern, then a search with the
1634 /// DFA can be configured to only look for anchored matches of a specific
1635 /// pattern. Specifically, APIs like [`Automaton::try_search_fwd`] can
1636 /// accept a non-None `pattern_id` if and only if this method returns true.
1637 /// Otherwise, calling `try_search_fwd` will panic.
1638 ///
1639 /// Note that if the DFA has no patterns, this always returns false.
1640 pub fn starts_for_each_pattern(&self) -> bool {
1641 self.st.pattern_len.is_some()
1642 }
1643
1644 /// Returns the equivalence classes that make up the alphabet for this DFA.
1645 ///
1646 /// Unless [`Config::byte_classes`] was disabled, it is possible that
1647 /// multiple distinct bytes are grouped into the same equivalence class
1648 /// if it is impossible for them to discriminate between a match and a
1649 /// non-match. This has the effect of reducing the overall alphabet size
1650 /// and in turn potentially substantially reducing the size of the DFA's
1651 /// transition table.
1652 ///
1653 /// The downside of using equivalence classes like this is that every state
1654 /// transition will automatically use this map to convert an arbitrary
1655 /// byte to its corresponding equivalence class. In practice this has a
1656 /// negligible impact on performance.
1657 pub fn byte_classes(&self) -> &ByteClasses {
1658 &self.tt.classes
1659 }
1660
1661 /// Returns the total number of elements in the alphabet for this DFA.
1662 ///
1663 /// That is, this returns the total number of transitions that each state
1664 /// in this DFA must have. Typically, a normal byte oriented DFA would
1665 /// always have an alphabet size of 256, corresponding to the number of
1666 /// unique values in a single byte. However, this implementation has two
1667 /// peculiarities that impact the alphabet length:
1668 ///
1669 /// * Every state has a special "EOI" transition that is only followed
1670 /// after the end of some haystack is reached. This EOI transition is
1671 /// necessary to account for one byte of look-ahead when implementing
1672 /// things like `\b` and `$`.
1673 /// * Bytes are grouped into equivalence classes such that no two bytes in
1674 /// the same class can distinguish a match from a non-match. For example,
1675 /// in the regex `^[a-z]+$`, the ASCII bytes `a-z` could all be in the
1676 /// same equivalence class. This leads to a massive space savings.
1677 ///
1678 /// Note though that the alphabet length does _not_ necessarily equal the
1679 /// total stride space taken up by a single DFA state in the transition
1680 /// table. Namely, for performance reasons, the stride is always the
1681 /// smallest power of two that is greater than or equal to the alphabet
1682 /// length. For this reason, [`DFA::stride`] or [`DFA::stride2`] are
1683 /// often more useful. The alphabet length is typically useful only for
1684 /// informational purposes.
1685 pub fn alphabet_len(&self) -> usize {
1686 self.tt.alphabet_len()
1687 }
1688
1689 /// Returns the total stride for every state in this DFA, expressed as the
1690 /// exponent of a power of 2. The stride is the amount of space each state
1691 /// takes up in the transition table, expressed as a number of transitions.
1692 /// (Unused transitions map to dead states.)
1693 ///
1694 /// The stride of a DFA is always equivalent to the smallest power of 2
1695 /// that is greater than or equal to the DFA's alphabet length. This
1696 /// definition uses extra space, but permits faster translation between
1697 /// premultiplied state identifiers and contiguous indices (by using shifts
1698 /// instead of relying on integer division).
1699 ///
1700 /// For example, if the DFA's stride is 16 transitions, then its `stride2`
1701 /// is `4` since `2^4 = 16`.
1702 ///
1703 /// The minimum `stride2` value is `1` (corresponding to a stride of `2`)
1704 /// while the maximum `stride2` value is `9` (corresponding to a stride of
1705 /// `512`). The maximum is not `8` since the maximum alphabet size is `257`
1706 /// when accounting for the special EOI transition. However, an alphabet
1707 /// length of that size is exceptionally rare since the alphabet is shrunk
1708 /// into equivalence classes.
1709 pub fn stride2(&self) -> usize {
1710 self.tt.stride2
1711 }
1712
1713 /// Returns the total stride for every state in this DFA. This corresponds
1714 /// to the total number of transitions used by each state in this DFA's
1715 /// transition table.
1716 ///
1717 /// Please see [`DFA::stride2`] for more information. In particular, this
1718 /// returns the stride as the number of transitions, where as `stride2`
1719 /// returns it as the exponent of a power of 2.
1720 pub fn stride(&self) -> usize {
1721 self.tt.stride()
1722 }
1723
1724 /// Returns the memory usage, in bytes, of this DFA.
1725 ///
1726 /// The memory usage is computed based on the number of bytes used to
1727 /// represent this DFA.
1728 ///
1729 /// This does **not** include the stack size used up by this DFA. To
1730 /// compute that, use `std::mem::size_of::<dense::DFA>()`.
1731 pub fn memory_usage(&self) -> usize {
1732 self.tt.memory_usage()
1733 + self.st.memory_usage()
1734 + self.ms.memory_usage()
1735 + self.accels.memory_usage()
1736 }
1737}
1738
1739/// Routines for converting a dense DFA to other representations, such as
1740/// sparse DFAs or raw bytes suitable for persistent storage.
1741impl<T: AsRef<[u32]>> DFA<T> {
1742 /// Convert this dense DFA to a sparse DFA.
1743 ///
1744 /// If a `StateID` is too small to represent all states in the sparse
1745 /// DFA, then this returns an error. In most cases, if a dense DFA is
1746 /// constructable with `StateID` then a sparse DFA will be as well.
1747 /// However, it is not guaranteed.
1748 ///
1749 /// # Example
1750 ///
1751 /// ```
1752 /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input};
1753 ///
1754 /// let dense = dense::DFA::new("foo[0-9]+")?;
1755 /// let sparse = dense.to_sparse()?;
1756 ///
1757 /// let expected = Some(HalfMatch::must(0, 8));
1758 /// assert_eq!(expected, sparse.try_search_fwd(&Input::new("foo12345"))?);
1759 /// # Ok::<(), Box<dyn std::error::Error>>(())
1760 /// ```
1761 #[cfg(feature = "dfa-build")]
1762 pub fn to_sparse(&self) -> Result<sparse::DFA<Vec<u8>>, BuildError> {
1763 sparse::DFA::from_dense(self)
1764 }
1765
1766 /// Serialize this DFA as raw bytes to a `Vec<u8>` in little endian
1767 /// format. Upon success, the `Vec<u8>` and the initial padding length are
1768 /// returned.
1769 ///
1770 /// The written bytes are guaranteed to be deserialized correctly and
1771 /// without errors in a semver compatible release of this crate by a
1772 /// `DFA`'s deserialization APIs (assuming all other criteria for the
1773 /// deserialization APIs has been satisfied):
1774 ///
1775 /// * [`DFA::from_bytes`]
1776 /// * [`DFA::from_bytes_unchecked`]
1777 ///
1778 /// The padding returned is non-zero if the returned `Vec<u8>` starts at
1779 /// an address that does not have the same alignment as `u32`. The padding
1780 /// corresponds to the number of leading bytes written to the returned
1781 /// `Vec<u8>`.
1782 ///
1783 /// # Example
1784 ///
1785 /// This example shows how to serialize and deserialize a DFA:
1786 ///
1787 /// ```
1788 /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
1789 ///
1790 /// // Compile our original DFA.
1791 /// let original_dfa = DFA::new("foo[0-9]+")?;
1792 ///
1793 /// // N.B. We use native endianness here to make the example work, but
1794 /// // using to_bytes_little_endian would work on a little endian target.
1795 /// let (buf, _) = original_dfa.to_bytes_native_endian();
1796 /// // Even if buf has initial padding, DFA::from_bytes will automatically
1797 /// // ignore it.
1798 /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0;
1799 ///
1800 /// let expected = Some(HalfMatch::must(0, 8));
1801 /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
1802 /// # Ok::<(), Box<dyn std::error::Error>>(())
1803 /// ```
1804 #[cfg(feature = "dfa-build")]
1805 pub fn to_bytes_little_endian(&self) -> (Vec<u8>, usize) {
1806 self.to_bytes::<wire::LE>()
1807 }
1808
1809 /// Serialize this DFA as raw bytes to a `Vec<u8>` in big endian
1810 /// format. Upon success, the `Vec<u8>` and the initial padding length are
1811 /// returned.
1812 ///
1813 /// The written bytes are guaranteed to be deserialized correctly and
1814 /// without errors in a semver compatible release of this crate by a
1815 /// `DFA`'s deserialization APIs (assuming all other criteria for the
1816 /// deserialization APIs has been satisfied):
1817 ///
1818 /// * [`DFA::from_bytes`]
1819 /// * [`DFA::from_bytes_unchecked`]
1820 ///
1821 /// The padding returned is non-zero if the returned `Vec<u8>` starts at
1822 /// an address that does not have the same alignment as `u32`. The padding
1823 /// corresponds to the number of leading bytes written to the returned
1824 /// `Vec<u8>`.
1825 ///
1826 /// # Example
1827 ///
1828 /// This example shows how to serialize and deserialize a DFA:
1829 ///
1830 /// ```
1831 /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
1832 ///
1833 /// // Compile our original DFA.
1834 /// let original_dfa = DFA::new("foo[0-9]+")?;
1835 ///
1836 /// // N.B. We use native endianness here to make the example work, but
1837 /// // using to_bytes_big_endian would work on a big endian target.
1838 /// let (buf, _) = original_dfa.to_bytes_native_endian();
1839 /// // Even if buf has initial padding, DFA::from_bytes will automatically
1840 /// // ignore it.
1841 /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0;
1842 ///
1843 /// let expected = Some(HalfMatch::must(0, 8));
1844 /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
1845 /// # Ok::<(), Box<dyn std::error::Error>>(())
1846 /// ```
1847 #[cfg(feature = "dfa-build")]
1848 pub fn to_bytes_big_endian(&self) -> (Vec<u8>, usize) {
1849 self.to_bytes::<wire::BE>()
1850 }
1851
1852 /// Serialize this DFA as raw bytes to a `Vec<u8>` in native endian
1853 /// format. Upon success, the `Vec<u8>` and the initial padding length are
1854 /// returned.
1855 ///
1856 /// The written bytes are guaranteed to be deserialized correctly and
1857 /// without errors in a semver compatible release of this crate by a
1858 /// `DFA`'s deserialization APIs (assuming all other criteria for the
1859 /// deserialization APIs has been satisfied):
1860 ///
1861 /// * [`DFA::from_bytes`]
1862 /// * [`DFA::from_bytes_unchecked`]
1863 ///
1864 /// The padding returned is non-zero if the returned `Vec<u8>` starts at
1865 /// an address that does not have the same alignment as `u32`. The padding
1866 /// corresponds to the number of leading bytes written to the returned
1867 /// `Vec<u8>`.
1868 ///
1869 /// Generally speaking, native endian format should only be used when
1870 /// you know that the target you're compiling the DFA for matches the
1871 /// endianness of the target on which you're compiling DFA. For example,
1872 /// if serialization and deserialization happen in the same process or on
1873 /// the same machine. Otherwise, when serializing a DFA for use in a
1874 /// portable environment, you'll almost certainly want to serialize _both_
1875 /// a little endian and a big endian version and then load the correct one
1876 /// based on the target's configuration.
1877 ///
1878 /// # Example
1879 ///
1880 /// This example shows how to serialize and deserialize a DFA:
1881 ///
1882 /// ```
1883 /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
1884 ///
1885 /// // Compile our original DFA.
1886 /// let original_dfa = DFA::new("foo[0-9]+")?;
1887 ///
1888 /// let (buf, _) = original_dfa.to_bytes_native_endian();
1889 /// // Even if buf has initial padding, DFA::from_bytes will automatically
1890 /// // ignore it.
1891 /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0;
1892 ///
1893 /// let expected = Some(HalfMatch::must(0, 8));
1894 /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
1895 /// # Ok::<(), Box<dyn std::error::Error>>(())
1896 /// ```
1897 #[cfg(feature = "dfa-build")]
1898 pub fn to_bytes_native_endian(&self) -> (Vec<u8>, usize) {
1899 self.to_bytes::<wire::NE>()
1900 }
1901
1902 /// The implementation of the public `to_bytes` serialization methods,
1903 /// which is generic over endianness.
1904 #[cfg(feature = "dfa-build")]
1905 fn to_bytes<E: Endian>(&self) -> (Vec<u8>, usize) {
1906 let len = self.write_to_len();
1907 let (mut buf, padding) = wire::alloc_aligned_buffer::<u32>(len);
1908 // This should always succeed since the only possible serialization
1909 // error is providing a buffer that's too small, but we've ensured that
1910 // `buf` is big enough here.
1911 self.as_ref().write_to::<E>(&mut buf[padding..]).unwrap();
1912 (buf, padding)
1913 }
1914
1915 /// Serialize this DFA as raw bytes to the given slice, in little endian
1916 /// format. Upon success, the total number of bytes written to `dst` is
1917 /// returned.
1918 ///
1919 /// The written bytes are guaranteed to be deserialized correctly and
1920 /// without errors in a semver compatible release of this crate by a
1921 /// `DFA`'s deserialization APIs (assuming all other criteria for the
1922 /// deserialization APIs has been satisfied):
1923 ///
1924 /// * [`DFA::from_bytes`]
1925 /// * [`DFA::from_bytes_unchecked`]
1926 ///
1927 /// Note that unlike the various `to_byte_*` routines, this does not write
1928 /// any padding. Callers are responsible for handling alignment correctly.
1929 ///
1930 /// # Errors
1931 ///
1932 /// This returns an error if the given destination slice is not big enough
1933 /// to contain the full serialized DFA. If an error occurs, then nothing
1934 /// is written to `dst`.
1935 ///
1936 /// # Example
1937 ///
1938 /// This example shows how to serialize and deserialize a DFA without
1939 /// dynamic memory allocation.
1940 ///
1941 /// ```
1942 /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
1943 ///
1944 /// // Compile our original DFA.
1945 /// let original_dfa = DFA::new("foo[0-9]+")?;
1946 ///
1947 /// // Create a 4KB buffer on the stack to store our serialized DFA. We
1948 /// // need to use a special type to force the alignment of our [u8; N]
1949 /// // array to be aligned to a 4 byte boundary. Otherwise, deserializing
1950 /// // the DFA may fail because of an alignment mismatch.
1951 /// #[repr(C)]
1952 /// struct Aligned<B: ?Sized> {
1953 /// _align: [u32; 0],
1954 /// bytes: B,
1955 /// }
1956 /// let mut buf = Aligned { _align: [], bytes: [0u8; 4 * (1<<10)] };
1957 /// // N.B. We use native endianness here to make the example work, but
1958 /// // using write_to_little_endian would work on a little endian target.
1959 /// let written = original_dfa.write_to_native_endian(&mut buf.bytes)?;
1960 /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf.bytes[..written])?.0;
1961 ///
1962 /// let expected = Some(HalfMatch::must(0, 8));
1963 /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
1964 /// # Ok::<(), Box<dyn std::error::Error>>(())
1965 /// ```
1966 pub fn write_to_little_endian(
1967 &self,
1968 dst: &mut [u8],
1969 ) -> Result<usize, SerializeError> {
1970 self.as_ref().write_to::<wire::LE>(dst)
1971 }
1972
1973 /// Serialize this DFA as raw bytes to the given slice, in big endian
1974 /// format. Upon success, the total number of bytes written to `dst` is
1975 /// returned.
1976 ///
1977 /// The written bytes are guaranteed to be deserialized correctly and
1978 /// without errors in a semver compatible release of this crate by a
1979 /// `DFA`'s deserialization APIs (assuming all other criteria for the
1980 /// deserialization APIs has been satisfied):
1981 ///
1982 /// * [`DFA::from_bytes`]
1983 /// * [`DFA::from_bytes_unchecked`]
1984 ///
1985 /// Note that unlike the various `to_byte_*` routines, this does not write
1986 /// any padding. Callers are responsible for handling alignment correctly.
1987 ///
1988 /// # Errors
1989 ///
1990 /// This returns an error if the given destination slice is not big enough
1991 /// to contain the full serialized DFA. If an error occurs, then nothing
1992 /// is written to `dst`.
1993 ///
1994 /// # Example
1995 ///
1996 /// This example shows how to serialize and deserialize a DFA without
1997 /// dynamic memory allocation.
1998 ///
1999 /// ```
2000 /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
2001 ///
2002 /// // Compile our original DFA.
2003 /// let original_dfa = DFA::new("foo[0-9]+")?;
2004 ///
2005 /// // Create a 4KB buffer on the stack to store our serialized DFA. We
2006 /// // need to use a special type to force the alignment of our [u8; N]
2007 /// // array to be aligned to a 4 byte boundary. Otherwise, deserializing
2008 /// // the DFA may fail because of an alignment mismatch.
2009 /// #[repr(C)]
2010 /// struct Aligned<B: ?Sized> {
2011 /// _align: [u32; 0],
2012 /// bytes: B,
2013 /// }
2014 /// let mut buf = Aligned { _align: [], bytes: [0u8; 4 * (1<<10)] };
2015 /// // N.B. We use native endianness here to make the example work, but
2016 /// // using write_to_big_endian would work on a big endian target.
2017 /// let written = original_dfa.write_to_native_endian(&mut buf.bytes)?;
2018 /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf.bytes[..written])?.0;
2019 ///
2020 /// let expected = Some(HalfMatch::must(0, 8));
2021 /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
2022 /// # Ok::<(), Box<dyn std::error::Error>>(())
2023 /// ```
2024 pub fn write_to_big_endian(
2025 &self,
2026 dst: &mut [u8],
2027 ) -> Result<usize, SerializeError> {
2028 self.as_ref().write_to::<wire::BE>(dst)
2029 }
2030
2031 /// Serialize this DFA as raw bytes to the given slice, in native endian
2032 /// format. Upon success, the total number of bytes written to `dst` is
2033 /// returned.
2034 ///
2035 /// The written bytes are guaranteed to be deserialized correctly and
2036 /// without errors in a semver compatible release of this crate by a
2037 /// `DFA`'s deserialization APIs (assuming all other criteria for the
2038 /// deserialization APIs has been satisfied):
2039 ///
2040 /// * [`DFA::from_bytes`]
2041 /// * [`DFA::from_bytes_unchecked`]
2042 ///
2043 /// Generally speaking, native endian format should only be used when
2044 /// you know that the target you're compiling the DFA for matches the
2045 /// endianness of the target on which you're compiling DFA. For example,
2046 /// if serialization and deserialization happen in the same process or on
2047 /// the same machine. Otherwise, when serializing a DFA for use in a
2048 /// portable environment, you'll almost certainly want to serialize _both_
2049 /// a little endian and a big endian version and then load the correct one
2050 /// based on the target's configuration.
2051 ///
2052 /// Note that unlike the various `to_byte_*` routines, this does not write
2053 /// any padding. Callers are responsible for handling alignment correctly.
2054 ///
2055 /// # Errors
2056 ///
2057 /// This returns an error if the given destination slice is not big enough
2058 /// to contain the full serialized DFA. If an error occurs, then nothing
2059 /// is written to `dst`.
2060 ///
2061 /// # Example
2062 ///
2063 /// This example shows how to serialize and deserialize a DFA without
2064 /// dynamic memory allocation.
2065 ///
2066 /// ```
2067 /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
2068 ///
2069 /// // Compile our original DFA.
2070 /// let original_dfa = DFA::new("foo[0-9]+")?;
2071 ///
2072 /// // Create a 4KB buffer on the stack to store our serialized DFA. We
2073 /// // need to use a special type to force the alignment of our [u8; N]
2074 /// // array to be aligned to a 4 byte boundary. Otherwise, deserializing
2075 /// // the DFA may fail because of an alignment mismatch.
2076 /// #[repr(C)]
2077 /// struct Aligned<B: ?Sized> {
2078 /// _align: [u32; 0],
2079 /// bytes: B,
2080 /// }
2081 /// let mut buf = Aligned { _align: [], bytes: [0u8; 4 * (1<<10)] };
2082 /// let written = original_dfa.write_to_native_endian(&mut buf.bytes)?;
2083 /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf.bytes[..written])?.0;
2084 ///
2085 /// let expected = Some(HalfMatch::must(0, 8));
2086 /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
2087 /// # Ok::<(), Box<dyn std::error::Error>>(())
2088 /// ```
2089 pub fn write_to_native_endian(
2090 &self,
2091 dst: &mut [u8],
2092 ) -> Result<usize, SerializeError> {
2093 self.as_ref().write_to::<wire::NE>(dst)
2094 }
2095
2096 /// Return the total number of bytes required to serialize this DFA.
2097 ///
2098 /// This is useful for determining the size of the buffer required to pass
2099 /// to one of the serialization routines:
2100 ///
2101 /// * [`DFA::write_to_little_endian`]
2102 /// * [`DFA::write_to_big_endian`]
2103 /// * [`DFA::write_to_native_endian`]
2104 ///
2105 /// Passing a buffer smaller than the size returned by this method will
2106 /// result in a serialization error. Serialization routines are guaranteed
2107 /// to succeed when the buffer is big enough.
2108 ///
2109 /// # Example
2110 ///
2111 /// This example shows how to dynamically allocate enough room to serialize
2112 /// a DFA.
2113 ///
2114 /// ```
2115 /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
2116 ///
2117 /// let original_dfa = DFA::new("foo[0-9]+")?;
2118 ///
2119 /// let mut buf = vec![0; original_dfa.write_to_len()];
2120 /// // This is guaranteed to succeed, because the only serialization error
2121 /// // that can occur is when the provided buffer is too small. But
2122 /// // write_to_len guarantees a correct size.
2123 /// let written = original_dfa.write_to_native_endian(&mut buf).unwrap();
2124 /// // But this is not guaranteed to succeed! In particular,
2125 /// // deserialization requires proper alignment for &[u32], but our buffer
2126 /// // was allocated as a &[u8] whose required alignment is smaller than
2127 /// // &[u32]. However, it's likely to work in practice because of how most
2128 /// // allocators work. So if you write code like this, make sure to either
2129 /// // handle the error correctly and/or run it under Miri since Miri will
2130 /// // likely provoke the error by returning Vec<u8> buffers with alignment
2131 /// // less than &[u32].
2132 /// let dfa: DFA<&[u32]> = match DFA::from_bytes(&buf[..written]) {
2133 /// // As mentioned above, it is legal for an error to be returned
2134 /// // here. It is quite difficult to get a Vec<u8> with a guaranteed
2135 /// // alignment equivalent to Vec<u32>.
2136 /// Err(_) => return Ok(()),
2137 /// Ok((dfa, _)) => dfa,
2138 /// };
2139 ///
2140 /// let expected = Some(HalfMatch::must(0, 8));
2141 /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
2142 /// # Ok::<(), Box<dyn std::error::Error>>(())
2143 /// ```
2144 ///
2145 /// Note that this example isn't actually guaranteed to work! In
2146 /// particular, if `buf` is not aligned to a 4-byte boundary, then the
2147 /// `DFA::from_bytes` call will fail. If you need this to work, then you
2148 /// either need to deal with adding some initial padding yourself, or use
2149 /// one of the `to_bytes` methods, which will do it for you.
2150 pub fn write_to_len(&self) -> usize {
2151 wire::write_label_len(LABEL)
2152 + wire::write_endianness_check_len()
2153 + wire::write_version_len()
2154 + size_of::<u32>() // unused, intended for future flexibility
2155 + self.flags.write_to_len()
2156 + self.tt.write_to_len()
2157 + self.st.write_to_len()
2158 + self.ms.write_to_len()
2159 + self.special.write_to_len()
2160 + self.accels.write_to_len()
2161 + self.quitset.write_to_len()
2162 }
2163}
2164
2165impl<'a> DFA<&'a [u32]> {
2166 /// Safely deserialize a DFA with a specific state identifier
2167 /// representation. Upon success, this returns both the deserialized DFA
2168 /// and the number of bytes read from the given slice. Namely, the contents
2169 /// of the slice beyond the DFA are not read.
2170 ///
2171 /// Deserializing a DFA using this routine will never allocate heap memory.
2172 /// For safety purposes, the DFA's transition table will be verified such
2173 /// that every transition points to a valid state. If this verification is
2174 /// too costly, then a [`DFA::from_bytes_unchecked`] API is provided, which
2175 /// will always execute in constant time.
2176 ///
2177 /// The bytes given must be generated by one of the serialization APIs
2178 /// of a `DFA` using a semver compatible release of this crate. Those
2179 /// include:
2180 ///
2181 /// * [`DFA::to_bytes_little_endian`]
2182 /// * [`DFA::to_bytes_big_endian`]
2183 /// * [`DFA::to_bytes_native_endian`]
2184 /// * [`DFA::write_to_little_endian`]
2185 /// * [`DFA::write_to_big_endian`]
2186 /// * [`DFA::write_to_native_endian`]
2187 ///
2188 /// The `to_bytes` methods allocate and return a `Vec<u8>` for you, along
2189 /// with handling alignment correctly. The `write_to` methods do not
2190 /// allocate and write to an existing slice (which may be on the stack).
2191 /// Since deserialization always uses the native endianness of the target
2192 /// platform, the serialization API you use should match the endianness of
2193 /// the target platform. (It's often a good idea to generate serialized
2194 /// DFAs for both forms of endianness and then load the correct one based
2195 /// on endianness.)
2196 ///
2197 /// # Errors
2198 ///
2199 /// Generally speaking, it's easier to state the conditions in which an
2200 /// error is _not_ returned. All of the following must be true:
2201 ///
2202 /// * The bytes given must be produced by one of the serialization APIs
2203 /// on this DFA, as mentioned above.
2204 /// * The endianness of the target platform matches the endianness used to
2205 /// serialized the provided DFA.
2206 /// * The slice given must have the same alignment as `u32`.
2207 ///
2208 /// If any of the above are not true, then an error will be returned.
2209 ///
2210 /// # Panics
2211 ///
2212 /// This routine will never panic for any input.
2213 ///
2214 /// # Example
2215 ///
2216 /// This example shows how to serialize a DFA to raw bytes, deserialize it
2217 /// and then use it for searching.
2218 ///
2219 /// ```
2220 /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
2221 ///
2222 /// let initial = DFA::new("foo[0-9]+")?;
2223 /// let (bytes, _) = initial.to_bytes_native_endian();
2224 /// let dfa: DFA<&[u32]> = DFA::from_bytes(&bytes)?.0;
2225 ///
2226 /// let expected = Some(HalfMatch::must(0, 8));
2227 /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
2228 /// # Ok::<(), Box<dyn std::error::Error>>(())
2229 /// ```
2230 ///
2231 /// # Example: dealing with alignment and padding
2232 ///
2233 /// In the above example, we used the `to_bytes_native_endian` method to
2234 /// serialize a DFA, but we ignored part of its return value corresponding
2235 /// to padding added to the beginning of the serialized DFA. This is OK
2236 /// because deserialization will skip this initial padding. What matters
2237 /// is that the address immediately following the padding has an alignment
2238 /// that matches `u32`. That is, the following is an equivalent but
2239 /// alternative way to write the above example:
2240 ///
2241 /// ```
2242 /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
2243 ///
2244 /// let initial = DFA::new("foo[0-9]+")?;
2245 /// // Serialization returns the number of leading padding bytes added to
2246 /// // the returned Vec<u8>.
2247 /// let (bytes, pad) = initial.to_bytes_native_endian();
2248 /// let dfa: DFA<&[u32]> = DFA::from_bytes(&bytes[pad..])?.0;
2249 ///
2250 /// let expected = Some(HalfMatch::must(0, 8));
2251 /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
2252 /// # Ok::<(), Box<dyn std::error::Error>>(())
2253 /// ```
2254 ///
2255 /// This padding is necessary because Rust's standard library does
2256 /// not expose any safe and robust way of creating a `Vec<u8>` with a
2257 /// guaranteed alignment other than 1. Now, in practice, the underlying
2258 /// allocator is likely to provide a `Vec<u8>` that meets our alignment
2259 /// requirements, which means `pad` is zero in practice most of the time.
2260 ///
2261 /// The purpose of exposing the padding like this is flexibility for the
2262 /// caller. For example, if one wants to embed a serialized DFA into a
2263 /// compiled program, then it's important to guarantee that it starts at a
2264 /// `u32`-aligned address. The simplest way to do this is to discard the
2265 /// padding bytes and set it up so that the serialized DFA itself begins at
2266 /// a properly aligned address. We can show this in two parts. The first
2267 /// part is serializing the DFA to a file:
2268 ///
2269 /// ```no_run
2270 /// use regex_automata::dfa::dense::DFA;
2271 ///
2272 /// let dfa = DFA::new("foo[0-9]+")?;
2273 ///
2274 /// let (bytes, pad) = dfa.to_bytes_big_endian();
2275 /// // Write the contents of the DFA *without* the initial padding.
2276 /// std::fs::write("foo.bigendian.dfa", &bytes[pad..])?;
2277 ///
2278 /// // Do it again, but this time for little endian.
2279 /// let (bytes, pad) = dfa.to_bytes_little_endian();
2280 /// std::fs::write("foo.littleendian.dfa", &bytes[pad..])?;
2281 /// # Ok::<(), Box<dyn std::error::Error>>(())
2282 /// ```
2283 ///
2284 /// And now the second part is embedding the DFA into the compiled program
2285 /// and deserializing it at runtime on first use. We use conditional
2286 /// compilation to choose the correct endianness.
2287 ///
2288 /// ```no_run
2289 /// use regex_automata::{
2290 /// dfa::{Automaton, dense::DFA},
2291 /// util::{lazy::Lazy, wire::AlignAs},
2292 /// HalfMatch, Input,
2293 /// };
2294 ///
2295 /// // This crate provides its own "lazy" type, kind of like
2296 /// // lazy_static! or once_cell::sync::Lazy. But it works in no-alloc
2297 /// // no-std environments and let's us write this using completely
2298 /// // safe code.
2299 /// static RE: Lazy<DFA<&'static [u32]>> = Lazy::new(|| {
2300 /// # const _: &str = stringify! {
2301 /// // This assignment is made possible (implicitly) via the
2302 /// // CoerceUnsized trait. This is what guarantees that our
2303 /// // bytes are stored in memory on a 4 byte boundary. You
2304 /// // *must* do this or something equivalent for correct
2305 /// // deserialization.
2306 /// static ALIGNED: &AlignAs<[u8], u32> = &AlignAs {
2307 /// _align: [],
2308 /// #[cfg(target_endian = "big")]
2309 /// bytes: *include_bytes!("foo.bigendian.dfa"),
2310 /// #[cfg(target_endian = "little")]
2311 /// bytes: *include_bytes!("foo.littleendian.dfa"),
2312 /// };
2313 /// # };
2314 /// # static ALIGNED: &AlignAs<[u8], u32> = &AlignAs {
2315 /// # _align: [],
2316 /// # bytes: [],
2317 /// # };
2318 ///
2319 /// let (dfa, _) = DFA::from_bytes(&ALIGNED.bytes)
2320 /// .expect("serialized DFA should be valid");
2321 /// dfa
2322 /// });
2323 ///
2324 /// let expected = Ok(Some(HalfMatch::must(0, 8)));
2325 /// assert_eq!(expected, RE.try_search_fwd(&Input::new("foo12345")));
2326 /// ```
2327 ///
2328 /// An alternative to [`util::lazy::Lazy`](crate::util::lazy::Lazy)
2329 /// is [`lazy_static`](https://crates.io/crates/lazy_static) or
2330 /// [`once_cell`](https://crates.io/crates/once_cell), which provide
2331 /// stronger guarantees (like the initialization function only being
2332 /// executed once). And `once_cell` in particular provides a more
2333 /// expressive API. But a `Lazy` value from this crate is likely just fine
2334 /// in most circumstances.
2335 ///
2336 /// Note that regardless of which initialization method you use, you
2337 /// will still need to use the [`AlignAs`](crate::util::wire::AlignAs)
2338 /// trick above to force correct alignment, but this is safe to do and
2339 /// `from_bytes` will return an error if you get it wrong.
2340 pub fn from_bytes(
2341 slice: &'a [u8],
2342 ) -> Result<(DFA<&'a [u32]>, usize), DeserializeError> {
2343 // SAFETY: This is safe because we validate the transition table, start
2344 // table, match states and accelerators below. If any validation fails,
2345 // then we return an error.
2346 let (dfa, nread) = unsafe { DFA::from_bytes_unchecked(slice)? };
2347 // Note that validation order is important here:
2348 //
2349 // * `MatchState::validate` can be called with an untrusted DFA.
2350 // * `TransistionTable::validate` uses `dfa.ms` through `match_len`.
2351 // * `StartTable::validate` needs a valid transition table.
2352 //
2353 // So... validate the match states first.
2354 dfa.accels.validate()?;
2355 dfa.ms.validate(&dfa)?;
2356 dfa.tt.validate(&dfa)?;
2357 dfa.st.validate(&dfa)?;
2358 // N.B. dfa.special doesn't have a way to do unchecked deserialization,
2359 // so it has already been validated.
2360 for state in dfa.states() {
2361 // If the state is an accel state, then it must have a non-empty
2362 // accelerator.
2363 if dfa.is_accel_state(state.id()) {
2364 let index = dfa.accelerator_index(state.id());
2365 if index >= dfa.accels.len() {
2366 return Err(DeserializeError::generic(
2367 "found DFA state with invalid accelerator index",
2368 ));
2369 }
2370 let needles = dfa.accels.needles(index);
2371 if !(1 <= needles.len() && needles.len() <= 3) {
2372 return Err(DeserializeError::generic(
2373 "accelerator needles has invalid length",
2374 ));
2375 }
2376 }
2377 }
2378 Ok((dfa, nread))
2379 }
2380
2381 /// Deserialize a DFA with a specific state identifier representation in
2382 /// constant time by omitting the verification of the validity of the
2383 /// transition table and other data inside the DFA.
2384 ///
2385 /// This is just like [`DFA::from_bytes`], except it can potentially return
2386 /// a DFA that exhibits undefined behavior if its transition table contains
2387 /// invalid state identifiers.
2388 ///
2389 /// This routine is useful if you need to deserialize a DFA cheaply
2390 /// and cannot afford the transition table validation performed by
2391 /// `from_bytes`.
2392 ///
2393 /// # Example
2394 ///
2395 /// ```
2396 /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
2397 ///
2398 /// let initial = DFA::new("foo[0-9]+")?;
2399 /// let (bytes, _) = initial.to_bytes_native_endian();
2400 /// // SAFETY: This is guaranteed to be safe since the bytes given come
2401 /// // directly from a compatible serialization routine.
2402 /// let dfa: DFA<&[u32]> = unsafe { DFA::from_bytes_unchecked(&bytes)?.0 };
2403 ///
2404 /// let expected = Some(HalfMatch::must(0, 8));
2405 /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
2406 /// # Ok::<(), Box<dyn std::error::Error>>(())
2407 /// ```
2408 pub unsafe fn from_bytes_unchecked(
2409 slice: &'a [u8],
2410 ) -> Result<(DFA<&'a [u32]>, usize), DeserializeError> {
2411 let mut nr = 0;
2412
2413 nr += wire::skip_initial_padding(slice);
2414 wire::check_alignment::<StateID>(&slice[nr..])?;
2415 nr += wire::read_label(&slice[nr..], LABEL)?;
2416 nr += wire::read_endianness_check(&slice[nr..])?;
2417 nr += wire::read_version(&slice[nr..], VERSION)?;
2418
2419 let _unused = wire::try_read_u32(&slice[nr..], "unused space")?;
2420 nr += size_of::<u32>();
2421
2422 let (flags, nread) = Flags::from_bytes(&slice[nr..])?;
2423 nr += nread;
2424
2425 let (tt, nread) = TransitionTable::from_bytes_unchecked(&slice[nr..])?;
2426 nr += nread;
2427
2428 let (st, nread) = StartTable::from_bytes_unchecked(&slice[nr..])?;
2429 nr += nread;
2430
2431 let (ms, nread) = MatchStates::from_bytes_unchecked(&slice[nr..])?;
2432 nr += nread;
2433
2434 let (special, nread) = Special::from_bytes(&slice[nr..])?;
2435 nr += nread;
2436 special.validate_state_len(tt.len(), tt.stride2)?;
2437
2438 let (accels, nread) = Accels::from_bytes_unchecked(&slice[nr..])?;
2439 nr += nread;
2440
2441 let (quitset, nread) = ByteSet::from_bytes(&slice[nr..])?;
2442 nr += nread;
2443
2444 // Prefilters don't support serialization, so they're always absent.
2445 let pre = None;
2446 Ok((DFA { tt, st, ms, special, accels, pre, quitset, flags }, nr))
2447 }
2448
2449 /// The implementation of the public `write_to` serialization methods,
2450 /// which is generic over endianness.
2451 ///
2452 /// This is defined only for &[u32] to reduce binary size/compilation time.
2453 fn write_to<E: Endian>(
2454 &self,
2455 mut dst: &mut [u8],
2456 ) -> Result<usize, SerializeError> {
2457 let nwrite = self.write_to_len();
2458 if dst.len() < nwrite {
2459 return Err(SerializeError::buffer_too_small("dense DFA"));
2460 }
2461 dst = &mut dst[..nwrite];
2462
2463 let mut nw = 0;
2464 nw += wire::write_label(LABEL, &mut dst[nw..])?;
2465 nw += wire::write_endianness_check::<E>(&mut dst[nw..])?;
2466 nw += wire::write_version::<E>(VERSION, &mut dst[nw..])?;
2467 nw += {
2468 // Currently unused, intended for future flexibility
2469 E::write_u32(0, &mut dst[nw..]);
2470 size_of::<u32>()
2471 };
2472 nw += self.flags.write_to::<E>(&mut dst[nw..])?;
2473 nw += self.tt.write_to::<E>(&mut dst[nw..])?;
2474 nw += self.st.write_to::<E>(&mut dst[nw..])?;
2475 nw += self.ms.write_to::<E>(&mut dst[nw..])?;
2476 nw += self.special.write_to::<E>(&mut dst[nw..])?;
2477 nw += self.accels.write_to::<E>(&mut dst[nw..])?;
2478 nw += self.quitset.write_to::<E>(&mut dst[nw..])?;
2479 Ok(nw)
2480 }
2481}
2482
2483/// Other routines that work for all `T`.
2484impl<T> DFA<T> {
2485 /// Set or unset the prefilter attached to this DFA.
2486 ///
2487 /// This is useful when one has deserialized a DFA from `&[u8]`.
2488 /// Deserialization does not currently include prefilters, so if you
2489 /// want prefilter acceleration, you'll need to rebuild it and attach
2490 /// it here.
2491 pub fn set_prefilter(&mut self, prefilter: Option<Prefilter>) {
2492 self.pre = prefilter
2493 }
2494}
2495
2496// The following methods implement mutable routines on the internal
2497// representation of a DFA. As such, we must fix the first type parameter to a
2498// `Vec<u32>` since a generic `T: AsRef<[u32]>` does not permit mutation. We
2499// can get away with this because these methods are internal to the crate and
2500// are exclusively used during construction of the DFA.
2501#[cfg(feature = "dfa-build")]
2502impl OwnedDFA {
2503 /// Add a start state of this DFA.
2504 pub(crate) fn set_start_state(
2505 &mut self,
2506 anchored: Anchored,
2507 start: Start,
2508 id: StateID,
2509 ) {
2510 assert!(self.tt.is_valid(id), "invalid start state");
2511 self.st.set_start(anchored, start, id);
2512 }
2513
2514 /// Set the given transition to this DFA. Both the `from` and `to` states
2515 /// must already exist.
2516 pub(crate) fn set_transition(
2517 &mut self,
2518 from: StateID,
2519 byte: alphabet::Unit,
2520 to: StateID,
2521 ) {
2522 self.tt.set(from, byte, to);
2523 }
2524
2525 /// An empty state (a state where all transitions lead to a dead state)
2526 /// and return its identifier. The identifier returned is guaranteed to
2527 /// not point to any other existing state.
2528 ///
2529 /// If adding a state would exceed `StateID::LIMIT`, then this returns an
2530 /// error.
2531 pub(crate) fn add_empty_state(&mut self) -> Result<StateID, BuildError> {
2532 self.tt.add_empty_state()
2533 }
2534
2535 /// Swap the two states given in the transition table.
2536 ///
2537 /// This routine does not do anything to check the correctness of this
2538 /// swap. Callers must ensure that other states pointing to id1 and id2 are
2539 /// updated appropriately.
2540 pub(crate) fn swap_states(&mut self, id1: StateID, id2: StateID) {
2541 self.tt.swap(id1, id2);
2542 }
2543
2544 /// Remap all of the state identifiers in this DFA according to the map
2545 /// function given. This includes all transitions and all starting state
2546 /// identifiers.
2547 pub(crate) fn remap(&mut self, map: impl Fn(StateID) -> StateID) {
2548 // We could loop over each state ID and call 'remap_state' here, but
2549 // this is more direct: just map every transition directly. This
2550 // technically might do a little extra work since the alphabet length
2551 // is likely less than the stride, but if that is indeed an issue we
2552 // should benchmark it and fix it.
2553 for sid in self.tt.table_mut().iter_mut() {
2554 *sid = map(*sid);
2555 }
2556 for sid in self.st.table_mut().iter_mut() {
2557 *sid = map(*sid);
2558 }
2559 }
2560
2561 /// Remap the transitions for the state given according to the function
2562 /// given. This applies the given map function to every transition in the
2563 /// given state and changes the transition in place to the result of the
2564 /// map function for that transition.
2565 pub(crate) fn remap_state(
2566 &mut self,
2567 id: StateID,
2568 map: impl Fn(StateID) -> StateID,
2569 ) {
2570 self.tt.remap(id, map);
2571 }
2572
2573 /// Truncate the states in this DFA to the given length.
2574 ///
2575 /// This routine does not do anything to check the correctness of this
2576 /// truncation. Callers must ensure that other states pointing to truncated
2577 /// states are updated appropriately.
2578 pub(crate) fn truncate_states(&mut self, len: usize) {
2579 self.tt.truncate(len);
2580 }
2581
2582 /// Minimize this DFA in place using Hopcroft's algorithm.
2583 pub(crate) fn minimize(&mut self) {
2584 Minimizer::new(self).run();
2585 }
2586
2587 /// Updates the match state pattern ID map to use the one provided.
2588 ///
2589 /// This is useful when it's convenient to manipulate matching states
2590 /// (and their corresponding pattern IDs) as a map. In particular, the
2591 /// representation used by a DFA for this map is not amenable to mutation,
2592 /// so if things need to be changed (like when shuffling states), it's
2593 /// often easier to work with the map form.
2594 pub(crate) fn set_pattern_map(
2595 &mut self,
2596 map: &BTreeMap<StateID, Vec<PatternID>>,
2597 ) -> Result<(), BuildError> {
2598 self.ms = self.ms.new_with_map(map)?;
2599 Ok(())
2600 }
2601
2602 /// Find states that have a small number of non-loop transitions and mark
2603 /// them as candidates for acceleration during search.
2604 pub(crate) fn accelerate(&mut self) {
2605 // dead and quit states can never be accelerated.
2606 if self.state_len() <= 2 {
2607 return;
2608 }
2609
2610 // Go through every state and record their accelerator, if possible.
2611 let mut accels = BTreeMap::new();
2612 // Count the number of accelerated match, start and non-match/start
2613 // states.
2614 let (mut cmatch, mut cstart, mut cnormal) = (0, 0, 0);
2615 for state in self.states() {
2616 if let Some(accel) = state.accelerate(self.byte_classes()) {
2617 debug!(
2618 "accelerating full DFA state {}: {:?}",
2619 state.id().as_usize(),
2620 accel,
2621 );
2622 accels.insert(state.id(), accel);
2623 if self.is_match_state(state.id()) {
2624 cmatch += 1;
2625 } else if self.is_start_state(state.id()) {
2626 cstart += 1;
2627 } else {
2628 assert!(!self.is_dead_state(state.id()));
2629 assert!(!self.is_quit_state(state.id()));
2630 cnormal += 1;
2631 }
2632 }
2633 }
2634 // If no states were able to be accelerated, then we're done.
2635 if accels.is_empty() {
2636 return;
2637 }
2638 let original_accels_len = accels.len();
2639
2640 // A remapper keeps track of state ID changes. Once we're done
2641 // shuffling, the remapper is used to rewrite all transitions in the
2642 // DFA based on the new positions of states.
2643 let mut remapper = Remapper::new(self);
2644
2645 // As we swap states, if they are match states, we need to swap their
2646 // pattern ID lists too (for multi-regexes). We do this by converting
2647 // the lists to an easily swappable map, and then convert back to
2648 // MatchStates once we're done.
2649 let mut new_matches = self.ms.to_map(self);
2650
2651 // There is at least one state that gets accelerated, so these are
2652 // guaranteed to get set to sensible values below.
2653 self.special.min_accel = StateID::MAX;
2654 self.special.max_accel = StateID::ZERO;
2655 let update_special_accel =
2656 |special: &mut Special, accel_id: StateID| {
2657 special.min_accel = cmp::min(special.min_accel, accel_id);
2658 special.max_accel = cmp::max(special.max_accel, accel_id);
2659 };
2660
2661 // Start by shuffling match states. Any match states that are
2662 // accelerated get moved to the end of the match state range.
2663 if cmatch > 0 && self.special.matches() {
2664 // N.B. special.{min,max}_match do not need updating, since the
2665 // range/number of match states does not change. Only the ordering
2666 // of match states may change.
2667 let mut next_id = self.special.max_match;
2668 let mut cur_id = next_id;
2669 while cur_id >= self.special.min_match {
2670 if let Some(accel) = accels.remove(&cur_id) {
2671 accels.insert(next_id, accel);
2672 update_special_accel(&mut self.special, next_id);
2673
2674 // No need to do any actual swapping for equivalent IDs.
2675 if cur_id != next_id {
2676 remapper.swap(self, cur_id, next_id);
2677
2678 // Swap pattern IDs for match states.
2679 let cur_pids = new_matches.remove(&cur_id).unwrap();
2680 let next_pids = new_matches.remove(&next_id).unwrap();
2681 new_matches.insert(cur_id, next_pids);
2682 new_matches.insert(next_id, cur_pids);
2683 }
2684 next_id = self.tt.prev_state_id(next_id);
2685 }
2686 cur_id = self.tt.prev_state_id(cur_id);
2687 }
2688 }
2689
2690 // This is where it gets tricky. Without acceleration, start states
2691 // normally come right after match states. But we want accelerated
2692 // states to be a single contiguous range (to make it very fast
2693 // to determine whether a state *is* accelerated), while also keeping
2694 // match and starting states as contiguous ranges for the same reason.
2695 // So what we do here is shuffle states such that it looks like this:
2696 //
2697 // DQMMMMAAAAASSSSSSNNNNNNN
2698 // | |
2699 // |---------|
2700 // accelerated states
2701 //
2702 // Where:
2703 // D - dead state
2704 // Q - quit state
2705 // M - match state (may be accelerated)
2706 // A - normal state that is accelerated
2707 // S - start state (may be accelerated)
2708 // N - normal state that is NOT accelerated
2709 //
2710 // We implement this by shuffling states, which is done by a sequence
2711 // of pairwise swaps. We start by looking at all normal states to be
2712 // accelerated. When we find one, we swap it with the earliest starting
2713 // state, and then swap that with the earliest normal state. This
2714 // preserves the contiguous property.
2715 //
2716 // Once we're done looking for accelerated normal states, now we look
2717 // for accelerated starting states by moving them to the beginning
2718 // of the starting state range (just like we moved accelerated match
2719 // states to the end of the matching state range).
2720 //
2721 // For a more detailed/different perspective on this, see the docs
2722 // in dfa/special.rs.
2723 if cnormal > 0 {
2724 // our next available starting and normal states for swapping.
2725 let mut next_start_id = self.special.min_start;
2726 let mut cur_id = self.to_state_id(self.state_len() - 1);
2727 // This is guaranteed to exist since cnormal > 0.
2728 let mut next_norm_id =
2729 self.tt.next_state_id(self.special.max_start);
2730 while cur_id >= next_norm_id {
2731 if let Some(accel) = accels.remove(&cur_id) {
2732 remapper.swap(self, next_start_id, cur_id);
2733 remapper.swap(self, next_norm_id, cur_id);
2734 // Keep our accelerator map updated with new IDs if the
2735 // states we swapped were also accelerated.
2736 if let Some(accel2) = accels.remove(&next_norm_id) {
2737 accels.insert(cur_id, accel2);
2738 }
2739 if let Some(accel2) = accels.remove(&next_start_id) {
2740 accels.insert(next_norm_id, accel2);
2741 }
2742 accels.insert(next_start_id, accel);
2743 update_special_accel(&mut self.special, next_start_id);
2744 // Our start range shifts one to the right now.
2745 self.special.min_start =
2746 self.tt.next_state_id(self.special.min_start);
2747 self.special.max_start =
2748 self.tt.next_state_id(self.special.max_start);
2749 next_start_id = self.tt.next_state_id(next_start_id);
2750 next_norm_id = self.tt.next_state_id(next_norm_id);
2751 }
2752 // This is pretty tricky, but if our 'next_norm_id' state also
2753 // happened to be accelerated, then the result is that it is
2754 // now in the position of cur_id, so we need to consider it
2755 // again. This loop is still guaranteed to terminate though,
2756 // because when accels contains cur_id, we're guaranteed to
2757 // increment next_norm_id even if cur_id remains unchanged.
2758 if !accels.contains_key(&cur_id) {
2759 cur_id = self.tt.prev_state_id(cur_id);
2760 }
2761 }
2762 }
2763 // Just like we did for match states, but we want to move accelerated
2764 // start states to the beginning of the range instead of the end.
2765 if cstart > 0 {
2766 // N.B. special.{min,max}_start do not need updating, since the
2767 // range/number of start states does not change at this point. Only
2768 // the ordering of start states may change.
2769 let mut next_id = self.special.min_start;
2770 let mut cur_id = next_id;
2771 while cur_id <= self.special.max_start {
2772 if let Some(accel) = accels.remove(&cur_id) {
2773 remapper.swap(self, cur_id, next_id);
2774 accels.insert(next_id, accel);
2775 update_special_accel(&mut self.special, next_id);
2776 next_id = self.tt.next_state_id(next_id);
2777 }
2778 cur_id = self.tt.next_state_id(cur_id);
2779 }
2780 }
2781
2782 // Remap all transitions in our DFA and assert some things.
2783 remapper.remap(self);
2784 // This unwrap is OK because acceleration never changes the number of
2785 // match states or patterns in those match states. Since acceleration
2786 // runs after the pattern map has been set at least once, we know that
2787 // our match states cannot error.
2788 self.set_pattern_map(&new_matches).unwrap();
2789 self.special.set_max();
2790 self.special.validate().expect("special state ranges should validate");
2791 self.special
2792 .validate_state_len(self.state_len(), self.stride2())
2793 .expect(
2794 "special state ranges should be consistent with state length",
2795 );
2796 assert_eq!(
2797 self.special.accel_len(self.stride()),
2798 // We record the number of accelerated states initially detected
2799 // since the accels map is itself mutated in the process above.
2800 // If mutated incorrectly, its size may change, and thus can't be
2801 // trusted as a source of truth of how many accelerated states we
2802 // expected there to be.
2803 original_accels_len,
2804 "mismatch with expected number of accelerated states",
2805 );
2806
2807 // And finally record our accelerators. We kept our accels map updated
2808 // as we shuffled states above, so the accelerators should now
2809 // correspond to a contiguous range in the state ID space. (Which we
2810 // assert.)
2811 let mut prev: Option<StateID> = None;
2812 for (id, accel) in accels {
2813 assert!(prev.map_or(true, |p| self.tt.next_state_id(p) == id));
2814 prev = Some(id);
2815 self.accels.add(accel);
2816 }
2817 }
2818
2819 /// Shuffle the states in this DFA so that starting states, match
2820 /// states and accelerated states are all contiguous.
2821 ///
2822 /// See dfa/special.rs for more details.
2823 pub(crate) fn shuffle(
2824 &mut self,
2825 mut matches: BTreeMap<StateID, Vec<PatternID>>,
2826 ) -> Result<(), BuildError> {
2827 // The determinizer always adds a quit state and it is always second.
2828 self.special.quit_id = self.to_state_id(1);
2829 // If all we have are the dead and quit states, then we're done and
2830 // the DFA will never produce a match.
2831 if self.state_len() <= 2 {
2832 self.special.set_max();
2833 return Ok(());
2834 }
2835
2836 // Collect all our non-DEAD start states into a convenient set and
2837 // confirm there is no overlap with match states. In the classical DFA
2838 // construction, start states can be match states. But because of
2839 // look-around, we delay all matches by a byte, which prevents start
2840 // states from being match states.
2841 let mut is_start: BTreeSet<StateID> = BTreeSet::new();
2842 for (start_id, _, _) in self.starts() {
2843 // If a starting configuration points to a DEAD state, then we
2844 // don't want to shuffle it. The DEAD state is always the first
2845 // state with ID=0. So we can just leave it be.
2846 if start_id == DEAD {
2847 continue;
2848 }
2849 assert!(
2850 !matches.contains_key(&start_id),
2851 "{start_id:?} is both a start and a match state, \
2852 which is not allowed",
2853 );
2854 is_start.insert(start_id);
2855 }
2856
2857 // We implement shuffling by a sequence of pairwise swaps of states.
2858 // Since we have a number of things referencing states via their
2859 // IDs and swapping them changes their IDs, we need to record every
2860 // swap we make so that we can remap IDs. The remapper handles this
2861 // book-keeping for us.
2862 let mut remapper = Remapper::new(self);
2863
2864 // Shuffle matching states.
2865 if matches.is_empty() {
2866 self.special.min_match = DEAD;
2867 self.special.max_match = DEAD;
2868 } else {
2869 // The determinizer guarantees that the first two states are the
2870 // dead and quit states, respectively. We want our match states to
2871 // come right after quit.
2872 let mut next_id = self.to_state_id(2);
2873 let mut new_matches = BTreeMap::new();
2874 self.special.min_match = next_id;
2875 for (id, pids) in matches {
2876 remapper.swap(self, next_id, id);
2877 new_matches.insert(next_id, pids);
2878 // If we swapped a start state, then update our set.
2879 if is_start.contains(&next_id) {
2880 is_start.remove(&next_id);
2881 is_start.insert(id);
2882 }
2883 next_id = self.tt.next_state_id(next_id);
2884 }
2885 matches = new_matches;
2886 self.special.max_match = cmp::max(
2887 self.special.min_match,
2888 self.tt.prev_state_id(next_id),
2889 );
2890 }
2891
2892 // Shuffle starting states.
2893 {
2894 let mut next_id = self.to_state_id(2);
2895 if self.special.matches() {
2896 next_id = self.tt.next_state_id(self.special.max_match);
2897 }
2898 self.special.min_start = next_id;
2899 for id in is_start {
2900 remapper.swap(self, next_id, id);
2901 next_id = self.tt.next_state_id(next_id);
2902 }
2903 self.special.max_start = cmp::max(
2904 self.special.min_start,
2905 self.tt.prev_state_id(next_id),
2906 );
2907 }
2908
2909 // Finally remap all transitions in our DFA.
2910 remapper.remap(self);
2911 self.set_pattern_map(&matches)?;
2912 self.special.set_max();
2913 self.special.validate().expect("special state ranges should validate");
2914 self.special
2915 .validate_state_len(self.state_len(), self.stride2())
2916 .expect(
2917 "special state ranges should be consistent with state length",
2918 );
2919 Ok(())
2920 }
2921
2922 /// Checks whether there are universal start states (both anchored and
2923 /// unanchored), and if so, sets the relevant fields to the start state
2924 /// IDs.
2925 ///
2926 /// Universal start states occur precisely when the all patterns in the
2927 /// DFA have no look-around assertions in their prefix.
2928 fn set_universal_starts(&mut self) {
2929 assert_eq!(6, Start::len(), "expected 6 start configurations");
2930
2931 let start_id = |dfa: &mut OwnedDFA,
2932 anchored: Anchored,
2933 start: Start| {
2934 // This OK because we only call 'start' under conditions
2935 // in which we know it will succeed.
2936 dfa.st.start(anchored, start).expect("valid Input configuration")
2937 };
2938 if self.start_kind().has_unanchored() {
2939 let anchor = Anchored::No;
2940 let sid = start_id(self, anchor, Start::NonWordByte);
2941 if sid == start_id(self, anchor, Start::WordByte)
2942 && sid == start_id(self, anchor, Start::Text)
2943 && sid == start_id(self, anchor, Start::LineLF)
2944 && sid == start_id(self, anchor, Start::LineCR)
2945 && sid == start_id(self, anchor, Start::CustomLineTerminator)
2946 {
2947 self.st.universal_start_unanchored = Some(sid);
2948 }
2949 }
2950 if self.start_kind().has_anchored() {
2951 let anchor = Anchored::Yes;
2952 let sid = start_id(self, anchor, Start::NonWordByte);
2953 if sid == start_id(self, anchor, Start::WordByte)
2954 && sid == start_id(self, anchor, Start::Text)
2955 && sid == start_id(self, anchor, Start::LineLF)
2956 && sid == start_id(self, anchor, Start::LineCR)
2957 && sid == start_id(self, anchor, Start::CustomLineTerminator)
2958 {
2959 self.st.universal_start_anchored = Some(sid);
2960 }
2961 }
2962 }
2963}
2964
2965// A variety of generic internal methods for accessing DFA internals.
2966impl<T: AsRef<[u32]>> DFA<T> {
2967 /// Return the info about special states.
2968 pub(crate) fn special(&self) -> &Special {
2969 &self.special
2970 }
2971
2972 /// Return the info about special states as a mutable borrow.
2973 #[cfg(feature = "dfa-build")]
2974 pub(crate) fn special_mut(&mut self) -> &mut Special {
2975 &mut self.special
2976 }
2977
2978 /// Returns the quit set (may be empty) used by this DFA.
2979 pub(crate) fn quitset(&self) -> &ByteSet {
2980 &self.quitset
2981 }
2982
2983 /// Returns the flags for this DFA.
2984 pub(crate) fn flags(&self) -> &Flags {
2985 &self.flags
2986 }
2987
2988 /// Returns an iterator over all states in this DFA.
2989 ///
2990 /// This iterator yields a tuple for each state. The first element of the
2991 /// tuple corresponds to a state's identifier, and the second element
2992 /// corresponds to the state itself (comprised of its transitions).
2993 pub(crate) fn states(&self) -> StateIter<'_, T> {
2994 self.tt.states()
2995 }
2996
2997 /// Return the total number of states in this DFA. Every DFA has at least
2998 /// 1 state, even the empty DFA.
2999 pub(crate) fn state_len(&self) -> usize {
3000 self.tt.len()
3001 }
3002
3003 /// Return an iterator over all pattern IDs for the given match state.
3004 ///
3005 /// If the given state is not a match state, then this panics.
3006 #[cfg(feature = "dfa-build")]
3007 pub(crate) fn pattern_id_slice(&self, id: StateID) -> &[PatternID] {
3008 assert!(self.is_match_state(id));
3009 self.ms.pattern_id_slice(self.match_state_index(id))
3010 }
3011
3012 /// Return the total number of pattern IDs for the given match state.
3013 ///
3014 /// If the given state is not a match state, then this panics.
3015 pub(crate) fn match_pattern_len(&self, id: StateID) -> usize {
3016 assert!(self.is_match_state(id));
3017 self.ms.pattern_len(self.match_state_index(id))
3018 }
3019
3020 /// Returns the total number of patterns matched by this DFA.
3021 pub(crate) fn pattern_len(&self) -> usize {
3022 self.ms.pattern_len
3023 }
3024
3025 /// Returns a map from match state ID to a list of pattern IDs that match
3026 /// in that state.
3027 #[cfg(feature = "dfa-build")]
3028 pub(crate) fn pattern_map(&self) -> BTreeMap<StateID, Vec<PatternID>> {
3029 self.ms.to_map(self)
3030 }
3031
3032 /// Returns the ID of the quit state for this DFA.
3033 #[cfg(feature = "dfa-build")]
3034 pub(crate) fn quit_id(&self) -> StateID {
3035 self.to_state_id(1)
3036 }
3037
3038 /// Convert the given state identifier to the state's index. The state's
3039 /// index corresponds to the position in which it appears in the transition
3040 /// table. When a DFA is NOT premultiplied, then a state's identifier is
3041 /// also its index. When a DFA is premultiplied, then a state's identifier
3042 /// is equal to `index * alphabet_len`. This routine reverses that.
3043 pub(crate) fn to_index(&self, id: StateID) -> usize {
3044 self.tt.to_index(id)
3045 }
3046
3047 /// Convert an index to a state (in the range 0..self.state_len()) to an
3048 /// actual state identifier.
3049 ///
3050 /// This is useful when using a `Vec<T>` as an efficient map keyed by state
3051 /// to some other information (such as a remapped state ID).
3052 #[cfg(feature = "dfa-build")]
3053 pub(crate) fn to_state_id(&self, index: usize) -> StateID {
3054 self.tt.to_state_id(index)
3055 }
3056
3057 /// Return the table of state IDs for this DFA's start states.
3058 pub(crate) fn starts(&self) -> StartStateIter<'_> {
3059 self.st.iter()
3060 }
3061
3062 /// Returns the index of the match state for the given ID. If the
3063 /// given ID does not correspond to a match state, then this may
3064 /// panic or produce an incorrect result.
3065 #[cfg_attr(feature = "perf-inline", inline(always))]
3066 fn match_state_index(&self, id: StateID) -> usize {
3067 debug_assert!(self.is_match_state(id));
3068 // This is one of the places where we rely on the fact that match
3069 // states are contiguous in the transition table. Namely, that the
3070 // first match state ID always corresponds to dfa.special.min_match.
3071 // From there, since we know the stride, we can compute the overall
3072 // index of any match state given the match state's ID.
3073 let min = self.special().min_match.as_usize();
3074 // CORRECTNESS: We're allowed to produce an incorrect result or panic,
3075 // so both the subtraction and the unchecked StateID construction is
3076 // OK.
3077 self.to_index(StateID::new_unchecked(id.as_usize() - min))
3078 }
3079
3080 /// Returns the index of the accelerator state for the given ID. If the
3081 /// given ID does not correspond to an accelerator state, then this may
3082 /// panic or produce an incorrect result.
3083 fn accelerator_index(&self, id: StateID) -> usize {
3084 let min = self.special().min_accel.as_usize();
3085 // CORRECTNESS: We're allowed to produce an incorrect result or panic,
3086 // so both the subtraction and the unchecked StateID construction is
3087 // OK.
3088 self.to_index(StateID::new_unchecked(id.as_usize() - min))
3089 }
3090
3091 /// Return the accelerators for this DFA.
3092 fn accels(&self) -> Accels<&[u32]> {
3093 self.accels.as_ref()
3094 }
3095
3096 /// Return this DFA's transition table as a slice.
3097 fn trans(&self) -> &[StateID] {
3098 self.tt.table()
3099 }
3100}
3101
3102impl<T: AsRef<[u32]>> fmt::Debug for DFA<T> {
3103 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3104 writeln!(f, "dense::DFA(")?;
3105 for state in self.states() {
3106 fmt_state_indicator(f, self, state.id())?;
3107 let id = if f.alternate() {
3108 state.id().as_usize()
3109 } else {
3110 self.to_index(state.id())
3111 };
3112 write!(f, "{id:06?}: ")?;
3113 state.fmt(f)?;
3114 write!(f, "\n")?;
3115 }
3116 writeln!(f, "")?;
3117 for (i, (start_id, anchored, sty)) in self.starts().enumerate() {
3118 let id = if f.alternate() {
3119 start_id.as_usize()
3120 } else {
3121 self.to_index(start_id)
3122 };
3123 if i % self.st.stride == 0 {
3124 match anchored {
3125 Anchored::No => writeln!(f, "START-GROUP(unanchored)")?,
3126 Anchored::Yes => writeln!(f, "START-GROUP(anchored)")?,
3127 Anchored::Pattern(pid) => {
3128 writeln!(f, "START_GROUP(pattern: {pid:?})")?
3129 }
3130 }
3131 }
3132 writeln!(f, " {sty:?} => {id:06?}")?;
3133 }
3134 if self.pattern_len() > 1 {
3135 writeln!(f, "")?;
3136 for i in 0..self.ms.len() {
3137 let id = self.ms.match_state_id(self, i);
3138 let id = if f.alternate() {
3139 id.as_usize()
3140 } else {
3141 self.to_index(id)
3142 };
3143 write!(f, "MATCH({id:06?}): ")?;
3144 for (i, &pid) in self.ms.pattern_id_slice(i).iter().enumerate()
3145 {
3146 if i > 0 {
3147 write!(f, ", ")?;
3148 }
3149 write!(f, "{pid:?}")?;
3150 }
3151 writeln!(f, "")?;
3152 }
3153 }
3154 writeln!(f, "state length: {:?}", self.state_len())?;
3155 writeln!(f, "pattern length: {:?}", self.pattern_len())?;
3156 writeln!(f, "flags: {:?}", self.flags)?;
3157 writeln!(f, ")")?;
3158 Ok(())
3159 }
3160}
3161
3162// SAFETY: We assert that our implementation of each method is correct.
3163unsafe impl<T: AsRef<[u32]>> Automaton for DFA<T> {
3164 #[cfg_attr(feature = "perf-inline", inline(always))]
3165 fn is_special_state(&self, id: StateID) -> bool {
3166 self.special.is_special_state(id)
3167 }
3168
3169 #[cfg_attr(feature = "perf-inline", inline(always))]
3170 fn is_dead_state(&self, id: StateID) -> bool {
3171 self.special.is_dead_state(id)
3172 }
3173
3174 #[cfg_attr(feature = "perf-inline", inline(always))]
3175 fn is_quit_state(&self, id: StateID) -> bool {
3176 self.special.is_quit_state(id)
3177 }
3178
3179 #[cfg_attr(feature = "perf-inline", inline(always))]
3180 fn is_match_state(&self, id: StateID) -> bool {
3181 self.special.is_match_state(id)
3182 }
3183
3184 #[cfg_attr(feature = "perf-inline", inline(always))]
3185 fn is_start_state(&self, id: StateID) -> bool {
3186 self.special.is_start_state(id)
3187 }
3188
3189 #[cfg_attr(feature = "perf-inline", inline(always))]
3190 fn is_accel_state(&self, id: StateID) -> bool {
3191 self.special.is_accel_state(id)
3192 }
3193
3194 #[cfg_attr(feature = "perf-inline", inline(always))]
3195 fn next_state(&self, current: StateID, input: u8) -> StateID {
3196 let input = self.byte_classes().get(input);
3197 let o = current.as_usize() + usize::from(input);
3198 self.trans()[o]
3199 }
3200
3201 #[cfg_attr(feature = "perf-inline", inline(always))]
3202 unsafe fn next_state_unchecked(
3203 &self,
3204 current: StateID,
3205 byte: u8,
3206 ) -> StateID {
3207 // We don't (or shouldn't) need an unchecked variant for the byte
3208 // class mapping, since bound checks should be omitted automatically
3209 // by virtue of its representation. If this ends up not being true as
3210 // confirmed by codegen, please file an issue. ---AG
3211 let class = self.byte_classes().get(byte);
3212 let o = current.as_usize() + usize::from(class);
3213 let next = *self.trans().get_unchecked(o);
3214 next
3215 }
3216
3217 #[cfg_attr(feature = "perf-inline", inline(always))]
3218 fn next_eoi_state(&self, current: StateID) -> StateID {
3219 let eoi = self.byte_classes().eoi().as_usize();
3220 let o = current.as_usize() + eoi;
3221 self.trans()[o]
3222 }
3223
3224 #[cfg_attr(feature = "perf-inline", inline(always))]
3225 fn pattern_len(&self) -> usize {
3226 self.ms.pattern_len
3227 }
3228
3229 #[cfg_attr(feature = "perf-inline", inline(always))]
3230 fn match_len(&self, id: StateID) -> usize {
3231 self.match_pattern_len(id)
3232 }
3233
3234 #[cfg_attr(feature = "perf-inline", inline(always))]
3235 fn match_pattern(&self, id: StateID, match_index: usize) -> PatternID {
3236 // This is an optimization for the very common case of a DFA with a
3237 // single pattern. This conditional avoids a somewhat more costly path
3238 // that finds the pattern ID from the state machine, which requires
3239 // a bit of slicing/pointer-chasing. This optimization tends to only
3240 // matter when matches are frequent.
3241 if self.ms.pattern_len == 1 {
3242 return PatternID::ZERO;
3243 }
3244 let state_index = self.match_state_index(id);
3245 self.ms.pattern_id(state_index, match_index)
3246 }
3247
3248 #[cfg_attr(feature = "perf-inline", inline(always))]
3249 fn has_empty(&self) -> bool {
3250 self.flags.has_empty
3251 }
3252
3253 #[cfg_attr(feature = "perf-inline", inline(always))]
3254 fn is_utf8(&self) -> bool {
3255 self.flags.is_utf8
3256 }
3257
3258 #[cfg_attr(feature = "perf-inline", inline(always))]
3259 fn is_always_start_anchored(&self) -> bool {
3260 self.flags.is_always_start_anchored
3261 }
3262
3263 #[cfg_attr(feature = "perf-inline", inline(always))]
3264 fn start_state(
3265 &self,
3266 config: &start::Config,
3267 ) -> Result<StateID, StartError> {
3268 let anchored = config.get_anchored();
3269 let start = match config.get_look_behind() {
3270 None => Start::Text,
3271 Some(byte) => {
3272 if !self.quitset.is_empty() && self.quitset.contains(byte) {
3273 return Err(StartError::quit(byte));
3274 }
3275 self.st.start_map.get(byte)
3276 }
3277 };
3278 self.st.start(anchored, start)
3279 }
3280
3281 #[cfg_attr(feature = "perf-inline", inline(always))]
3282 fn universal_start_state(&self, mode: Anchored) -> Option<StateID> {
3283 match mode {
3284 Anchored::No => self.st.universal_start_unanchored,
3285 Anchored::Yes => self.st.universal_start_anchored,
3286 Anchored::Pattern(_) => None,
3287 }
3288 }
3289
3290 #[cfg_attr(feature = "perf-inline", inline(always))]
3291 fn accelerator(&self, id: StateID) -> &[u8] {
3292 if !self.is_accel_state(id) {
3293 return &[];
3294 }
3295 self.accels.needles(self.accelerator_index(id))
3296 }
3297
3298 #[cfg_attr(feature = "perf-inline", inline(always))]
3299 fn get_prefilter(&self) -> Option<&Prefilter> {
3300 self.pre.as_ref()
3301 }
3302}
3303
3304/// The transition table portion of a dense DFA.
3305///
3306/// The transition table is the core part of the DFA in that it describes how
3307/// to move from one state to another based on the input sequence observed.
3308#[derive(Clone)]
3309pub(crate) struct TransitionTable<T> {
3310 /// A contiguous region of memory representing the transition table in
3311 /// row-major order. The representation is dense. That is, every state
3312 /// has precisely the same number of transitions. The maximum number of
3313 /// transitions per state is 257 (256 for each possible byte value, plus 1
3314 /// for the special EOI transition). If a DFA has been instructed to use
3315 /// byte classes (the default), then the number of transitions is usually
3316 /// substantially fewer.
3317 ///
3318 /// In practice, T is either `Vec<u32>` or `&[u32]`.
3319 table: T,
3320 /// A set of equivalence classes, where a single equivalence class
3321 /// represents a set of bytes that never discriminate between a match
3322 /// and a non-match in the DFA. Each equivalence class corresponds to a
3323 /// single character in this DFA's alphabet, where the maximum number of
3324 /// characters is 257 (each possible value of a byte plus the special
3325 /// EOI transition). Consequently, the number of equivalence classes
3326 /// corresponds to the number of transitions for each DFA state. Note
3327 /// though that the *space* used by each DFA state in the transition table
3328 /// may be larger. The total space used by each DFA state is known as the
3329 /// stride.
3330 ///
3331 /// The only time the number of equivalence classes is fewer than 257 is if
3332 /// the DFA's kind uses byte classes (which is the default). Equivalence
3333 /// classes should generally only be disabled when debugging, so that
3334 /// the transitions themselves aren't obscured. Disabling them has no
3335 /// other benefit, since the equivalence class map is always used while
3336 /// searching. In the vast majority of cases, the number of equivalence
3337 /// classes is substantially smaller than 257, particularly when large
3338 /// Unicode classes aren't used.
3339 classes: ByteClasses,
3340 /// The stride of each DFA state, expressed as a power-of-two exponent.
3341 ///
3342 /// The stride of a DFA corresponds to the total amount of space used by
3343 /// each DFA state in the transition table. This may be bigger than the
3344 /// size of a DFA's alphabet, since the stride is always the smallest
3345 /// power of two greater than or equal to the alphabet size.
3346 ///
3347 /// While this wastes space, this avoids the need for integer division
3348 /// to convert between premultiplied state IDs and their corresponding
3349 /// indices. Instead, we can use simple bit-shifts.
3350 ///
3351 /// See the docs for the `stride2` method for more details.
3352 ///
3353 /// The minimum `stride2` value is `1` (corresponding to a stride of `2`)
3354 /// while the maximum `stride2` value is `9` (corresponding to a stride of
3355 /// `512`). The maximum is not `8` since the maximum alphabet size is `257`
3356 /// when accounting for the special EOI transition. However, an alphabet
3357 /// length of that size is exceptionally rare since the alphabet is shrunk
3358 /// into equivalence classes.
3359 stride2: usize,
3360}
3361
3362impl<'a> TransitionTable<&'a [u32]> {
3363 /// Deserialize a transition table starting at the beginning of `slice`.
3364 /// Upon success, return the total number of bytes read along with the
3365 /// transition table.
3366 ///
3367 /// If there was a problem deserializing any part of the transition table,
3368 /// then this returns an error. Notably, if the given slice does not have
3369 /// the same alignment as `StateID`, then this will return an error (among
3370 /// other possible errors).
3371 ///
3372 /// This is guaranteed to execute in constant time.
3373 ///
3374 /// # Safety
3375 ///
3376 /// This routine is not safe because it does not check the validity of the
3377 /// transition table itself. In particular, the transition table can be
3378 /// quite large, so checking its validity can be somewhat expensive. An
3379 /// invalid transition table is not safe because other code may rely on the
3380 /// transition table being correct (such as explicit bounds check elision).
3381 /// Therefore, an invalid transition table can lead to undefined behavior.
3382 ///
3383 /// Callers that use this function must either pass on the safety invariant
3384 /// or guarantee that the bytes given contain a valid transition table.
3385 /// This guarantee is upheld by the bytes written by `write_to`.
3386 unsafe fn from_bytes_unchecked(
3387 mut slice: &'a [u8],
3388 ) -> Result<(TransitionTable<&'a [u32]>, usize), DeserializeError> {
3389 let slice_start = slice.as_ptr().as_usize();
3390
3391 let (state_len, nr) =
3392 wire::try_read_u32_as_usize(slice, "state length")?;
3393 slice = &slice[nr..];
3394
3395 let (stride2, nr) = wire::try_read_u32_as_usize(slice, "stride2")?;
3396 slice = &slice[nr..];
3397
3398 let (classes, nr) = ByteClasses::from_bytes(slice)?;
3399 slice = &slice[nr..];
3400
3401 // The alphabet length (determined by the byte class map) cannot be
3402 // bigger than the stride (total space used by each DFA state).
3403 if stride2 > 9 {
3404 return Err(DeserializeError::generic(
3405 "dense DFA has invalid stride2 (too big)",
3406 ));
3407 }
3408 // It also cannot be zero, since even a DFA that never matches anything
3409 // has a non-zero number of states with at least two equivalence
3410 // classes: one for all 256 byte values and another for the EOI
3411 // sentinel.
3412 if stride2 < 1 {
3413 return Err(DeserializeError::generic(
3414 "dense DFA has invalid stride2 (too small)",
3415 ));
3416 }
3417 // This is OK since 1 <= stride2 <= 9.
3418 let stride =
3419 1usize.checked_shl(u32::try_from(stride2).unwrap()).unwrap();
3420 if classes.alphabet_len() > stride {
3421 return Err(DeserializeError::generic(
3422 "alphabet size cannot be bigger than transition table stride",
3423 ));
3424 }
3425
3426 let trans_len =
3427 wire::shl(state_len, stride2, "dense table transition length")?;
3428 let table_bytes_len = wire::mul(
3429 trans_len,
3430 StateID::SIZE,
3431 "dense table state byte length",
3432 )?;
3433 wire::check_slice_len(slice, table_bytes_len, "transition table")?;
3434 wire::check_alignment::<StateID>(slice)?;
3435 let table_bytes = &slice[..table_bytes_len];
3436 slice = &slice[table_bytes_len..];
3437 // SAFETY: Since StateID is always representable as a u32, all we need
3438 // to do is ensure that we have the proper length and alignment. We've
3439 // checked both above, so the cast below is safe.
3440 //
3441 // N.B. This is the only not-safe code in this function.
3442 let table = core::slice::from_raw_parts(
3443 table_bytes.as_ptr().cast::<u32>(),
3444 trans_len,
3445 );
3446 let tt = TransitionTable { table, classes, stride2 };
3447 Ok((tt, slice.as_ptr().as_usize() - slice_start))
3448 }
3449}
3450
3451#[cfg(feature = "dfa-build")]
3452impl TransitionTable<Vec<u32>> {
3453 /// Create a minimal transition table with just two states: a dead state
3454 /// and a quit state. The alphabet length and stride of the transition
3455 /// table is determined by the given set of equivalence classes.
3456 fn minimal(classes: ByteClasses) -> TransitionTable<Vec<u32>> {
3457 let mut tt = TransitionTable {
3458 table: vec![],
3459 classes,
3460 stride2: classes.stride2(),
3461 };
3462 // Two states, regardless of alphabet size, can always fit into u32.
3463 tt.add_empty_state().unwrap(); // dead state
3464 tt.add_empty_state().unwrap(); // quit state
3465 tt
3466 }
3467
3468 /// Set a transition in this table. Both the `from` and `to` states must
3469 /// already exist, otherwise this panics. `unit` should correspond to the
3470 /// transition out of `from` to set to `to`.
3471 fn set(&mut self, from: StateID, unit: alphabet::Unit, to: StateID) {
3472 assert!(self.is_valid(from), "invalid 'from' state");
3473 assert!(self.is_valid(to), "invalid 'to' state");
3474 self.table[from.as_usize() + self.classes.get_by_unit(unit)] =
3475 to.as_u32();
3476 }
3477
3478 /// Add an empty state (a state where all transitions lead to a dead state)
3479 /// and return its identifier. The identifier returned is guaranteed to
3480 /// not point to any other existing state.
3481 ///
3482 /// If adding a state would exhaust the state identifier space, then this
3483 /// returns an error.
3484 fn add_empty_state(&mut self) -> Result<StateID, BuildError> {
3485 // Normally, to get a fresh state identifier, we would just
3486 // take the index of the next state added to the transition
3487 // table. However, we actually perform an optimization here
3488 // that pre-multiplies state IDs by the stride, such that they
3489 // point immediately at the beginning of their transitions in
3490 // the transition table. This avoids an extra multiplication
3491 // instruction for state lookup at search time.
3492 //
3493 // Premultiplied identifiers means that instead of your matching
3494 // loop looking something like this:
3495 //
3496 // state = dfa.start
3497 // for byte in haystack:
3498 // next = dfa.transitions[state * stride + byte]
3499 // if dfa.is_match(next):
3500 // return true
3501 // return false
3502 //
3503 // it can instead look like this:
3504 //
3505 // state = dfa.start
3506 // for byte in haystack:
3507 // next = dfa.transitions[state + byte]
3508 // if dfa.is_match(next):
3509 // return true
3510 // return false
3511 //
3512 // In other words, we save a multiplication instruction in the
3513 // critical path. This turns out to be a decent performance win.
3514 // The cost of using premultiplied state ids is that they can
3515 // require a bigger state id representation. (And they also make
3516 // the code a bit more complex, especially during minimization and
3517 // when reshuffling states, as one needs to convert back and forth
3518 // between state IDs and state indices.)
3519 //
3520 // To do this, we simply take the index of the state into the
3521 // entire transition table, rather than the index of the state
3522 // itself. e.g., If the stride is 64, then the ID of the 3rd state
3523 // is 192, not 2.
3524 let next = self.table.len();
3525 let id =
3526 StateID::new(next).map_err(|_| BuildError::too_many_states())?;
3527 self.table.extend(iter::repeat(0).take(self.stride()));
3528 Ok(id)
3529 }
3530
3531 /// Swap the two states given in this transition table.
3532 ///
3533 /// This routine does not do anything to check the correctness of this
3534 /// swap. Callers must ensure that other states pointing to id1 and id2 are
3535 /// updated appropriately.
3536 ///
3537 /// Both id1 and id2 must point to valid states, otherwise this panics.
3538 fn swap(&mut self, id1: StateID, id2: StateID) {
3539 assert!(self.is_valid(id1), "invalid 'id1' state: {id1:?}");
3540 assert!(self.is_valid(id2), "invalid 'id2' state: {id2:?}");
3541 // We only need to swap the parts of the state that are used. So if the
3542 // stride is 64, but the alphabet length is only 33, then we save a lot
3543 // of work.
3544 for b in 0..self.classes.alphabet_len() {
3545 self.table.swap(id1.as_usize() + b, id2.as_usize() + b);
3546 }
3547 }
3548
3549 /// Remap the transitions for the state given according to the function
3550 /// given. This applies the given map function to every transition in the
3551 /// given state and changes the transition in place to the result of the
3552 /// map function for that transition.
3553 fn remap(&mut self, id: StateID, map: impl Fn(StateID) -> StateID) {
3554 for byte in 0..self.alphabet_len() {
3555 let i = id.as_usize() + byte;
3556 let next = self.table()[i];
3557 self.table_mut()[id.as_usize() + byte] = map(next);
3558 }
3559 }
3560
3561 /// Truncate the states in this transition table to the given length.
3562 ///
3563 /// This routine does not do anything to check the correctness of this
3564 /// truncation. Callers must ensure that other states pointing to truncated
3565 /// states are updated appropriately.
3566 fn truncate(&mut self, len: usize) {
3567 self.table.truncate(len << self.stride2);
3568 }
3569}
3570
3571impl<T: AsRef<[u32]>> TransitionTable<T> {
3572 /// Writes a serialized form of this transition table to the buffer given.
3573 /// If the buffer is too small, then an error is returned. To determine
3574 /// how big the buffer must be, use `write_to_len`.
3575 fn write_to<E: Endian>(
3576 &self,
3577 mut dst: &mut [u8],
3578 ) -> Result<usize, SerializeError> {
3579 let nwrite = self.write_to_len();
3580 if dst.len() < nwrite {
3581 return Err(SerializeError::buffer_too_small("transition table"));
3582 }
3583 dst = &mut dst[..nwrite];
3584
3585 // write state length
3586 // Unwrap is OK since number of states is guaranteed to fit in a u32.
3587 E::write_u32(u32::try_from(self.len()).unwrap(), dst);
3588 dst = &mut dst[size_of::<u32>()..];
3589
3590 // write state stride (as power of 2)
3591 // Unwrap is OK since stride2 is guaranteed to be <= 9.
3592 E::write_u32(u32::try_from(self.stride2).unwrap(), dst);
3593 dst = &mut dst[size_of::<u32>()..];
3594
3595 // write byte class map
3596 let n = self.classes.write_to(dst)?;
3597 dst = &mut dst[n..];
3598
3599 // write actual transitions
3600 for &sid in self.table() {
3601 let n = wire::write_state_id::<E>(sid, &mut dst);
3602 dst = &mut dst[n..];
3603 }
3604 Ok(nwrite)
3605 }
3606
3607 /// Returns the number of bytes the serialized form of this transition
3608 /// table will use.
3609 fn write_to_len(&self) -> usize {
3610 size_of::<u32>() // state length
3611 + size_of::<u32>() // stride2
3612 + self.classes.write_to_len()
3613 + (self.table().len() * StateID::SIZE)
3614 }
3615
3616 /// Validates that every state ID in this transition table is valid.
3617 ///
3618 /// That is, every state ID can be used to correctly index a state in this
3619 /// table.
3620 fn validate(&self, dfa: &DFA<T>) -> Result<(), DeserializeError> {
3621 let sp = &dfa.special;
3622 for state in self.states() {
3623 // We check that the ID itself is well formed. That is, if it's
3624 // a special state then it must actually be a quit, dead, accel,
3625 // match or start state.
3626 if sp.is_special_state(state.id()) {
3627 let is_actually_special = sp.is_dead_state(state.id())
3628 || sp.is_quit_state(state.id())
3629 || sp.is_match_state(state.id())
3630 || sp.is_start_state(state.id())
3631 || sp.is_accel_state(state.id());
3632 if !is_actually_special {
3633 // This is kind of a cryptic error message...
3634 return Err(DeserializeError::generic(
3635 "found dense state tagged as special but \
3636 wasn't actually special",
3637 ));
3638 }
3639 if sp.is_match_state(state.id())
3640 && dfa.match_len(state.id()) == 0
3641 {
3642 return Err(DeserializeError::generic(
3643 "found match state with zero pattern IDs",
3644 ));
3645 }
3646 }
3647 for (_, to) in state.transitions() {
3648 if !self.is_valid(to) {
3649 return Err(DeserializeError::generic(
3650 "found invalid state ID in transition table",
3651 ));
3652 }
3653 }
3654 }
3655 Ok(())
3656 }
3657
3658 /// Converts this transition table to a borrowed value.
3659 fn as_ref(&self) -> TransitionTable<&'_ [u32]> {
3660 TransitionTable {
3661 table: self.table.as_ref(),
3662 classes: self.classes.clone(),
3663 stride2: self.stride2,
3664 }
3665 }
3666
3667 /// Converts this transition table to an owned value.
3668 #[cfg(feature = "alloc")]
3669 fn to_owned(&self) -> TransitionTable<alloc::vec::Vec<u32>> {
3670 TransitionTable {
3671 table: self.table.as_ref().to_vec(),
3672 classes: self.classes.clone(),
3673 stride2: self.stride2,
3674 }
3675 }
3676
3677 /// Return the state for the given ID. If the given ID is not valid, then
3678 /// this panics.
3679 fn state(&self, id: StateID) -> State<'_> {
3680 assert!(self.is_valid(id));
3681
3682 let i = id.as_usize();
3683 State {
3684 id,
3685 stride2: self.stride2,
3686 transitions: &self.table()[i..i + self.alphabet_len()],
3687 }
3688 }
3689
3690 /// Returns an iterator over all states in this transition table.
3691 ///
3692 /// This iterator yields a tuple for each state. The first element of the
3693 /// tuple corresponds to a state's identifier, and the second element
3694 /// corresponds to the state itself (comprised of its transitions).
3695 fn states(&self) -> StateIter<'_, T> {
3696 StateIter {
3697 tt: self,
3698 it: self.table().chunks(self.stride()).enumerate(),
3699 }
3700 }
3701
3702 /// Convert a state identifier to an index to a state (in the range
3703 /// 0..self.len()).
3704 ///
3705 /// This is useful when using a `Vec<T>` as an efficient map keyed by state
3706 /// to some other information (such as a remapped state ID).
3707 ///
3708 /// If the given ID is not valid, then this may panic or produce an
3709 /// incorrect index.
3710 fn to_index(&self, id: StateID) -> usize {
3711 id.as_usize() >> self.stride2
3712 }
3713
3714 /// Convert an index to a state (in the range 0..self.len()) to an actual
3715 /// state identifier.
3716 ///
3717 /// This is useful when using a `Vec<T>` as an efficient map keyed by state
3718 /// to some other information (such as a remapped state ID).
3719 ///
3720 /// If the given index is not in the specified range, then this may panic
3721 /// or produce an incorrect state ID.
3722 fn to_state_id(&self, index: usize) -> StateID {
3723 // CORRECTNESS: If the given index is not valid, then it is not
3724 // required for this to panic or return a valid state ID.
3725 StateID::new_unchecked(index << self.stride2)
3726 }
3727
3728 /// Returns the state ID for the state immediately following the one given.
3729 ///
3730 /// This does not check whether the state ID returned is invalid. In fact,
3731 /// if the state ID given is the last state in this DFA, then the state ID
3732 /// returned is guaranteed to be invalid.
3733 #[cfg(feature = "dfa-build")]
3734 fn next_state_id(&self, id: StateID) -> StateID {
3735 self.to_state_id(self.to_index(id).checked_add(1).unwrap())
3736 }
3737
3738 /// Returns the state ID for the state immediately preceding the one given.
3739 ///
3740 /// If the dead ID given (which is zero), then this panics.
3741 #[cfg(feature = "dfa-build")]
3742 fn prev_state_id(&self, id: StateID) -> StateID {
3743 self.to_state_id(self.to_index(id).checked_sub(1).unwrap())
3744 }
3745
3746 /// Returns the table as a slice of state IDs.
3747 fn table(&self) -> &[StateID] {
3748 wire::u32s_to_state_ids(self.table.as_ref())
3749 }
3750
3751 /// Returns the total number of states in this transition table.
3752 ///
3753 /// Note that a DFA always has at least two states: the dead and quit
3754 /// states. In particular, the dead state always has ID 0 and is
3755 /// correspondingly always the first state. The dead state is never a match
3756 /// state.
3757 fn len(&self) -> usize {
3758 self.table().len() >> self.stride2
3759 }
3760
3761 /// Returns the total stride for every state in this DFA. This corresponds
3762 /// to the total number of transitions used by each state in this DFA's
3763 /// transition table.
3764 fn stride(&self) -> usize {
3765 1 << self.stride2
3766 }
3767
3768 /// Returns the total number of elements in the alphabet for this
3769 /// transition table. This is always less than or equal to `self.stride()`.
3770 /// It is only equal when the alphabet length is a power of 2. Otherwise,
3771 /// it is always strictly less.
3772 fn alphabet_len(&self) -> usize {
3773 self.classes.alphabet_len()
3774 }
3775
3776 /// Returns true if and only if the given state ID is valid for this
3777 /// transition table. Validity in this context means that the given ID can
3778 /// be used as a valid offset with `self.stride()` to index this transition
3779 /// table.
3780 fn is_valid(&self, id: StateID) -> bool {
3781 let id = id.as_usize();
3782 id < self.table().len() && id % self.stride() == 0
3783 }
3784
3785 /// Return the memory usage, in bytes, of this transition table.
3786 ///
3787 /// This does not include the size of a `TransitionTable` value itself.
3788 fn memory_usage(&self) -> usize {
3789 self.table().len() * StateID::SIZE
3790 }
3791}
3792
3793#[cfg(feature = "dfa-build")]
3794impl<T: AsMut<[u32]>> TransitionTable<T> {
3795 /// Returns the table as a slice of state IDs.
3796 fn table_mut(&mut self) -> &mut [StateID] {
3797 wire::u32s_to_state_ids_mut(self.table.as_mut())
3798 }
3799}
3800
3801/// The set of all possible starting states in a DFA.
3802///
3803/// The set of starting states corresponds to the possible choices one can make
3804/// in terms of starting a DFA. That is, before following the first transition,
3805/// you first need to select the state that you start in.
3806///
3807/// Normally, a DFA converted from an NFA that has a single starting state
3808/// would itself just have one starting state. However, our support for look
3809/// around generally requires more starting states. The correct starting state
3810/// is chosen based on certain properties of the position at which we begin
3811/// our search.
3812///
3813/// Before listing those properties, we first must define two terms:
3814///
3815/// * `haystack` - The bytes to execute the search. The search always starts
3816/// at the beginning of `haystack` and ends before or at the end of
3817/// `haystack`.
3818/// * `context` - The (possibly empty) bytes surrounding `haystack`. `haystack`
3819/// must be contained within `context` such that `context` is at least as big
3820/// as `haystack`.
3821///
3822/// This split is crucial for dealing with look-around. For example, consider
3823/// the context `foobarbaz`, the haystack `bar` and the regex `^bar$`. This
3824/// regex should _not_ match the haystack since `bar` does not appear at the
3825/// beginning of the input. Similarly, the regex `\Bbar\B` should match the
3826/// haystack because `bar` is not surrounded by word boundaries. But a search
3827/// that does not take context into account would not permit `\B` to match
3828/// since the beginning of any string matches a word boundary. Similarly, a
3829/// search that does not take context into account when searching `^bar$` in
3830/// the haystack `bar` would produce a match when it shouldn't.
3831///
3832/// Thus, it follows that the starting state is chosen based on the following
3833/// criteria, derived from the position at which the search starts in the
3834/// `context` (corresponding to the start of `haystack`):
3835///
3836/// 1. If the search starts at the beginning of `context`, then the `Text`
3837/// start state is used. (Since `^` corresponds to
3838/// `hir::Anchor::Start`.)
3839/// 2. If the search starts at a position immediately following a line
3840/// terminator, then the `Line` start state is used. (Since `(?m:^)`
3841/// corresponds to `hir::Anchor::StartLF`.)
3842/// 3. If the search starts at a position immediately following a byte
3843/// classified as a "word" character (`[_0-9a-zA-Z]`), then the `WordByte`
3844/// start state is used. (Since `(?-u:\b)` corresponds to a word boundary.)
3845/// 4. Otherwise, if the search starts at a position immediately following
3846/// a byte that is not classified as a "word" character (`[^_0-9a-zA-Z]`),
3847/// then the `NonWordByte` start state is used. (Since `(?-u:\B)`
3848/// corresponds to a not-word-boundary.)
3849///
3850/// (N.B. Unicode word boundaries are not supported by the DFA because they
3851/// require multi-byte look-around and this is difficult to support in a DFA.)
3852///
3853/// To further complicate things, we also support constructing individual
3854/// anchored start states for each pattern in the DFA. (Which is required to
3855/// implement overlapping regexes correctly, but is also generally useful.)
3856/// Thus, when individual start states for each pattern are enabled, then the
3857/// total number of start states represented is `4 + (4 * #patterns)`, where
3858/// the 4 comes from each of the 4 possibilities above. The first 4 represents
3859/// the starting states for the entire DFA, which support searching for
3860/// multiple patterns simultaneously (possibly unanchored).
3861///
3862/// If individual start states are disabled, then this will only store 4
3863/// start states. Typically, individual start states are only enabled when
3864/// constructing the reverse DFA for regex matching. But they are also useful
3865/// for building DFAs that can search for a specific pattern or even to support
3866/// both anchored and unanchored searches with the same DFA.
3867///
3868/// Note though that while the start table always has either `4` or
3869/// `4 + (4 * #patterns)` starting state *ids*, the total number of states
3870/// might be considerably smaller. That is, many of the IDs may be duplicative.
3871/// (For example, if a regex doesn't have a `\b` sub-pattern, then there's no
3872/// reason to generate a unique starting state for handling word boundaries.
3873/// Similarly for start/end anchors.)
3874#[derive(Clone)]
3875pub(crate) struct StartTable<T> {
3876 /// The initial start state IDs.
3877 ///
3878 /// In practice, T is either `Vec<u32>` or `&[u32]`.
3879 ///
3880 /// The first `2 * stride` (currently always 8) entries always correspond
3881 /// to the starts states for the entire DFA, with the first 4 entries being
3882 /// for unanchored searches and the second 4 entries being for anchored
3883 /// searches. To keep things simple, we always use 8 entries even if the
3884 /// `StartKind` is not both.
3885 ///
3886 /// After that, there are `stride * patterns` state IDs, where `patterns`
3887 /// may be zero in the case of a DFA with no patterns or in the case where
3888 /// the DFA was built without enabling starting states for each pattern.
3889 table: T,
3890 /// The starting state configuration supported. When 'both', both
3891 /// unanchored and anchored searches work. When 'unanchored', anchored
3892 /// searches panic. When 'anchored', unanchored searches panic.
3893 kind: StartKind,
3894 /// The start state configuration for every possible byte.
3895 start_map: StartByteMap,
3896 /// The number of starting state IDs per pattern.
3897 stride: usize,
3898 /// The total number of patterns for which starting states are encoded.
3899 /// This is `None` for DFAs that were built without start states for each
3900 /// pattern. Thus, one cannot use this field to say how many patterns
3901 /// are in the DFA in all cases. It is specific to how many patterns are
3902 /// represented in this start table.
3903 pattern_len: Option<usize>,
3904 /// The universal starting state for unanchored searches. This is only
3905 /// present when the DFA supports unanchored searches and when all starting
3906 /// state IDs for an unanchored search are equivalent.
3907 universal_start_unanchored: Option<StateID>,
3908 /// The universal starting state for anchored searches. This is only
3909 /// present when the DFA supports anchored searches and when all starting
3910 /// state IDs for an anchored search are equivalent.
3911 universal_start_anchored: Option<StateID>,
3912}
3913
3914#[cfg(feature = "dfa-build")]
3915impl StartTable<Vec<u32>> {
3916 /// Create a valid set of start states all pointing to the dead state.
3917 ///
3918 /// When the corresponding DFA is constructed with start states for each
3919 /// pattern, then `patterns` should be the number of patterns. Otherwise,
3920 /// it should be zero.
3921 ///
3922 /// If the total table size could exceed the allocatable limit, then this
3923 /// returns an error. In practice, this is unlikely to be able to occur,
3924 /// since it's likely that allocation would have failed long before it got
3925 /// to this point.
3926 fn dead(
3927 kind: StartKind,
3928 lookm: &LookMatcher,
3929 pattern_len: Option<usize>,
3930 ) -> Result<StartTable<Vec<u32>>, BuildError> {
3931 if let Some(len) = pattern_len {
3932 assert!(len <= PatternID::LIMIT);
3933 }
3934 let stride = Start::len();
3935 // OK because 2*4 is never going to overflow anything.
3936 let starts_len = stride.checked_mul(2).unwrap();
3937 let pattern_starts_len =
3938 match stride.checked_mul(pattern_len.unwrap_or(0)) {
3939 Some(x) => x,
3940 None => return Err(BuildError::too_many_start_states()),
3941 };
3942 let table_len = match starts_len.checked_add(pattern_starts_len) {
3943 Some(x) => x,
3944 None => return Err(BuildError::too_many_start_states()),
3945 };
3946 if let Err(_) = isize::try_from(table_len) {
3947 return Err(BuildError::too_many_start_states());
3948 }
3949 let table = vec![DEAD.as_u32(); table_len];
3950 let start_map = StartByteMap::new(lookm);
3951 Ok(StartTable {
3952 table,
3953 kind,
3954 start_map,
3955 stride,
3956 pattern_len,
3957 universal_start_unanchored: None,
3958 universal_start_anchored: None,
3959 })
3960 }
3961}
3962
3963impl<'a> StartTable<&'a [u32]> {
3964 /// Deserialize a table of start state IDs starting at the beginning of
3965 /// `slice`. Upon success, return the total number of bytes read along with
3966 /// the table of starting state IDs.
3967 ///
3968 /// If there was a problem deserializing any part of the starting IDs,
3969 /// then this returns an error. Notably, if the given slice does not have
3970 /// the same alignment as `StateID`, then this will return an error (among
3971 /// other possible errors).
3972 ///
3973 /// This is guaranteed to execute in constant time.
3974 ///
3975 /// # Safety
3976 ///
3977 /// This routine is not safe because it does not check the validity of the
3978 /// starting state IDs themselves. In particular, the number of starting
3979 /// IDs can be of variable length, so it's possible that checking their
3980 /// validity cannot be done in constant time. An invalid starting state
3981 /// ID is not safe because other code may rely on the starting IDs being
3982 /// correct (such as explicit bounds check elision). Therefore, an invalid
3983 /// start ID can lead to undefined behavior.
3984 ///
3985 /// Callers that use this function must either pass on the safety invariant
3986 /// or guarantee that the bytes given contain valid starting state IDs.
3987 /// This guarantee is upheld by the bytes written by `write_to`.
3988 unsafe fn from_bytes_unchecked(
3989 mut slice: &'a [u8],
3990 ) -> Result<(StartTable<&'a [u32]>, usize), DeserializeError> {
3991 let slice_start = slice.as_ptr().as_usize();
3992
3993 let (kind, nr) = StartKind::from_bytes(slice)?;
3994 slice = &slice[nr..];
3995
3996 let (start_map, nr) = StartByteMap::from_bytes(slice)?;
3997 slice = &slice[nr..];
3998
3999 let (stride, nr) =
4000 wire::try_read_u32_as_usize(slice, "start table stride")?;
4001 slice = &slice[nr..];
4002 if stride != Start::len() {
4003 return Err(DeserializeError::generic(
4004 "invalid starting table stride",
4005 ));
4006 }
4007
4008 let (maybe_pattern_len, nr) =
4009 wire::try_read_u32_as_usize(slice, "start table patterns")?;
4010 slice = &slice[nr..];
4011 let pattern_len = if maybe_pattern_len.as_u32() == u32::MAX {
4012 None
4013 } else {
4014 Some(maybe_pattern_len)
4015 };
4016 if pattern_len.map_or(false, |len| len > PatternID::LIMIT) {
4017 return Err(DeserializeError::generic(
4018 "invalid number of patterns",
4019 ));
4020 }
4021
4022 let (universal_unanchored, nr) =
4023 wire::try_read_u32(slice, "universal unanchored start")?;
4024 slice = &slice[nr..];
4025 let universal_start_unanchored = if universal_unanchored == u32::MAX {
4026 None
4027 } else {
4028 Some(StateID::try_from(universal_unanchored).map_err(|e| {
4029 DeserializeError::state_id_error(
4030 e,
4031 "universal unanchored start",
4032 )
4033 })?)
4034 };
4035
4036 let (universal_anchored, nr) =
4037 wire::try_read_u32(slice, "universal anchored start")?;
4038 slice = &slice[nr..];
4039 let universal_start_anchored = if universal_anchored == u32::MAX {
4040 None
4041 } else {
4042 Some(StateID::try_from(universal_anchored).map_err(|e| {
4043 DeserializeError::state_id_error(e, "universal anchored start")
4044 })?)
4045 };
4046
4047 let pattern_table_size = wire::mul(
4048 stride,
4049 pattern_len.unwrap_or(0),
4050 "invalid pattern length",
4051 )?;
4052 // Our start states always start with a two stride of start states for
4053 // the entire automaton. The first stride is for unanchored starting
4054 // states and the second stride is for anchored starting states. What
4055 // follows it are an optional set of start states for each pattern.
4056 let start_state_len = wire::add(
4057 wire::mul(2, stride, "start state stride too big")?,
4058 pattern_table_size,
4059 "invalid 'any' pattern starts size",
4060 )?;
4061 let table_bytes_len = wire::mul(
4062 start_state_len,
4063 StateID::SIZE,
4064 "pattern table bytes length",
4065 )?;
4066 wire::check_slice_len(slice, table_bytes_len, "start ID table")?;
4067 wire::check_alignment::<StateID>(slice)?;
4068 let table_bytes = &slice[..table_bytes_len];
4069 slice = &slice[table_bytes_len..];
4070 // SAFETY: Since StateID is always representable as a u32, all we need
4071 // to do is ensure that we have the proper length and alignment. We've
4072 // checked both above, so the cast below is safe.
4073 //
4074 // N.B. This is the only not-safe code in this function.
4075 let table = core::slice::from_raw_parts(
4076 table_bytes.as_ptr().cast::<u32>(),
4077 start_state_len,
4078 );
4079 let st = StartTable {
4080 table,
4081 kind,
4082 start_map,
4083 stride,
4084 pattern_len,
4085 universal_start_unanchored,
4086 universal_start_anchored,
4087 };
4088 Ok((st, slice.as_ptr().as_usize() - slice_start))
4089 }
4090}
4091
4092impl<T: AsRef<[u32]>> StartTable<T> {
4093 /// Writes a serialized form of this start table to the buffer given. If
4094 /// the buffer is too small, then an error is returned. To determine how
4095 /// big the buffer must be, use `write_to_len`.
4096 fn write_to<E: Endian>(
4097 &self,
4098 mut dst: &mut [u8],
4099 ) -> Result<usize, SerializeError> {
4100 let nwrite = self.write_to_len();
4101 if dst.len() < nwrite {
4102 return Err(SerializeError::buffer_too_small(
4103 "starting table ids",
4104 ));
4105 }
4106 dst = &mut dst[..nwrite];
4107
4108 // write start kind
4109 let nw = self.kind.write_to::<E>(dst)?;
4110 dst = &mut dst[nw..];
4111 // write start byte map
4112 let nw = self.start_map.write_to(dst)?;
4113 dst = &mut dst[nw..];
4114 // write stride
4115 // Unwrap is OK since the stride is always 4 (currently).
4116 E::write_u32(u32::try_from(self.stride).unwrap(), dst);
4117 dst = &mut dst[size_of::<u32>()..];
4118 // write pattern length
4119 // Unwrap is OK since number of patterns is guaranteed to fit in a u32.
4120 E::write_u32(
4121 u32::try_from(self.pattern_len.unwrap_or(0xFFFF_FFFF)).unwrap(),
4122 dst,
4123 );
4124 dst = &mut dst[size_of::<u32>()..];
4125 // write universal start unanchored state id, u32::MAX if absent
4126 E::write_u32(
4127 self.universal_start_unanchored
4128 .map_or(u32::MAX, |sid| sid.as_u32()),
4129 dst,
4130 );
4131 dst = &mut dst[size_of::<u32>()..];
4132 // write universal start anchored state id, u32::MAX if absent
4133 E::write_u32(
4134 self.universal_start_anchored.map_or(u32::MAX, |sid| sid.as_u32()),
4135 dst,
4136 );
4137 dst = &mut dst[size_of::<u32>()..];
4138 // write start IDs
4139 for &sid in self.table() {
4140 let n = wire::write_state_id::<E>(sid, &mut dst);
4141 dst = &mut dst[n..];
4142 }
4143 Ok(nwrite)
4144 }
4145
4146 /// Returns the number of bytes the serialized form of this start ID table
4147 /// will use.
4148 fn write_to_len(&self) -> usize {
4149 self.kind.write_to_len()
4150 + self.start_map.write_to_len()
4151 + size_of::<u32>() // stride
4152 + size_of::<u32>() // # patterns
4153 + size_of::<u32>() // universal unanchored start
4154 + size_of::<u32>() // universal anchored start
4155 + (self.table().len() * StateID::SIZE)
4156 }
4157
4158 /// Validates that every state ID in this start table is valid by checking
4159 /// it against the given transition table (which must be for the same DFA).
4160 ///
4161 /// That is, every state ID can be used to correctly index a state.
4162 fn validate(&self, dfa: &DFA<T>) -> Result<(), DeserializeError> {
4163 let tt = &dfa.tt;
4164 if !self.universal_start_unanchored.map_or(true, |s| tt.is_valid(s)) {
4165 return Err(DeserializeError::generic(
4166 "found invalid universal unanchored starting state ID",
4167 ));
4168 }
4169 if !self.universal_start_anchored.map_or(true, |s| tt.is_valid(s)) {
4170 return Err(DeserializeError::generic(
4171 "found invalid universal anchored starting state ID",
4172 ));
4173 }
4174 for &id in self.table() {
4175 if !tt.is_valid(id) {
4176 return Err(DeserializeError::generic(
4177 "found invalid starting state ID",
4178 ));
4179 }
4180 }
4181 Ok(())
4182 }
4183
4184 /// Converts this start list to a borrowed value.
4185 fn as_ref(&self) -> StartTable<&'_ [u32]> {
4186 StartTable {
4187 table: self.table.as_ref(),
4188 kind: self.kind,
4189 start_map: self.start_map.clone(),
4190 stride: self.stride,
4191 pattern_len: self.pattern_len,
4192 universal_start_unanchored: self.universal_start_unanchored,
4193 universal_start_anchored: self.universal_start_anchored,
4194 }
4195 }
4196
4197 /// Converts this start list to an owned value.
4198 #[cfg(feature = "alloc")]
4199 fn to_owned(&self) -> StartTable<alloc::vec::Vec<u32>> {
4200 StartTable {
4201 table: self.table.as_ref().to_vec(),
4202 kind: self.kind,
4203 start_map: self.start_map.clone(),
4204 stride: self.stride,
4205 pattern_len: self.pattern_len,
4206 universal_start_unanchored: self.universal_start_unanchored,
4207 universal_start_anchored: self.universal_start_anchored,
4208 }
4209 }
4210
4211 /// Return the start state for the given input and starting configuration.
4212 /// This returns an error if the input configuration is not supported by
4213 /// this DFA. For example, requesting an unanchored search when the DFA was
4214 /// not built with unanchored starting states. Or asking for an anchored
4215 /// pattern search with an invalid pattern ID or on a DFA that was not
4216 /// built with start states for each pattern.
4217 #[cfg_attr(feature = "perf-inline", inline(always))]
4218 fn start(
4219 &self,
4220 anchored: Anchored,
4221 start: Start,
4222 ) -> Result<StateID, StartError> {
4223 let start_index = start.as_usize();
4224 let index = match anchored {
4225 Anchored::No => {
4226 if !self.kind.has_unanchored() {
4227 return Err(StartError::unsupported_anchored(anchored));
4228 }
4229 start_index
4230 }
4231 Anchored::Yes => {
4232 if !self.kind.has_anchored() {
4233 return Err(StartError::unsupported_anchored(anchored));
4234 }
4235 self.stride + start_index
4236 }
4237 Anchored::Pattern(pid) => {
4238 let len = match self.pattern_len {
4239 None => {
4240 return Err(StartError::unsupported_anchored(anchored))
4241 }
4242 Some(len) => len,
4243 };
4244 if pid.as_usize() >= len {
4245 return Ok(DEAD);
4246 }
4247 (2 * self.stride)
4248 + (self.stride * pid.as_usize())
4249 + start_index
4250 }
4251 };
4252 Ok(self.table()[index])
4253 }
4254
4255 /// Returns an iterator over all start state IDs in this table.
4256 ///
4257 /// Each item is a triple of: start state ID, the start state type and the
4258 /// pattern ID (if any).
4259 fn iter(&self) -> StartStateIter<'_> {
4260 StartStateIter { st: self.as_ref(), i: 0 }
4261 }
4262
4263 /// Returns the table as a slice of state IDs.
4264 fn table(&self) -> &[StateID] {
4265 wire::u32s_to_state_ids(self.table.as_ref())
4266 }
4267
4268 /// Return the memory usage, in bytes, of this start list.
4269 ///
4270 /// This does not include the size of a `StartList` value itself.
4271 fn memory_usage(&self) -> usize {
4272 self.table().len() * StateID::SIZE
4273 }
4274}
4275
4276#[cfg(feature = "dfa-build")]
4277impl<T: AsMut<[u32]>> StartTable<T> {
4278 /// Set the start state for the given index and pattern.
4279 ///
4280 /// If the pattern ID or state ID are not valid, then this will panic.
4281 fn set_start(&mut self, anchored: Anchored, start: Start, id: StateID) {
4282 let start_index = start.as_usize();
4283 let index = match anchored {
4284 Anchored::No => start_index,
4285 Anchored::Yes => self.stride + start_index,
4286 Anchored::Pattern(pid) => {
4287 let pid = pid.as_usize();
4288 let len = self
4289 .pattern_len
4290 .expect("start states for each pattern enabled");
4291 assert!(pid < len, "invalid pattern ID {pid:?}");
4292 self.stride
4293 .checked_mul(pid)
4294 .unwrap()
4295 .checked_add(self.stride.checked_mul(2).unwrap())
4296 .unwrap()
4297 .checked_add(start_index)
4298 .unwrap()
4299 }
4300 };
4301 self.table_mut()[index] = id;
4302 }
4303
4304 /// Returns the table as a mutable slice of state IDs.
4305 fn table_mut(&mut self) -> &mut [StateID] {
4306 wire::u32s_to_state_ids_mut(self.table.as_mut())
4307 }
4308}
4309
4310/// An iterator over start state IDs.
4311///
4312/// This iterator yields a triple of start state ID, the anchored mode and the
4313/// start state type. If a pattern ID is relevant, then the anchored mode will
4314/// contain it. Start states with an anchored mode containing a pattern ID will
4315/// only occur when the DFA was compiled with start states for each pattern
4316/// (which is disabled by default).
4317pub(crate) struct StartStateIter<'a> {
4318 st: StartTable<&'a [u32]>,
4319 i: usize,
4320}
4321
4322impl<'a> Iterator for StartStateIter<'a> {
4323 type Item = (StateID, Anchored, Start);
4324
4325 fn next(&mut self) -> Option<(StateID, Anchored, Start)> {
4326 let i = self.i;
4327 let table = self.st.table();
4328 if i >= table.len() {
4329 return None;
4330 }
4331 self.i += 1;
4332
4333 // This unwrap is okay since the stride of the starting state table
4334 // must always match the number of start state types.
4335 let start_type = Start::from_usize(i % self.st.stride).unwrap();
4336 let anchored = if i < self.st.stride {
4337 Anchored::No
4338 } else if i < (2 * self.st.stride) {
4339 Anchored::Yes
4340 } else {
4341 let pid = (i - (2 * self.st.stride)) / self.st.stride;
4342 Anchored::Pattern(PatternID::new(pid).unwrap())
4343 };
4344 Some((table[i], anchored, start_type))
4345 }
4346}
4347
4348/// This type represents that patterns that should be reported whenever a DFA
4349/// enters a match state. This structure exists to support DFAs that search for
4350/// matches for multiple regexes.
4351///
4352/// This structure relies on the fact that all match states in a DFA occur
4353/// contiguously in the DFA's transition table. (See dfa/special.rs for a more
4354/// detailed breakdown of the representation.) Namely, when a match occurs, we
4355/// know its state ID. Since we know the start and end of the contiguous region
4356/// of match states, we can use that to compute the position at which the match
4357/// state occurs. That in turn is used as an offset into this structure.
4358#[derive(Clone, Debug)]
4359struct MatchStates<T> {
4360 /// Slices is a flattened sequence of pairs, where each pair points to a
4361 /// sub-slice of pattern_ids. The first element of the pair is an offset
4362 /// into pattern_ids and the second element of the pair is the number
4363 /// of 32-bit pattern IDs starting at that position. That is, each pair
4364 /// corresponds to a single DFA match state and its corresponding match
4365 /// IDs. The number of pairs always corresponds to the number of distinct
4366 /// DFA match states.
4367 ///
4368 /// In practice, T is either Vec<u32> or &[u32].
4369 slices: T,
4370 /// A flattened sequence of pattern IDs for each DFA match state. The only
4371 /// way to correctly read this sequence is indirectly via `slices`.
4372 ///
4373 /// In practice, T is either Vec<u32> or &[u32].
4374 pattern_ids: T,
4375 /// The total number of unique patterns represented by these match states.
4376 pattern_len: usize,
4377}
4378
4379impl<'a> MatchStates<&'a [u32]> {
4380 unsafe fn from_bytes_unchecked(
4381 mut slice: &'a [u8],
4382 ) -> Result<(MatchStates<&'a [u32]>, usize), DeserializeError> {
4383 let slice_start = slice.as_ptr().as_usize();
4384
4385 // Read the total number of match states.
4386 let (state_len, nr) =
4387 wire::try_read_u32_as_usize(slice, "match state length")?;
4388 slice = &slice[nr..];
4389
4390 // Read the slice start/length pairs.
4391 let pair_len = wire::mul(2, state_len, "match state offset pairs")?;
4392 let slices_bytes_len = wire::mul(
4393 pair_len,
4394 PatternID::SIZE,
4395 "match state slice offset byte length",
4396 )?;
4397 wire::check_slice_len(slice, slices_bytes_len, "match state slices")?;
4398 wire::check_alignment::<PatternID>(slice)?;
4399 let slices_bytes = &slice[..slices_bytes_len];
4400 slice = &slice[slices_bytes_len..];
4401 // SAFETY: Since PatternID is always representable as a u32, all we
4402 // need to do is ensure that we have the proper length and alignment.
4403 // We've checked both above, so the cast below is safe.
4404 //
4405 // N.B. This is one of the few not-safe snippets in this function,
4406 // so we mark it explicitly to call it out.
4407 let slices = core::slice::from_raw_parts(
4408 slices_bytes.as_ptr().cast::<u32>(),
4409 pair_len,
4410 );
4411
4412 // Read the total number of unique pattern IDs (which is always 1 more
4413 // than the maximum pattern ID in this automaton, since pattern IDs are
4414 // handed out contiguously starting at 0).
4415 let (pattern_len, nr) =
4416 wire::try_read_u32_as_usize(slice, "pattern length")?;
4417 slice = &slice[nr..];
4418
4419 // Now read the pattern ID length. We don't need to store this
4420 // explicitly, but we need it to know how many pattern IDs to read.
4421 let (idlen, nr) =
4422 wire::try_read_u32_as_usize(slice, "pattern ID length")?;
4423 slice = &slice[nr..];
4424
4425 // Read the actual pattern IDs.
4426 let pattern_ids_len =
4427 wire::mul(idlen, PatternID::SIZE, "pattern ID byte length")?;
4428 wire::check_slice_len(slice, pattern_ids_len, "match pattern IDs")?;
4429 wire::check_alignment::<PatternID>(slice)?;
4430 let pattern_ids_bytes = &slice[..pattern_ids_len];
4431 slice = &slice[pattern_ids_len..];
4432 // SAFETY: Since PatternID is always representable as a u32, all we
4433 // need to do is ensure that we have the proper length and alignment.
4434 // We've checked both above, so the cast below is safe.
4435 //
4436 // N.B. This is one of the few not-safe snippets in this function,
4437 // so we mark it explicitly to call it out.
4438 let pattern_ids = core::slice::from_raw_parts(
4439 pattern_ids_bytes.as_ptr().cast::<u32>(),
4440 idlen,
4441 );
4442
4443 let ms = MatchStates { slices, pattern_ids, pattern_len };
4444 Ok((ms, slice.as_ptr().as_usize() - slice_start))
4445 }
4446}
4447
4448#[cfg(feature = "dfa-build")]
4449impl MatchStates<Vec<u32>> {
4450 fn empty(pattern_len: usize) -> MatchStates<Vec<u32>> {
4451 assert!(pattern_len <= PatternID::LIMIT);
4452 MatchStates { slices: vec![], pattern_ids: vec![], pattern_len }
4453 }
4454
4455 fn new(
4456 matches: &BTreeMap<StateID, Vec<PatternID>>,
4457 pattern_len: usize,
4458 ) -> Result<MatchStates<Vec<u32>>, BuildError> {
4459 let mut m = MatchStates::empty(pattern_len);
4460 for (_, pids) in matches.iter() {
4461 let start = PatternID::new(m.pattern_ids.len())
4462 .map_err(|_| BuildError::too_many_match_pattern_ids())?;
4463 m.slices.push(start.as_u32());
4464 // This is always correct since the number of patterns in a single
4465 // match state can never exceed maximum number of allowable
4466 // patterns. Why? Because a pattern can only appear once in a
4467 // particular match state, by construction. (And since our pattern
4468 // ID limit is one less than u32::MAX, we're guaranteed that the
4469 // length fits in a u32.)
4470 m.slices.push(u32::try_from(pids.len()).unwrap());
4471 for &pid in pids {
4472 m.pattern_ids.push(pid.as_u32());
4473 }
4474 }
4475 m.pattern_len = pattern_len;
4476 Ok(m)
4477 }
4478
4479 fn new_with_map(
4480 &self,
4481 matches: &BTreeMap<StateID, Vec<PatternID>>,
4482 ) -> Result<MatchStates<Vec<u32>>, BuildError> {
4483 MatchStates::new(matches, self.pattern_len)
4484 }
4485}
4486
4487impl<T: AsRef<[u32]>> MatchStates<T> {
4488 /// Writes a serialized form of these match states to the buffer given. If
4489 /// the buffer is too small, then an error is returned. To determine how
4490 /// big the buffer must be, use `write_to_len`.
4491 fn write_to<E: Endian>(
4492 &self,
4493 mut dst: &mut [u8],
4494 ) -> Result<usize, SerializeError> {
4495 let nwrite = self.write_to_len();
4496 if dst.len() < nwrite {
4497 return Err(SerializeError::buffer_too_small("match states"));
4498 }
4499 dst = &mut dst[..nwrite];
4500
4501 // write state ID length
4502 // Unwrap is OK since number of states is guaranteed to fit in a u32.
4503 E::write_u32(u32::try_from(self.len()).unwrap(), dst);
4504 dst = &mut dst[size_of::<u32>()..];
4505
4506 // write slice offset pairs
4507 for &pid in self.slices() {
4508 let n = wire::write_pattern_id::<E>(pid, &mut dst);
4509 dst = &mut dst[n..];
4510 }
4511
4512 // write unique pattern ID length
4513 // Unwrap is OK since number of patterns is guaranteed to fit in a u32.
4514 E::write_u32(u32::try_from(self.pattern_len).unwrap(), dst);
4515 dst = &mut dst[size_of::<u32>()..];
4516
4517 // write pattern ID length
4518 // Unwrap is OK since we check at construction (and deserialization)
4519 // that the number of patterns is representable as a u32.
4520 E::write_u32(u32::try_from(self.pattern_ids().len()).unwrap(), dst);
4521 dst = &mut dst[size_of::<u32>()..];
4522
4523 // write pattern IDs
4524 for &pid in self.pattern_ids() {
4525 let n = wire::write_pattern_id::<E>(pid, &mut dst);
4526 dst = &mut dst[n..];
4527 }
4528
4529 Ok(nwrite)
4530 }
4531
4532 /// Returns the number of bytes the serialized form of these match states
4533 /// will use.
4534 fn write_to_len(&self) -> usize {
4535 size_of::<u32>() // match state length
4536 + (self.slices().len() * PatternID::SIZE)
4537 + size_of::<u32>() // unique pattern ID length
4538 + size_of::<u32>() // pattern ID length
4539 + (self.pattern_ids().len() * PatternID::SIZE)
4540 }
4541
4542 /// Validates that the match state info is itself internally consistent and
4543 /// consistent with the recorded match state region in the given DFA.
4544 fn validate(&self, dfa: &DFA<T>) -> Result<(), DeserializeError> {
4545 if self.len() != dfa.special.match_len(dfa.stride()) {
4546 return Err(DeserializeError::generic(
4547 "match state length mismatch",
4548 ));
4549 }
4550 for si in 0..self.len() {
4551 let start = self.slices()[si * 2].as_usize();
4552 let len = self.slices()[si * 2 + 1].as_usize();
4553 if start >= self.pattern_ids().len() {
4554 return Err(DeserializeError::generic(
4555 "invalid pattern ID start offset",
4556 ));
4557 }
4558 if start + len > self.pattern_ids().len() {
4559 return Err(DeserializeError::generic(
4560 "invalid pattern ID length",
4561 ));
4562 }
4563 for mi in 0..len {
4564 let pid = self.pattern_id(si, mi);
4565 if pid.as_usize() >= self.pattern_len {
4566 return Err(DeserializeError::generic(
4567 "invalid pattern ID",
4568 ));
4569 }
4570 }
4571 }
4572 Ok(())
4573 }
4574
4575 /// Converts these match states back into their map form. This is useful
4576 /// when shuffling states, as the normal MatchStates representation is not
4577 /// amenable to easy state swapping. But with this map, to swap id1 and
4578 /// id2, all you need to do is:
4579 ///
4580 /// if let Some(pids) = map.remove(&id1) {
4581 /// map.insert(id2, pids);
4582 /// }
4583 ///
4584 /// Once shuffling is done, use MatchStates::new to convert back.
4585 #[cfg(feature = "dfa-build")]
4586 fn to_map(&self, dfa: &DFA<T>) -> BTreeMap<StateID, Vec<PatternID>> {
4587 let mut map = BTreeMap::new();
4588 for i in 0..self.len() {
4589 let mut pids = vec![];
4590 for j in 0..self.pattern_len(i) {
4591 pids.push(self.pattern_id(i, j));
4592 }
4593 map.insert(self.match_state_id(dfa, i), pids);
4594 }
4595 map
4596 }
4597
4598 /// Converts these match states to a borrowed value.
4599 fn as_ref(&self) -> MatchStates<&'_ [u32]> {
4600 MatchStates {
4601 slices: self.slices.as_ref(),
4602 pattern_ids: self.pattern_ids.as_ref(),
4603 pattern_len: self.pattern_len,
4604 }
4605 }
4606
4607 /// Converts these match states to an owned value.
4608 #[cfg(feature = "alloc")]
4609 fn to_owned(&self) -> MatchStates<alloc::vec::Vec<u32>> {
4610 MatchStates {
4611 slices: self.slices.as_ref().to_vec(),
4612 pattern_ids: self.pattern_ids.as_ref().to_vec(),
4613 pattern_len: self.pattern_len,
4614 }
4615 }
4616
4617 /// Returns the match state ID given the match state index. (Where the
4618 /// first match state corresponds to index 0.)
4619 ///
4620 /// This panics if there is no match state at the given index.
4621 fn match_state_id(&self, dfa: &DFA<T>, index: usize) -> StateID {
4622 assert!(dfa.special.matches(), "no match states to index");
4623 // This is one of the places where we rely on the fact that match
4624 // states are contiguous in the transition table. Namely, that the
4625 // first match state ID always corresponds to dfa.special.min_start.
4626 // From there, since we know the stride, we can compute the ID of any
4627 // match state given its index.
4628 let stride2 = u32::try_from(dfa.stride2()).unwrap();
4629 let offset = index.checked_shl(stride2).unwrap();
4630 let id = dfa.special.min_match.as_usize().checked_add(offset).unwrap();
4631 let sid = StateID::new(id).unwrap();
4632 assert!(dfa.is_match_state(sid));
4633 sid
4634 }
4635
4636 /// Returns the pattern ID at the given match index for the given match
4637 /// state.
4638 ///
4639 /// The match state index is the state index minus the state index of the
4640 /// first match state in the DFA.
4641 ///
4642 /// The match index is the index of the pattern ID for the given state.
4643 /// The index must be less than `self.pattern_len(state_index)`.
4644 #[cfg_attr(feature = "perf-inline", inline(always))]
4645 fn pattern_id(&self, state_index: usize, match_index: usize) -> PatternID {
4646 self.pattern_id_slice(state_index)[match_index]
4647 }
4648
4649 /// Returns the number of patterns in the given match state.
4650 ///
4651 /// The match state index is the state index minus the state index of the
4652 /// first match state in the DFA.
4653 #[cfg_attr(feature = "perf-inline", inline(always))]
4654 fn pattern_len(&self, state_index: usize) -> usize {
4655 self.slices()[state_index * 2 + 1].as_usize()
4656 }
4657
4658 /// Returns all of the pattern IDs for the given match state index.
4659 ///
4660 /// The match state index is the state index minus the state index of the
4661 /// first match state in the DFA.
4662 #[cfg_attr(feature = "perf-inline", inline(always))]
4663 fn pattern_id_slice(&self, state_index: usize) -> &[PatternID] {
4664 let start = self.slices()[state_index * 2].as_usize();
4665 let len = self.pattern_len(state_index);
4666 &self.pattern_ids()[start..start + len]
4667 }
4668
4669 /// Returns the pattern ID offset slice of u32 as a slice of PatternID.
4670 #[cfg_attr(feature = "perf-inline", inline(always))]
4671 fn slices(&self) -> &[PatternID] {
4672 wire::u32s_to_pattern_ids(self.slices.as_ref())
4673 }
4674
4675 /// Returns the total number of match states.
4676 #[cfg_attr(feature = "perf-inline", inline(always))]
4677 fn len(&self) -> usize {
4678 assert_eq!(0, self.slices().len() % 2);
4679 self.slices().len() / 2
4680 }
4681
4682 /// Returns the pattern ID slice of u32 as a slice of PatternID.
4683 #[cfg_attr(feature = "perf-inline", inline(always))]
4684 fn pattern_ids(&self) -> &[PatternID] {
4685 wire::u32s_to_pattern_ids(self.pattern_ids.as_ref())
4686 }
4687
4688 /// Return the memory usage, in bytes, of these match pairs.
4689 fn memory_usage(&self) -> usize {
4690 (self.slices().len() + self.pattern_ids().len()) * PatternID::SIZE
4691 }
4692}
4693
4694/// A common set of flags for both dense and sparse DFAs. This primarily
4695/// centralizes the serialization format of these flags at a bitset.
4696#[derive(Clone, Copy, Debug)]
4697pub(crate) struct Flags {
4698 /// Whether the DFA can match the empty string. When this is false, all
4699 /// matches returned by this DFA are guaranteed to have non-zero length.
4700 pub(crate) has_empty: bool,
4701 /// Whether the DFA should only produce matches with spans that correspond
4702 /// to valid UTF-8. This also includes omitting any zero-width matches that
4703 /// split the UTF-8 encoding of a codepoint.
4704 pub(crate) is_utf8: bool,
4705 /// Whether the DFA is always anchored or not, regardless of `Input`
4706 /// configuration. This is useful for avoiding a reverse scan even when
4707 /// executing unanchored searches.
4708 pub(crate) is_always_start_anchored: bool,
4709}
4710
4711impl Flags {
4712 /// Creates a set of flags for a DFA from an NFA.
4713 ///
4714 /// N.B. This constructor was defined at the time of writing because all
4715 /// of the flags are derived directly from the NFA. If this changes in the
4716 /// future, we might be more thoughtful about how the `Flags` value is
4717 /// itself built.
4718 #[cfg(feature = "dfa-build")]
4719 fn from_nfa(nfa: &thompson::NFA) -> Flags {
4720 Flags {
4721 has_empty: nfa.has_empty(),
4722 is_utf8: nfa.is_utf8(),
4723 is_always_start_anchored: nfa.is_always_start_anchored(),
4724 }
4725 }
4726
4727 /// Deserializes the flags from the given slice. On success, this also
4728 /// returns the number of bytes read from the slice.
4729 pub(crate) fn from_bytes(
4730 slice: &[u8],
4731 ) -> Result<(Flags, usize), DeserializeError> {
4732 let (bits, nread) = wire::try_read_u32(slice, "flag bitset")?;
4733 let flags = Flags {
4734 has_empty: bits & (1 << 0) != 0,
4735 is_utf8: bits & (1 << 1) != 0,
4736 is_always_start_anchored: bits & (1 << 2) != 0,
4737 };
4738 Ok((flags, nread))
4739 }
4740
4741 /// Writes these flags to the given byte slice. If the buffer is too small,
4742 /// then an error is returned. To determine how big the buffer must be,
4743 /// use `write_to_len`.
4744 pub(crate) fn write_to<E: Endian>(
4745 &self,
4746 dst: &mut [u8],
4747 ) -> Result<usize, SerializeError> {
4748 fn bool_to_int(b: bool) -> u32 {
4749 if b {
4750 1
4751 } else {
4752 0
4753 }
4754 }
4755
4756 let nwrite = self.write_to_len();
4757 if dst.len() < nwrite {
4758 return Err(SerializeError::buffer_too_small("flag bitset"));
4759 }
4760 let bits = (bool_to_int(self.has_empty) << 0)
4761 | (bool_to_int(self.is_utf8) << 1)
4762 | (bool_to_int(self.is_always_start_anchored) << 2);
4763 E::write_u32(bits, dst);
4764 Ok(nwrite)
4765 }
4766
4767 /// Returns the number of bytes the serialized form of these flags
4768 /// will use.
4769 pub(crate) fn write_to_len(&self) -> usize {
4770 size_of::<u32>()
4771 }
4772}
4773
4774/// An iterator over all states in a DFA.
4775///
4776/// This iterator yields a tuple for each state. The first element of the
4777/// tuple corresponds to a state's identifier, and the second element
4778/// corresponds to the state itself (comprised of its transitions).
4779///
4780/// `'a` corresponding to the lifetime of original DFA, `T` corresponds to
4781/// the type of the transition table itself.
4782pub(crate) struct StateIter<'a, T> {
4783 tt: &'a TransitionTable<T>,
4784 it: iter::Enumerate<slice::Chunks<'a, StateID>>,
4785}
4786
4787impl<'a, T: AsRef<[u32]>> Iterator for StateIter<'a, T> {
4788 type Item = State<'a>;
4789
4790 fn next(&mut self) -> Option<State<'a>> {
4791 self.it.next().map(|(index, _)| {
4792 let id = self.tt.to_state_id(index);
4793 self.tt.state(id)
4794 })
4795 }
4796}
4797
4798/// An immutable representation of a single DFA state.
4799///
4800/// `'a` corresponding to the lifetime of a DFA's transition table.
4801pub(crate) struct State<'a> {
4802 id: StateID,
4803 stride2: usize,
4804 transitions: &'a [StateID],
4805}
4806
4807impl<'a> State<'a> {
4808 /// Return an iterator over all transitions in this state. This yields
4809 /// a number of transitions equivalent to the alphabet length of the
4810 /// corresponding DFA.
4811 ///
4812 /// Each transition is represented by a tuple. The first element is
4813 /// the input byte for that transition and the second element is the
4814 /// transitions itself.
4815 pub(crate) fn transitions(&self) -> StateTransitionIter<'_> {
4816 StateTransitionIter {
4817 len: self.transitions.len(),
4818 it: self.transitions.iter().enumerate(),
4819 }
4820 }
4821
4822 /// Return an iterator over a sparse representation of the transitions in
4823 /// this state. Only non-dead transitions are returned.
4824 ///
4825 /// The "sparse" representation in this case corresponds to a sequence of
4826 /// triples. The first two elements of the triple comprise an inclusive
4827 /// byte range while the last element corresponds to the transition taken
4828 /// for all bytes in the range.
4829 ///
4830 /// This is somewhat more condensed than the classical sparse
4831 /// representation (where you have an element for every non-dead
4832 /// transition), but in practice, checking if a byte is in a range is very
4833 /// cheap and using ranges tends to conserve quite a bit more space.
4834 pub(crate) fn sparse_transitions(&self) -> StateSparseTransitionIter<'_> {
4835 StateSparseTransitionIter { dense: self.transitions(), cur: None }
4836 }
4837
4838 /// Returns the identifier for this state.
4839 pub(crate) fn id(&self) -> StateID {
4840 self.id
4841 }
4842
4843 /// Analyzes this state to determine whether it can be accelerated. If so,
4844 /// it returns an accelerator that contains at least one byte.
4845 #[cfg(feature = "dfa-build")]
4846 fn accelerate(&self, classes: &ByteClasses) -> Option<Accel> {
4847 // We just try to add bytes to our accelerator. Once adding fails
4848 // (because we've added too many bytes), then give up.
4849 let mut accel = Accel::new();
4850 for (class, id) in self.transitions() {
4851 if id == self.id() {
4852 continue;
4853 }
4854 for unit in classes.elements(class) {
4855 if let Some(byte) = unit.as_u8() {
4856 if !accel.add(byte) {
4857 return None;
4858 }
4859 }
4860 }
4861 }
4862 if accel.is_empty() {
4863 None
4864 } else {
4865 Some(accel)
4866 }
4867 }
4868}
4869
4870impl<'a> fmt::Debug for State<'a> {
4871 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4872 for (i, (start, end, sid)) in self.sparse_transitions().enumerate() {
4873 let id = if f.alternate() {
4874 sid.as_usize()
4875 } else {
4876 sid.as_usize() >> self.stride2
4877 };
4878 if i > 0 {
4879 write!(f, ", ")?;
4880 }
4881 if start == end {
4882 write!(f, "{start:?} => {id:?}")?;
4883 } else {
4884 write!(f, "{start:?}-{end:?} => {id:?}")?;
4885 }
4886 }
4887 Ok(())
4888 }
4889}
4890
4891/// An iterator over all transitions in a single DFA state. This yields
4892/// a number of transitions equivalent to the alphabet length of the
4893/// corresponding DFA.
4894///
4895/// Each transition is represented by a tuple. The first element is the input
4896/// byte for that transition and the second element is the transition itself.
4897#[derive(Debug)]
4898pub(crate) struct StateTransitionIter<'a> {
4899 len: usize,
4900 it: iter::Enumerate<slice::Iter<'a, StateID>>,
4901}
4902
4903impl<'a> Iterator for StateTransitionIter<'a> {
4904 type Item = (alphabet::Unit, StateID);
4905
4906 fn next(&mut self) -> Option<(alphabet::Unit, StateID)> {
4907 self.it.next().map(|(i, &id)| {
4908 let unit = if i + 1 == self.len {
4909 alphabet::Unit::eoi(i)
4910 } else {
4911 let b = u8::try_from(i)
4912 .expect("raw byte alphabet is never exceeded");
4913 alphabet::Unit::u8(b)
4914 };
4915 (unit, id)
4916 })
4917 }
4918}
4919
4920/// An iterator over all non-DEAD transitions in a single DFA state using a
4921/// sparse representation.
4922///
4923/// Each transition is represented by a triple. The first two elements of the
4924/// triple comprise an inclusive byte range while the last element corresponds
4925/// to the transition taken for all bytes in the range.
4926///
4927/// As a convenience, this always returns `alphabet::Unit` values of the same
4928/// type. That is, you'll never get a (byte, EOI) or a (EOI, byte). Only (byte,
4929/// byte) and (EOI, EOI) values are yielded.
4930#[derive(Debug)]
4931pub(crate) struct StateSparseTransitionIter<'a> {
4932 dense: StateTransitionIter<'a>,
4933 cur: Option<(alphabet::Unit, alphabet::Unit, StateID)>,
4934}
4935
4936impl<'a> Iterator for StateSparseTransitionIter<'a> {
4937 type Item = (alphabet::Unit, alphabet::Unit, StateID);
4938
4939 fn next(&mut self) -> Option<(alphabet::Unit, alphabet::Unit, StateID)> {
4940 while let Some((unit, next)) = self.dense.next() {
4941 let (prev_start, prev_end, prev_next) = match self.cur {
4942 Some(t) => t,
4943 None => {
4944 self.cur = Some((unit, unit, next));
4945 continue;
4946 }
4947 };
4948 if prev_next == next && !unit.is_eoi() {
4949 self.cur = Some((prev_start, unit, prev_next));
4950 } else {
4951 self.cur = Some((unit, unit, next));
4952 if prev_next != DEAD {
4953 return Some((prev_start, prev_end, prev_next));
4954 }
4955 }
4956 }
4957 if let Some((start, end, next)) = self.cur.take() {
4958 if next != DEAD {
4959 return Some((start, end, next));
4960 }
4961 }
4962 None
4963 }
4964}
4965
4966/// An error that occurred during the construction of a DFA.
4967///
4968/// This error does not provide many introspection capabilities. There are
4969/// generally only two things you can do with it:
4970///
4971/// * Obtain a human readable message via its `std::fmt::Display` impl.
4972/// * Access an underlying [`nfa::thompson::BuildError`](thompson::BuildError)
4973/// type from its `source` method via the `std::error::Error` trait. This error
4974/// only occurs when using convenience routines for building a DFA directly
4975/// from a pattern string.
4976///
4977/// When the `std` feature is enabled, this implements the `std::error::Error`
4978/// trait.
4979#[cfg(feature = "dfa-build")]
4980#[derive(Clone, Debug)]
4981pub struct BuildError {
4982 kind: BuildErrorKind,
4983}
4984
4985#[cfg(feature = "dfa-build")]
4986impl BuildError {
4987 /// Returns true if and only if this error corresponds to an error with DFA
4988 /// construction that occurred because of exceeding a size limit.
4989 ///
4990 /// While this can occur when size limits like [`Config::dfa_size_limit`]
4991 /// or [`Config::determinize_size_limit`] are exceeded, this can also occur
4992 /// when the number of states or patterns exceeds a hard-coded maximum.
4993 /// (Where these maximums are derived based on the values representable by
4994 /// [`StateID`] and [`PatternID`].)
4995 ///
4996 /// This predicate is useful in contexts where you want to distinguish
4997 /// between errors related to something provided by an end user (for
4998 /// example, an invalid regex pattern) and errors related to configured
4999 /// heuristics. For example, building a DFA might be an optimization that
5000 /// you want to skip if construction fails because of an exceeded size
5001 /// limit, but where you want to bubble up an error if it fails for some
5002 /// other reason.
5003 ///
5004 /// # Example
5005 ///
5006 /// ```
5007 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
5008 /// # if !cfg!(target_pointer_width = "64") { return Ok(()); } // see #1039
5009 /// use regex_automata::{dfa::{dense, Automaton}, Input};
5010 ///
5011 /// let err = dense::Builder::new()
5012 /// .configure(dense::Config::new()
5013 /// .determinize_size_limit(Some(100_000))
5014 /// )
5015 /// .build(r"\w{20}")
5016 /// .unwrap_err();
5017 /// // This error occurs because a size limit was exceeded.
5018 /// // But things are otherwise valid.
5019 /// assert!(err.is_size_limit_exceeded());
5020 ///
5021 /// let err = dense::Builder::new()
5022 /// .build(r"\bxyz\b")
5023 /// .unwrap_err();
5024 /// // This error occurs because a Unicode word boundary
5025 /// // was used without enabling heuristic support for it.
5026 /// // So... not related to size limits.
5027 /// assert!(!err.is_size_limit_exceeded());
5028 ///
5029 /// let err = dense::Builder::new()
5030 /// .build(r"(xyz")
5031 /// .unwrap_err();
5032 /// // This error occurs because the pattern is invalid.
5033 /// // So... not related to size limits.
5034 /// assert!(!err.is_size_limit_exceeded());
5035 ///
5036 /// # Ok::<(), Box<dyn std::error::Error>>(())
5037 /// ```
5038 #[inline]
5039 pub fn is_size_limit_exceeded(&self) -> bool {
5040 use self::BuildErrorKind::*;
5041
5042 match self.kind {
5043 NFA(_) | Unsupported(_) => false,
5044 TooManyStates
5045 | TooManyStartStates
5046 | TooManyMatchPatternIDs
5047 | DFAExceededSizeLimit { .. }
5048 | DeterminizeExceededSizeLimit { .. } => true,
5049 }
5050 }
5051}
5052
5053/// The kind of error that occurred during the construction of a DFA.
5054///
5055/// Note that this error is non-exhaustive. Adding new variants is not
5056/// considered a breaking change.
5057#[cfg(feature = "dfa-build")]
5058#[derive(Clone, Debug)]
5059enum BuildErrorKind {
5060 /// An error that occurred while constructing an NFA as a precursor step
5061 /// before a DFA is compiled.
5062 NFA(thompson::BuildError),
5063 /// An error that occurred because an unsupported regex feature was used.
5064 /// The message string describes which unsupported feature was used.
5065 ///
5066 /// The primary regex feature that is unsupported by DFAs is the Unicode
5067 /// word boundary look-around assertion (`\b`). This can be worked around
5068 /// by either using an ASCII word boundary (`(?-u:\b)`) or by enabling
5069 /// Unicode word boundaries when building a DFA.
5070 Unsupported(&'static str),
5071 /// An error that occurs if too many states are produced while building a
5072 /// DFA.
5073 TooManyStates,
5074 /// An error that occurs if too many start states are needed while building
5075 /// a DFA.
5076 ///
5077 /// This is a kind of oddball error that occurs when building a DFA with
5078 /// start states enabled for each pattern and enough patterns to cause
5079 /// the table of start states to overflow `usize`.
5080 TooManyStartStates,
5081 /// This is another oddball error that can occur if there are too many
5082 /// patterns spread out across too many match states.
5083 TooManyMatchPatternIDs,
5084 /// An error that occurs if the DFA got too big during determinization.
5085 DFAExceededSizeLimit { limit: usize },
5086 /// An error that occurs if auxiliary storage (not the DFA) used during
5087 /// determinization got too big.
5088 DeterminizeExceededSizeLimit { limit: usize },
5089}
5090
5091#[cfg(feature = "dfa-build")]
5092impl BuildError {
5093 /// Return the kind of this error.
5094 fn kind(&self) -> &BuildErrorKind {
5095 &self.kind
5096 }
5097
5098 pub(crate) fn nfa(err: thompson::BuildError) -> BuildError {
5099 BuildError { kind: BuildErrorKind::NFA(err) }
5100 }
5101
5102 pub(crate) fn unsupported_dfa_word_boundary_unicode() -> BuildError {
5103 let msg = "cannot build DFAs for regexes with Unicode word \
5104 boundaries; switch to ASCII word boundaries, or \
5105 heuristically enable Unicode word boundaries or use a \
5106 different regex engine";
5107 BuildError { kind: BuildErrorKind::Unsupported(msg) }
5108 }
5109
5110 pub(crate) fn too_many_states() -> BuildError {
5111 BuildError { kind: BuildErrorKind::TooManyStates }
5112 }
5113
5114 pub(crate) fn too_many_start_states() -> BuildError {
5115 BuildError { kind: BuildErrorKind::TooManyStartStates }
5116 }
5117
5118 pub(crate) fn too_many_match_pattern_ids() -> BuildError {
5119 BuildError { kind: BuildErrorKind::TooManyMatchPatternIDs }
5120 }
5121
5122 pub(crate) fn dfa_exceeded_size_limit(limit: usize) -> BuildError {
5123 BuildError { kind: BuildErrorKind::DFAExceededSizeLimit { limit } }
5124 }
5125
5126 pub(crate) fn determinize_exceeded_size_limit(limit: usize) -> BuildError {
5127 BuildError {
5128 kind: BuildErrorKind::DeterminizeExceededSizeLimit { limit },
5129 }
5130 }
5131}
5132
5133#[cfg(all(feature = "std", feature = "dfa-build"))]
5134impl std::error::Error for BuildError {
5135 fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
5136 match self.kind() {
5137 BuildErrorKind::NFA(ref err) => Some(err),
5138 _ => None,
5139 }
5140 }
5141}
5142
5143#[cfg(feature = "dfa-build")]
5144impl core::fmt::Display for BuildError {
5145 fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
5146 match self.kind() {
5147 BuildErrorKind::NFA(_) => write!(f, "error building NFA"),
5148 BuildErrorKind::Unsupported(ref msg) => {
5149 write!(f, "unsupported regex feature for DFAs: {msg}")
5150 }
5151 BuildErrorKind::TooManyStates => write!(
5152 f,
5153 "number of DFA states exceeds limit of {}",
5154 StateID::LIMIT,
5155 ),
5156 BuildErrorKind::TooManyStartStates => {
5157 let stride = Start::len();
5158 // The start table has `stride` entries for starting states for
5159 // the entire DFA, and then `stride` entries for each pattern
5160 // if start states for each pattern are enabled (which is the
5161 // only way this error can occur). Thus, the total number of
5162 // patterns that can fit in the table is `stride` less than
5163 // what we can allocate.
5164 let max = usize::try_from(core::isize::MAX).unwrap();
5165 let limit = (max - stride) / stride;
5166 write!(
5167 f,
5168 "compiling DFA with start states exceeds pattern \
5169 pattern limit of {}",
5170 limit,
5171 )
5172 }
5173 BuildErrorKind::TooManyMatchPatternIDs => write!(
5174 f,
5175 "compiling DFA with total patterns in all match states \
5176 exceeds limit of {}",
5177 PatternID::LIMIT,
5178 ),
5179 BuildErrorKind::DFAExceededSizeLimit { limit } => write!(
5180 f,
5181 "DFA exceeded size limit of {limit:?} during determinization",
5182 ),
5183 BuildErrorKind::DeterminizeExceededSizeLimit { limit } => {
5184 write!(f, "determinization exceeded size limit of {limit:?}")
5185 }
5186 }
5187 }
5188}
5189
5190#[cfg(all(test, feature = "syntax", feature = "dfa-build"))]
5191mod tests {
5192 use crate::{Input, MatchError};
5193
5194 use super::*;
5195
5196 #[test]
5197 fn errors_with_unicode_word_boundary() {
5198 let pattern = r"\b";
5199 assert!(Builder::new().build(pattern).is_err());
5200 }
5201
5202 #[test]
5203 fn roundtrip_never_match() {
5204 let dfa = DFA::never_match().unwrap();
5205 let (buf, _) = dfa.to_bytes_native_endian();
5206 let dfa: DFA<&[u32]> = DFA::from_bytes(&buf).unwrap().0;
5207
5208 assert_eq!(None, dfa.try_search_fwd(&Input::new("foo12345")).unwrap());
5209 }
5210
5211 #[test]
5212 fn roundtrip_always_match() {
5213 use crate::HalfMatch;
5214
5215 let dfa = DFA::always_match().unwrap();
5216 let (buf, _) = dfa.to_bytes_native_endian();
5217 let dfa: DFA<&[u32]> = DFA::from_bytes(&buf).unwrap().0;
5218
5219 assert_eq!(
5220 Some(HalfMatch::must(0, 0)),
5221 dfa.try_search_fwd(&Input::new("foo12345")).unwrap()
5222 );
5223 }
5224
5225 // See the analogous test in src/hybrid/dfa.rs.
5226 #[test]
5227 fn heuristic_unicode_reverse() {
5228 let dfa = DFA::builder()
5229 .configure(DFA::config().unicode_word_boundary(true))
5230 .thompson(thompson::Config::new().reverse(true))
5231 .build(r"\b[0-9]+\b")
5232 .unwrap();
5233
5234 let input = Input::new("β123").range(2..);
5235 let expected = MatchError::quit(0xB2, 1);
5236 let got = dfa.try_search_rev(&input);
5237 assert_eq!(Err(expected), got);
5238
5239 let input = Input::new("123β").range(..3);
5240 let expected = MatchError::quit(0xCE, 3);
5241 let got = dfa.try_search_rev(&input);
5242 assert_eq!(Err(expected), got);
5243 }
5244
5245 // This panics in `TransitionTable::validate` if the match states are not
5246 // validated first.
5247 //
5248 // See: https://github.com/rust-lang/regex/pull/1295
5249 #[test]
5250 fn regression_validation_order() {
5251 let mut dfa = DFA::new("abc").unwrap();
5252 dfa.ms = MatchStates {
5253 slices: vec![],
5254 pattern_ids: vec![],
5255 pattern_len: 1,
5256 };
5257 let (buf, _) = dfa.to_bytes_native_endian();
5258 DFA::from_bytes(&buf).unwrap_err();
5259 }
5260}