rstar/algorithm/
nearest_neighbor.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
use crate::node::{ParentNode, RTreeNode};
use crate::point::{min_inline, Point};
use crate::{Envelope, PointDistance, RTreeObject};

use alloc::collections::BinaryHeap;
#[cfg(not(test))]
use alloc::{vec, vec::Vec};
use core::mem::replace;
use heapless::binary_heap as static_heap;
use num_traits::Bounded;

struct RTreeNodeDistanceWrapper<'a, T>
where
    T: PointDistance + 'a,
{
    node: &'a RTreeNode<T>,
    distance: <<T::Envelope as Envelope>::Point as Point>::Scalar,
}

impl<'a, T> PartialEq for RTreeNodeDistanceWrapper<'a, T>
where
    T: PointDistance,
{
    fn eq(&self, other: &Self) -> bool {
        self.distance == other.distance
    }
}

impl<'a, T> PartialOrd for RTreeNodeDistanceWrapper<'a, T>
where
    T: PointDistance,
{
    fn partial_cmp(&self, other: &Self) -> Option<::core::cmp::Ordering> {
        Some(self.cmp(other))
    }
}

impl<'a, T> Eq for RTreeNodeDistanceWrapper<'a, T> where T: PointDistance {}

impl<'a, T> Ord for RTreeNodeDistanceWrapper<'a, T>
where
    T: PointDistance,
{
    fn cmp(&self, other: &Self) -> ::core::cmp::Ordering {
        // Inverse comparison creates a min heap
        other.distance.partial_cmp(&self.distance).unwrap()
    }
}

impl<'a, T> NearestNeighborDistance2Iterator<'a, T>
where
    T: PointDistance,
{
    pub fn new(root: &'a ParentNode<T>, query_point: <T::Envelope as Envelope>::Point) -> Self {
        let mut result = NearestNeighborDistance2Iterator {
            nodes: SmallHeap::new(),
            query_point,
        };
        result.extend_heap(&root.children);
        result
    }

    fn extend_heap(&mut self, children: &'a [RTreeNode<T>]) {
        let &mut NearestNeighborDistance2Iterator {
            ref mut nodes,
            ref query_point,
        } = self;
        nodes.extend(children.iter().map(|child| {
            let distance = match child {
                RTreeNode::Parent(ref data) => data.envelope.distance_2(query_point),
                RTreeNode::Leaf(ref t) => t.distance_2(query_point),
            };

            RTreeNodeDistanceWrapper {
                node: child,
                distance,
            }
        }));
    }
}

impl<'a, T> Iterator for NearestNeighborDistance2Iterator<'a, T>
where
    T: PointDistance,
{
    type Item = (&'a T, <<T::Envelope as Envelope>::Point as Point>::Scalar);

    fn next(&mut self) -> Option<Self::Item> {
        while let Some(current) = self.nodes.pop() {
            match current {
                RTreeNodeDistanceWrapper {
                    node: RTreeNode::Parent(ref data),
                    ..
                } => {
                    self.extend_heap(&data.children);
                }
                RTreeNodeDistanceWrapper {
                    node: RTreeNode::Leaf(ref t),
                    distance,
                } => {
                    return Some((t, distance));
                }
            }
        }
        None
    }
}

pub struct NearestNeighborDistance2Iterator<'a, T>
where
    T: PointDistance + 'a,
{
    nodes: SmallHeap<RTreeNodeDistanceWrapper<'a, T>>,
    query_point: <T::Envelope as Envelope>::Point,
}

impl<'a, T> NearestNeighborIterator<'a, T>
where
    T: PointDistance,
{
    pub fn new(root: &'a ParentNode<T>, query_point: <T::Envelope as Envelope>::Point) -> Self {
        NearestNeighborIterator {
            iter: NearestNeighborDistance2Iterator::new(root, query_point),
        }
    }
}

impl<'a, T> Iterator for NearestNeighborIterator<'a, T>
where
    T: PointDistance,
{
    type Item = &'a T;

    fn next(&mut self) -> Option<Self::Item> {
        self.iter.next().map(|(t, _distance)| t)
    }
}

pub struct NearestNeighborIterator<'a, T>
where
    T: PointDistance + 'a,
{
    iter: NearestNeighborDistance2Iterator<'a, T>,
}

enum SmallHeap<T: Ord> {
    Stack(static_heap::BinaryHeap<T, static_heap::Max, 32>),
    Heap(BinaryHeap<T>),
}

impl<T: Ord> SmallHeap<T> {
    pub fn new() -> Self {
        Self::Stack(static_heap::BinaryHeap::new())
    }

    pub fn pop(&mut self) -> Option<T> {
        match self {
            SmallHeap::Stack(heap) => heap.pop(),
            SmallHeap::Heap(heap) => heap.pop(),
        }
    }

    pub fn push(&mut self, item: T) {
        match self {
            SmallHeap::Stack(heap) => {
                if let Err(item) = heap.push(item) {
                    let capacity = heap.len() + 1;
                    let new_heap = self.spill(capacity);
                    new_heap.push(item);
                }
            }
            SmallHeap::Heap(heap) => heap.push(item),
        }
    }

    pub fn extend<I>(&mut self, iter: I)
    where
        I: ExactSizeIterator<Item = T>,
    {
        match self {
            SmallHeap::Stack(heap) => {
                if heap.capacity() >= heap.len() + iter.len() {
                    for item in iter {
                        if heap.push(item).is_err() {
                            unreachable!();
                        }
                    }
                } else {
                    let capacity = heap.len() + iter.len();
                    let new_heap = self.spill(capacity);
                    new_heap.extend(iter);
                }
            }
            SmallHeap::Heap(heap) => heap.extend(iter),
        }
    }

    #[cold]
    fn spill(&mut self, capacity: usize) -> &mut BinaryHeap<T> {
        let new_heap = BinaryHeap::with_capacity(capacity);
        let old_heap = replace(self, SmallHeap::Heap(new_heap));

        let new_heap = match self {
            SmallHeap::Heap(new_heap) => new_heap,
            SmallHeap::Stack(_) => unreachable!(),
        };
        let old_heap = match old_heap {
            SmallHeap::Stack(old_heap) => old_heap,
            SmallHeap::Heap(_) => unreachable!(),
        };

        new_heap.extend(old_heap.into_vec());

        new_heap
    }
}

pub fn nearest_neighbor<T>(
    node: &ParentNode<T>,
    query_point: <T::Envelope as Envelope>::Point,
) -> Option<&T>
where
    T: PointDistance,
{
    fn extend_heap<'a, T>(
        nodes: &mut SmallHeap<RTreeNodeDistanceWrapper<'a, T>>,
        node: &'a ParentNode<T>,
        query_point: <T::Envelope as Envelope>::Point,
        min_max_distance: &mut <<T::Envelope as Envelope>::Point as Point>::Scalar,
    ) where
        T: PointDistance + 'a,
    {
        for child in &node.children {
            let distance_if_less_or_equal = match child {
                RTreeNode::Parent(ref data) => {
                    let distance = data.envelope.distance_2(&query_point);
                    if distance <= *min_max_distance {
                        Some(distance)
                    } else {
                        None
                    }
                }
                RTreeNode::Leaf(ref t) => {
                    t.distance_2_if_less_or_equal(&query_point, *min_max_distance)
                }
            };
            if let Some(distance) = distance_if_less_or_equal {
                *min_max_distance = min_inline(
                    *min_max_distance,
                    child.envelope().min_max_dist_2(&query_point),
                );
                nodes.push(RTreeNodeDistanceWrapper {
                    node: child,
                    distance,
                });
            }
        }
    }

    // Calculate smallest minmax-distance
    let mut smallest_min_max: <<T::Envelope as Envelope>::Point as Point>::Scalar =
        Bounded::max_value();
    let mut nodes = SmallHeap::new();
    extend_heap(&mut nodes, node, query_point.clone(), &mut smallest_min_max);
    while let Some(current) = nodes.pop() {
        match current {
            RTreeNodeDistanceWrapper {
                node: RTreeNode::Parent(ref data),
                ..
            } => {
                extend_heap(&mut nodes, data, query_point.clone(), &mut smallest_min_max);
            }
            RTreeNodeDistanceWrapper {
                node: RTreeNode::Leaf(ref t),
                ..
            } => {
                return Some(t);
            }
        }
    }
    None
}

pub fn nearest_neighbors<T>(
    node: &ParentNode<T>,
    query_point: <T::Envelope as Envelope>::Point,
) -> Vec<&T>
where
    T: PointDistance,
{
    let mut nearest_neighbors = NearestNeighborDistance2Iterator::new(node, query_point.clone());

    let (first, first_distance_2) = match nearest_neighbors.next() {
        Some(item) => item,
        // If we have an empty tree, just return an empty vector.
        None => return Vec::new(),
    };

    // The result will at least contain the first nearest neighbor.
    let mut result = vec![first];

    // Use the distance to the first nearest neighbor
    // to filter out the rest of the nearest neighbors
    // that are farther than this first neighbor.
    result.extend(
        nearest_neighbors
            .take_while(|(_, next_distance_2)| next_distance_2 == &first_distance_2)
            .map(|(next, _)| next),
    );

    result
}

#[cfg(test)]
mod test {
    use crate::object::PointDistance;
    use crate::rtree::RTree;
    use crate::test_utilities::*;

    #[test]
    fn test_nearest_neighbor_empty() {
        let tree: RTree<[f32; 2]> = RTree::new();
        assert!(tree.nearest_neighbor(&[0.0, 213.0]).is_none());
    }

    #[test]
    fn test_nearest_neighbor() {
        let points = create_random_points(1000, SEED_1);
        let tree = RTree::bulk_load(points.clone());

        let sample_points = create_random_points(100, SEED_2);
        for sample_point in &sample_points {
            let mut nearest = None;
            let mut closest_dist = f64::INFINITY;
            for point in &points {
                let delta = [point[0] - sample_point[0], point[1] - sample_point[1]];
                let new_dist = delta[0] * delta[0] + delta[1] * delta[1];
                if new_dist < closest_dist {
                    closest_dist = new_dist;
                    nearest = Some(point);
                }
            }
            assert_eq!(nearest, tree.nearest_neighbor(sample_point));
        }
    }

    #[test]
    fn test_nearest_neighbors_empty() {
        let tree: RTree<[f32; 2]> = RTree::new();
        assert!(tree.nearest_neighbors(&[0.0, 213.0]).is_empty());
    }

    #[test]
    fn test_nearest_neighbors() {
        let points = create_random_points(1000, SEED_1);
        let tree = RTree::bulk_load(points);

        let sample_points = create_random_points(50, SEED_2);
        for sample_point in &sample_points {
            let nearest_neighbors = tree.nearest_neighbors(sample_point);
            let mut distance = -1.0;
            for nn in &nearest_neighbors {
                if distance < 0.0 {
                    distance = sample_point.distance_2(nn);
                } else {
                    let new_distance = sample_point.distance_2(nn);
                    assert_eq!(new_distance, distance);
                }
            }
        }
    }

    #[test]
    fn test_nearest_neighbor_iterator() {
        let mut points = create_random_points(1000, SEED_1);
        let tree = RTree::bulk_load(points.clone());

        let sample_points = create_random_points(50, SEED_2);
        for sample_point in &sample_points {
            points.sort_by(|r, l| {
                r.distance_2(sample_point)
                    .partial_cmp(&l.distance_2(sample_point))
                    .unwrap()
            });
            let collected: Vec<_> = tree.nearest_neighbor_iter(sample_point).cloned().collect();
            assert_eq!(points, collected);
        }
    }

    #[test]
    fn test_nearest_neighbor_iterator_with_distance_2() {
        let points = create_random_points(1000, SEED_2);
        let tree = RTree::bulk_load(points);

        let sample_points = create_random_points(50, SEED_1);
        for sample_point in &sample_points {
            let mut last_distance = 0.0;
            for (point, distance) in tree.nearest_neighbor_iter_with_distance_2(sample_point) {
                assert_eq!(point.distance_2(sample_point), distance);
                assert!(last_distance < distance);
                last_distance = distance;
            }
        }
    }
}