rstar/algorithm/
removal.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
use core::mem::replace;

use crate::algorithm::selection_functions::SelectionFunction;
use crate::node::{ParentNode, RTreeNode};
use crate::object::RTreeObject;
use crate::params::RTreeParams;
use crate::{Envelope, RTree};

#[cfg(not(test))]
use alloc::{vec, vec::Vec};

#[allow(unused_imports)] // Import is required when building without std
use num_traits::Float;

/// Iterator returned by `impl IntoIter for RTree`.
///
/// Consumes the whole tree and yields all leaf objects.
pub struct IntoIter<T>
where
    T: RTreeObject,
{
    node_stack: Vec<RTreeNode<T>>,
}

impl<T> IntoIter<T>
where
    T: RTreeObject,
{
    pub(crate) fn new(root: ParentNode<T>) -> Self {
        Self {
            node_stack: vec![RTreeNode::Parent(root)],
        }
    }
}

impl<T> Iterator for IntoIter<T>
where
    T: RTreeObject,
{
    type Item = T;

    fn next(&mut self) -> Option<Self::Item> {
        while let Some(node) = self.node_stack.pop() {
            match node {
                RTreeNode::Leaf(object) => return Some(object),
                RTreeNode::Parent(parent) => self.node_stack.extend(parent.children),
            }
        }

        None
    }
}

/// Iterator returned by `RTree::drain_*` methods.
///
/// Draining iterator that removes elements of the tree selected by a
/// [`SelectionFunction`]. Returned by
/// [`RTree::drain_with_selection_function`] and related methods.
///
/// # Remarks
///
/// This iterator is similar to the one returned by `Vec::drain` or
/// `Vec::drain_filter`. Dropping the iterator at any point removes only
/// the yielded values (this behaviour is unlike `Vec::drain_*`). Leaking
/// this iterator leads to a leak amplification where all elements of the
/// tree are leaked.
pub struct DrainIterator<'a, T, R, Params>
where
    T: RTreeObject,
    Params: RTreeParams,
    R: SelectionFunction<T>,
{
    node_stack: Vec<(ParentNode<T>, usize, usize)>,
    removal_function: R,
    rtree: &'a mut RTree<T, Params>,
    original_size: usize,
}

impl<'a, T, R, Params> DrainIterator<'a, T, R, Params>
where
    T: RTreeObject,
    Params: RTreeParams,
    R: SelectionFunction<T>,
{
    pub(crate) fn new(rtree: &'a mut RTree<T, Params>, removal_function: R) -> Self {
        // We replace with a root as a brand new RTree in case the iterator is
        // `mem::forgot`ten.

        // Instead of using `new_with_params`, we avoid an allocation for
        // the normal usage and replace root with an empty `Vec`.
        let root = replace(
            rtree.root_mut(),
            ParentNode {
                children: vec![],
                envelope: Envelope::new_empty(),
            },
        );
        let original_size = replace(rtree.size_mut(), 0);

        let m = Params::MIN_SIZE;
        let max_depth = (original_size as f32).log(m.max(2) as f32).ceil() as usize;
        let mut node_stack = Vec::with_capacity(max_depth);
        node_stack.push((root, 0, 0));

        DrainIterator {
            node_stack,
            original_size,
            removal_function,
            rtree,
        }
    }

    fn pop_node(&mut self, increment_idx: bool) -> Option<(ParentNode<T>, usize)> {
        debug_assert!(!self.node_stack.is_empty());

        let (mut node, _, num_removed) = self.node_stack.pop().unwrap();

        // We only compute envelope for the current node as the parent
        // is taken care of when it is popped.

        // TODO: May be make this a method on `ParentNode`
        if num_removed > 0 {
            node.envelope = crate::node::envelope_for_children(&node.children);
        }

        // If there is no parent, this is the new root node to set back in the rtree
        // O/w, get the new top in stack
        let (parent_node, parent_idx, parent_removed) = match self.node_stack.last_mut() {
            Some(pn) => (&mut pn.0, &mut pn.1, &mut pn.2),
            None => return Some((node, num_removed)),
        };

        // Update the remove count on parent
        *parent_removed += num_removed;

        // If the node has no children, we don't need to add it back to the parent
        if node.children.is_empty() {
            return None;
        }

        // Put the child back (but re-arranged)
        parent_node.children.push(RTreeNode::Parent(node));

        // Swap it with the current item and increment idx.

        // A minor optimization is to avoid the swap in the destructor,
        // where we aren't going to be iterating any more.
        if !increment_idx {
            return None;
        }

        // Note that during iteration, parent_idx may be equal to
        // (previous) children.len(), but this is okay as the swap will be
        // a no-op.
        let parent_len = parent_node.children.len();
        parent_node.children.swap(*parent_idx, parent_len - 1);
        *parent_idx += 1;

        None
    }
}

impl<'a, T, R, Params> Iterator for DrainIterator<'a, T, R, Params>
where
    T: RTreeObject,
    Params: RTreeParams,
    R: SelectionFunction<T>,
{
    type Item = T;

    fn next(&mut self) -> Option<Self::Item> {
        'attempt_loop: loop {
            // Get reference to top node or return None.
            let (node, idx, remove_count) = match self.node_stack.last_mut() {
                Some(node) => (&mut node.0, &mut node.1, &mut node.2),
                None => return None,
            };

            // Try to find a selected item to return.
            if *idx > 0 || self.removal_function.should_unpack_parent(&node.envelope) {
                while *idx < node.children.len() {
                    match &mut node.children[*idx] {
                        RTreeNode::Parent(_) => {
                            // Swap node with last, remove and return the value.
                            // No need to increment idx as something else has replaced it;
                            // or idx == new len, and we'll handle it in the next iteration.
                            let child = match node.children.swap_remove(*idx) {
                                RTreeNode::Leaf(_) => unreachable!("DrainIterator bug!"),
                                RTreeNode::Parent(node) => node,
                            };
                            self.node_stack.push((child, 0, 0));
                            continue 'attempt_loop;
                        }
                        RTreeNode::Leaf(ref leaf) => {
                            if self.removal_function.should_unpack_leaf(leaf) {
                                // Swap node with last, remove and return the value.
                                // No need to increment idx as something else has replaced it;
                                // or idx == new len, and we'll handle it in the next iteration.
                                *remove_count += 1;
                                return match node.children.swap_remove(*idx) {
                                    RTreeNode::Leaf(data) => Some(data),
                                    _ => unreachable!("RemovalIterator bug!"),
                                };
                            }
                            *idx += 1;
                        }
                    }
                }
            }

            // Pop top node and clean-up if done
            if let Some((new_root, total_removed)) = self.pop_node(true) {
                // This happens if we are done with the iteration.
                // Set the root back in rtree and return None
                *self.rtree.root_mut() = new_root;
                *self.rtree.size_mut() = self.original_size - total_removed;
                return None;
            }
        }
    }
}

impl<'a, T, R, Params> Drop for DrainIterator<'a, T, R, Params>
where
    T: RTreeObject,
    Params: RTreeParams,
    R: SelectionFunction<T>,
{
    fn drop(&mut self) {
        // Re-assemble back the original rtree and update envelope as we
        // re-assemble.
        if self.node_stack.is_empty() {
            // The iteration handled everything, nothing to do.
            return;
        }

        loop {
            debug_assert!(!self.node_stack.is_empty());
            if let Some((new_root, total_removed)) = self.pop_node(false) {
                *self.rtree.root_mut() = new_root;
                *self.rtree.size_mut() = self.original_size - total_removed;
                break;
            }
        }
    }
}

#[cfg(test)]
mod test {
    use std::mem::forget;

    use crate::algorithm::selection_functions::{SelectAllFunc, SelectInEnvelopeFuncIntersecting};
    use crate::point::PointExt;
    use crate::primitives::Line;
    use crate::test_utilities::{create_random_points, create_random_rectangles, SEED_1, SEED_2};
    use crate::AABB;

    use super::*;

    #[test]
    fn test_remove_and_insert() {
        const SIZE: usize = 1000;
        let points = create_random_points(SIZE, SEED_1);
        let later_insertions = create_random_points(SIZE, SEED_2);
        let mut tree = RTree::bulk_load(points.clone());
        for (point_to_remove, point_to_add) in points.iter().zip(later_insertions.iter()) {
            assert!(tree.remove_at_point(point_to_remove).is_some());
            tree.insert(*point_to_add);
        }
        assert_eq!(tree.size(), SIZE);
        assert!(points.iter().all(|p| !tree.contains(p)));
        assert!(later_insertions.iter().all(|p| tree.contains(p)));
        for point in &later_insertions {
            assert!(tree.remove_at_point(point).is_some());
        }
        assert_eq!(tree.size(), 0);
    }

    #[test]
    fn test_remove_and_insert_rectangles() {
        const SIZE: usize = 1000;
        let initial_rectangles = create_random_rectangles(SIZE, SEED_1);
        let new_rectangles = create_random_rectangles(SIZE, SEED_2);
        let mut tree = RTree::bulk_load(initial_rectangles.clone());

        for (rectangle_to_remove, rectangle_to_add) in
            initial_rectangles.iter().zip(new_rectangles.iter())
        {
            assert!(tree.remove(rectangle_to_remove).is_some());
            tree.insert(*rectangle_to_add);
        }
        assert_eq!(tree.size(), SIZE);
        assert!(initial_rectangles.iter().all(|p| !tree.contains(p)));
        assert!(new_rectangles.iter().all(|p| tree.contains(p)));
        for rectangle in &new_rectangles {
            assert!(tree.contains(rectangle));
        }
        for rectangle in &initial_rectangles {
            assert!(!tree.contains(rectangle));
        }
        for rectangle in &new_rectangles {
            assert!(tree.remove(rectangle).is_some());
        }
        assert_eq!(tree.size(), 0);
    }

    #[test]
    fn test_remove_at_point() {
        let points = create_random_points(1000, SEED_1);
        let mut tree = RTree::bulk_load(points.clone());
        for point in &points {
            let size_before_removal = tree.size();
            assert!(tree.remove_at_point(point).is_some());
            assert!(tree.remove_at_point(&[1000.0, 1000.0]).is_none());
            assert_eq!(size_before_removal - 1, tree.size());
        }
    }

    #[test]
    fn test_remove() {
        let points = create_random_points(1000, SEED_1);
        let offsets = create_random_points(1000, SEED_2);
        let scaled = offsets.iter().map(|p| p.mul(0.05));
        let edges: Vec<_> = points
            .iter()
            .zip(scaled)
            .map(|(from, offset)| Line::new(*from, from.add(&offset)))
            .collect();
        let mut tree = RTree::bulk_load(edges.clone());
        for edge in &edges {
            let size_before_removal = tree.size();
            assert!(tree.remove(edge).is_some());
            assert!(tree.remove(edge).is_none());
            assert_eq!(size_before_removal - 1, tree.size());
        }
    }

    #[test]
    fn test_drain_iterator() {
        const SIZE: usize = 1000;
        let points = create_random_points(SIZE, SEED_1);
        let mut tree = RTree::bulk_load(points);

        let drain_count = DrainIterator::new(&mut tree, SelectAllFunc)
            .take(250)
            .count();
        assert_eq!(drain_count, 250);
        assert_eq!(tree.size(), 750);

        let drain_count = DrainIterator::new(&mut tree, SelectAllFunc)
            .take(250)
            .count();
        assert_eq!(drain_count, 250);
        assert_eq!(tree.size(), 500);

        // Test Drain forget soundness
        forget(DrainIterator::new(&mut tree, SelectAllFunc));
        // Check tree has no nodes
        // Tests below will check the same tree can be used again
        assert_eq!(tree.size(), 0);

        let points = create_random_points(1000, SEED_1);
        points.into_iter().for_each(|pt| tree.insert(pt));

        // The total for this is 406 (for SEED_1)
        let env = AABB::from_corners([-2., -0.6], [0.5, 0.85]);

        let sel = SelectInEnvelopeFuncIntersecting::new(env);
        let drain_count = DrainIterator::new(&mut tree, sel).take(80).count();
        assert_eq!(drain_count, 80);

        let sel = SelectInEnvelopeFuncIntersecting::new(env);
        let drain_count = DrainIterator::new(&mut tree, sel).count();
        assert_eq!(drain_count, 326);

        let sel = SelectInEnvelopeFuncIntersecting::new(env);
        let sel_count = tree.locate_with_selection_function(sel).count();
        assert_eq!(sel_count, 0);
        assert_eq!(tree.size(), 1000 - 80 - 326);
    }

    #[test]
    fn test_into_iter() {
        const SIZE: usize = 100;
        let mut points = create_random_points(SIZE, SEED_1);
        let tree = RTree::bulk_load(points.clone());

        let mut vec = tree.into_iter().collect::<Vec<_>>();

        assert_eq!(vec.len(), points.len());

        points.sort_unstable_by(|lhs, rhs| lhs.partial_cmp(rhs).unwrap());
        vec.sort_unstable_by(|lhs, rhs| lhs.partial_cmp(rhs).unwrap());

        assert_eq!(points, vec);
    }
}