rstar/object.rs
1use crate::aabb::AABB;
2use crate::envelope::Envelope;
3use crate::point::{Point, PointExt};
4
5/// An object that can be inserted into an r-tree.
6///
7/// This trait must be implemented for any object to be inserted into an r-tree.
8/// Some simple objects that already implement this trait can be found in the
9/// [crate::primitives] module.
10///
11/// The only property required of such an object is its [crate::Envelope].
12/// Most simply, this method should return the [axis aligned bounding box](AABB)
13/// of the object. Other envelope types may be supported in the future.
14///
15/// *Note*: It is a logic error if an object's envelope changes after insertion into
16/// an r-tree.
17///
18/// # Type parameters
19/// `Envelope`: The object's envelope type. At the moment, only [AABB] is
20/// available.
21///
22/// # Example implementation
23/// ```
24/// use rstar::{RTreeObject, AABB};
25///
26/// struct Player
27/// {
28/// name: String,
29/// x_coordinate: f64,
30/// y_coordinate: f64
31/// }
32///
33/// impl RTreeObject for Player
34/// {
35/// type Envelope = AABB<[f64; 2]>;
36///
37/// fn envelope(&self) -> Self::Envelope
38/// {
39/// AABB::from_point([self.x_coordinate, self.y_coordinate])
40/// }
41/// }
42///
43/// use rstar::RTree;
44///
45/// let mut tree = RTree::new();
46///
47/// // Insert a few players...
48/// tree.insert(Player {
49/// name: "Forlorn Freeman".into(),
50/// x_coordinate: 1.,
51/// y_coordinate: 0.
52/// });
53/// tree.insert(Player {
54/// name: "Sarah Croft".into(),
55/// x_coordinate: 0.5,
56/// y_coordinate: 0.5,
57/// });
58/// tree.insert(Player {
59/// name: "Geralt of Trivia".into(),
60/// x_coordinate: 0.,
61/// y_coordinate: 2.,
62/// });
63///
64/// // Now we are ready to ask some questions!
65/// let envelope = AABB::from_point([0.5, 0.5]);
66/// let likely_sarah_croft = tree.locate_in_envelope(&envelope).next();
67/// println!("Found {:?} lurking around at (0.5, 0.5)!", likely_sarah_croft.unwrap().name);
68/// # assert!(likely_sarah_croft.is_some());
69///
70/// let unit_square = AABB::from_corners([-1.0, -1.0], [1., 1.]);
71/// for player in tree.locate_in_envelope(&unit_square) {
72/// println!("And here is {:?} spelunking in the unit square.", player.name);
73/// }
74/// # assert_eq!(tree.locate_in_envelope(&unit_square).count(), 2);
75/// ```
76pub trait RTreeObject {
77 /// The object's envelope type. Usually, [AABB] will be the right choice.
78 /// This type also defines the object's dimensionality.
79 type Envelope: Envelope;
80
81 /// Returns the object's envelope.
82 ///
83 /// Usually, this will return the object's [axis aligned bounding box](AABB).
84 fn envelope(&self) -> Self::Envelope;
85}
86
87/// Defines objects which can calculate their minimal distance to a point.
88///
89/// This trait is most notably necessary for support of [nearest_neighbor](struct.RTree#method.nearest_neighbor)
90/// queries.
91///
92/// # Example
93/// ```
94/// use rstar::{RTreeObject, PointDistance, AABB};
95///
96/// struct Circle
97/// {
98/// origin: [f32; 2],
99/// radius: f32,
100/// }
101///
102/// impl RTreeObject for Circle {
103/// type Envelope = AABB<[f32; 2]>;
104///
105/// fn envelope(&self) -> Self::Envelope {
106/// let corner_1 = [self.origin[0] - self.radius, self.origin[1] - self.radius];
107/// let corner_2 = [self.origin[0] + self.radius, self.origin[1] + self.radius];
108/// AABB::from_corners(corner_1, corner_2)
109/// }
110/// }
111///
112/// impl PointDistance for Circle
113/// {
114/// fn distance_2(&self, point: &[f32; 2]) -> f32
115/// {
116/// let d_x = self.origin[0] - point[0];
117/// let d_y = self.origin[1] - point[1];
118/// let distance_to_origin = (d_x * d_x + d_y * d_y).sqrt();
119/// let distance_to_ring = distance_to_origin - self.radius;
120/// let distance_to_circle = f32::max(0.0, distance_to_ring);
121/// // We must return the squared distance!
122/// distance_to_circle * distance_to_circle
123/// }
124///
125/// // This implementation is not required but more efficient since it
126/// // omits the calculation of a square root
127/// fn contains_point(&self, point: &[f32; 2]) -> bool
128/// {
129/// let d_x = self.origin[0] - point[0];
130/// let d_y = self.origin[1] - point[1];
131/// let distance_to_origin_2 = (d_x * d_x + d_y * d_y);
132/// let radius_2 = self.radius * self.radius;
133/// distance_to_origin_2 <= radius_2
134/// }
135/// }
136///
137///
138/// let circle = Circle {
139/// origin: [1.0, 0.0],
140/// radius: 1.0,
141/// };
142///
143/// assert_eq!(circle.distance_2(&[-1.0, 0.0]), 1.0);
144/// assert_eq!(circle.distance_2(&[-2.0, 0.0]), 4.0);
145/// assert!(circle.contains_point(&[1.0, 0.0]));
146/// ```
147pub trait PointDistance: RTreeObject {
148 /// Returns the squared distance between an object and a point.
149 ///
150 /// # Notes
151 /// - While euclidean distance will be the correct choice for most use cases, any distance metric
152 /// fulfilling the [usual axioms](https://en.wikipedia.org/wiki/Metric_space)
153 /// can be used when implementing this method
154 /// - Implementers **must** ensure that the distance metric used matches that of [crate::Envelope::distance_2]
155 fn distance_2(
156 &self,
157 point: &<Self::Envelope as Envelope>::Point,
158 ) -> <<Self::Envelope as Envelope>::Point as Point>::Scalar;
159
160 /// Returns `true` if a point is contained within this object.
161 ///
162 /// By default, any point returning a `distance_2` less than or equal to zero is considered to be
163 /// contained within `self`. Changing this default behavior is advised if calculating the squared distance
164 /// is more computationally expensive than a point containment check.
165 fn contains_point(&self, point: &<Self::Envelope as Envelope>::Point) -> bool {
166 self.distance_2(point) <= num_traits::zero()
167 }
168
169 /// Returns the squared distance to this object, or `None` if the distance
170 /// is larger than a given maximum value.
171 ///
172 /// Some algorithms only need to know an object's distance
173 /// if it is less than or equal to a maximum value. In these cases, it may be
174 /// faster to calculate a lower bound of the distance first and returning
175 /// early if the object cannot be closer than the given maximum.
176 ///
177 /// The provided default implementation will use the distance to the object's
178 /// envelope as a lower bound.
179 ///
180 /// If performance is critical and the object's distance calculation is fast,
181 /// it may be beneficial to overwrite this implementation.
182 fn distance_2_if_less_or_equal(
183 &self,
184 point: &<Self::Envelope as Envelope>::Point,
185 max_distance_2: <<Self::Envelope as Envelope>::Point as Point>::Scalar,
186 ) -> Option<<<Self::Envelope as Envelope>::Point as Point>::Scalar> {
187 let envelope_distance = self.envelope().distance_2(point);
188 if envelope_distance <= max_distance_2 {
189 let distance_2 = self.distance_2(point);
190 if distance_2 <= max_distance_2 {
191 return Some(distance_2);
192 }
193 }
194 None
195 }
196}
197
198impl<P> RTreeObject for P
199where
200 P: Point,
201{
202 type Envelope = AABB<P>;
203
204 fn envelope(&self) -> AABB<P> {
205 AABB::from_point(self.clone())
206 }
207}
208
209impl<P> PointDistance for P
210where
211 P: Point,
212{
213 fn distance_2(&self, point: &P) -> P::Scalar {
214 <Self as PointExt>::distance_2(self, point)
215 }
216
217 fn contains_point(&self, point: &<Self::Envelope as Envelope>::Point) -> bool {
218 self == point
219 }
220
221 fn distance_2_if_less_or_equal(
222 &self,
223 point: &<Self::Envelope as Envelope>::Point,
224 max_distance_2: <<Self::Envelope as Envelope>::Point as Point>::Scalar,
225 ) -> Option<P::Scalar> {
226 let distance_2 = <Self as PointExt>::distance_2(self, point);
227 if distance_2 <= max_distance_2 {
228 Some(distance_2)
229 } else {
230 None
231 }
232 }
233}