rstar/point.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
use core::fmt::Debug;
use num_traits::{Bounded, Num, Signed, Zero};
/// Defines a number type that is compatible with rstar.
///
/// rstar works out of the box with the following standard library types:
/// - i8, i16, i32, i64, i128, isize
/// - [Wrapping](core::num::Wrapping) versions of the above
/// - f32, f64
///
/// This type cannot be implemented directly. Instead, it is required to implement
/// all required traits from the `num_traits` crate.
///
/// # Example
/// ```
/// # extern crate num_traits;
/// use num_traits::{Bounded, Num, Signed};
///
/// #[derive(Clone, Copy, PartialEq, PartialOrd, Debug)]
/// struct MyFancyNumberType(f32);
///
/// impl num_traits::Bounded for MyFancyNumberType {
/// // ... details hidden ...
/// # fn min_value() -> Self { Self(Bounded::min_value()) }
/// #
/// # fn max_value() -> Self { Self(Bounded::max_value()) }
/// }
///
/// impl Signed for MyFancyNumberType {
/// // ... details hidden ...
/// # fn abs(&self) -> Self { unimplemented!() }
/// #
/// # fn abs_sub(&self, other: &Self) -> Self { unimplemented!() }
/// #
/// # fn signum(&self) -> Self { unimplemented!() }
/// #
/// # fn is_positive(&self) -> bool { unimplemented!() }
/// #
/// # fn is_negative(&self) -> bool { unimplemented!() }
/// }
///
/// impl Num for MyFancyNumberType {
/// // ... details hidden ...
/// # type FromStrRadixErr = num_traits::ParseFloatError;
/// # fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> { unimplemented!() }
/// }
///
/// // Lots of traits are still missing to make the above code compile, but
/// // let's assume they're implemented. `MyFancyNumberType` type now readily implements
/// // RTreeNum and can be used with r-trees:
/// # fn main() {
/// use rstar::RTree;
/// let mut rtree = RTree::new();
/// rtree.insert([MyFancyNumberType(0.0), MyFancyNumberType(0.0)]);
/// # }
///
/// # impl num_traits::Zero for MyFancyNumberType {
/// # fn zero() -> Self { unimplemented!() }
/// # fn is_zero(&self) -> bool { unimplemented!() }
/// # }
/// #
/// # impl num_traits::One for MyFancyNumberType {
/// # fn one() -> Self { unimplemented!() }
/// # }
/// #
/// # impl core::ops::Mul for MyFancyNumberType {
/// # type Output = Self;
/// # fn mul(self, rhs: Self) -> Self { unimplemented!() }
/// # }
/// #
/// # impl core::ops::Add for MyFancyNumberType {
/// # type Output = Self;
/// # fn add(self, rhs: Self) -> Self { unimplemented!() }
/// # }
/// #
/// # impl core::ops::Sub for MyFancyNumberType {
/// # type Output = Self;
/// # fn sub(self, rhs: Self) -> Self { unimplemented!() }
/// # }
/// #
/// # impl core::ops::Div for MyFancyNumberType {
/// # type Output = Self;
/// # fn div(self, rhs: Self) -> Self { unimplemented!() }
/// # }
/// #
/// # impl core::ops::Rem for MyFancyNumberType {
/// # type Output = Self;
/// # fn rem(self, rhs: Self) -> Self { unimplemented!() }
/// # }
/// #
/// # impl core::ops::Neg for MyFancyNumberType {
/// # type Output = Self;
/// # fn neg(self) -> Self { unimplemented!() }
/// # }
/// #
/// ```
///
pub trait RTreeNum: Bounded + Num + Clone + Copy + Signed + PartialOrd + Debug {}
impl<S> RTreeNum for S where S: Bounded + Num + Clone + Copy + Signed + PartialOrd + Debug {}
/// Defines a point type that is compatible with rstar.
///
/// This trait should be used for interoperability with other point types, not to define custom objects
/// that can be inserted into r-trees. Use [`crate::RTreeObject`] or
/// [`crate::primitives::GeomWithData`] instead.
/// This trait defines points, not points with metadata.
///
/// `Point` is implemented out of the box for arrays like `[f32; 2]` or `[f64; 7]` (for any number of dimensions),
/// and for tuples like `(int, int)` and `(f64, f64, f64)` so tuples with only elements of the same type (up to dimension 9).
///
///
/// # Implementation example
/// Supporting a custom point type might look like this:
///
/// ```
/// use rstar::Point;
///
/// #[derive(Copy, Clone, PartialEq, Debug)]
/// struct IntegerPoint
/// {
/// x: i32,
/// y: i32
/// }
///
/// impl Point for IntegerPoint
/// {
/// type Scalar = i32;
/// const DIMENSIONS: usize = 2;
///
/// fn generate(mut generator: impl FnMut(usize) -> Self::Scalar) -> Self
/// {
/// IntegerPoint {
/// x: generator(0),
/// y: generator(1)
/// }
/// }
///
/// fn nth(&self, index: usize) -> Self::Scalar
/// {
/// match index {
/// 0 => self.x,
/// 1 => self.y,
/// _ => unreachable!()
/// }
/// }
///
/// fn nth_mut(&mut self, index: usize) -> &mut Self::Scalar
/// {
/// match index {
/// 0 => &mut self.x,
/// 1 => &mut self.y,
/// _ => unreachable!()
/// }
/// }
/// }
/// ```
pub trait Point: Clone + PartialEq + Debug {
/// The number type used by this point type.
type Scalar: RTreeNum;
/// The number of dimensions of this point type.
const DIMENSIONS: usize;
/// Creates a new point value with given values for each dimension.
///
/// The value that each dimension should be initialized with is given by the parameter `generator`.
/// Calling `generator(n)` returns the value of dimension `n`, `n` will be in the range `0 .. Self::DIMENSIONS`,
/// and will be called with values of `n` in ascending order.
fn generate(generator: impl FnMut(usize) -> Self::Scalar) -> Self;
/// Returns a single coordinate of this point.
///
/// Returns the coordinate indicated by `index`. `index` is always smaller than `Self::DIMENSIONS`.
fn nth(&self, index: usize) -> Self::Scalar;
/// Mutable variant of [nth](#methods.nth).
fn nth_mut(&mut self, index: usize) -> &mut Self::Scalar;
}
impl<T> PointExt for T where T: Point {}
/// Utility functions for Point
pub trait PointExt: Point {
/// Returns a new Point with all components set to zero.
fn new() -> Self {
Self::from_value(Zero::zero())
}
/// Applies `f` to each pair of components of `self` and `other`.
fn component_wise(
&self,
other: &Self,
mut f: impl FnMut(Self::Scalar, Self::Scalar) -> Self::Scalar,
) -> Self {
Self::generate(|i| f(self.nth(i), other.nth(i)))
}
/// Returns whether all pairs of components of `self` and `other` pass test closure `f`. Short circuits if any result is false.
fn all_component_wise(
&self,
other: &Self,
mut f: impl FnMut(Self::Scalar, Self::Scalar) -> bool,
) -> bool {
(0..Self::DIMENSIONS).all(|i| f(self.nth(i), other.nth(i)))
}
/// Returns the dot product of `self` and `rhs`.
fn dot(&self, rhs: &Self) -> Self::Scalar {
self.component_wise(rhs, |l, r| l * r)
.fold(Zero::zero(), |acc, val| acc + val)
}
/// Folds (aka reduces or injects) the Point component wise using `f` and returns the result.
/// fold() takes two arguments: an initial value, and a closure with two arguments: an 'accumulator', and the value of the current component.
/// The closure returns the value that the accumulator should have for the next iteration.
///
/// The `start_value` is the value the accumulator will have on the first call of the closure.
///
/// After applying the closure to every component of the Point, fold() returns the accumulator.
fn fold<T>(&self, start_value: T, mut f: impl FnMut(T, Self::Scalar) -> T) -> T {
(0..Self::DIMENSIONS).fold(start_value, |accumulated, i| f(accumulated, self.nth(i)))
}
/// Returns a Point with every component set to `value`.
fn from_value(value: Self::Scalar) -> Self {
Self::generate(|_| value)
}
/// Returns a Point with each component set to the smallest of each component pair of `self` and `other`.
fn min_point(&self, other: &Self) -> Self {
self.component_wise(other, min_inline)
}
/// Returns a Point with each component set to the biggest of each component pair of `self` and `other`.
fn max_point(&self, other: &Self) -> Self {
self.component_wise(other, max_inline)
}
/// Returns the squared length of this Point as if it was a vector.
fn length_2(&self) -> Self::Scalar {
self.fold(Zero::zero(), |acc, cur| cur * cur + acc)
}
/// Substracts `other` from `self` component wise.
fn sub(&self, other: &Self) -> Self {
self.component_wise(other, |l, r| l - r)
}
/// Adds `other` to `self` component wise.
fn add(&self, other: &Self) -> Self {
self.component_wise(other, |l, r| l + r)
}
/// Multiplies `self` with `scalar` component wise.
fn mul(&self, scalar: Self::Scalar) -> Self {
self.map(|coordinate| coordinate * scalar)
}
/// Applies `f` to `self` component wise.
fn map(&self, mut f: impl FnMut(Self::Scalar) -> Self::Scalar) -> Self {
Self::generate(|i| f(self.nth(i)))
}
/// Returns the squared distance between `self` and `other`.
fn distance_2(&self, other: &Self) -> Self::Scalar {
self.sub(other).length_2()
}
}
#[inline]
pub fn min_inline<S>(a: S, b: S) -> S
where
S: RTreeNum,
{
if a < b {
a
} else {
b
}
}
#[inline]
pub fn max_inline<S>(a: S, b: S) -> S
where
S: RTreeNum,
{
if a > b {
a
} else {
b
}
}
impl<S, const N: usize> Point for [S; N]
where
S: RTreeNum,
{
type Scalar = S;
const DIMENSIONS: usize = N;
fn generate(mut generator: impl FnMut(usize) -> S) -> Self {
// The same implementation used in std::array::from_fn
// Since this is a const generic it gets unrolled
let mut idx = 0;
[(); N].map(|_| {
let res = generator(idx);
idx += 1;
res
})
}
#[inline]
fn nth(&self, index: usize) -> Self::Scalar {
self[index]
}
#[inline]
fn nth_mut(&mut self, index: usize) -> &mut Self::Scalar {
&mut self[index]
}
}
macro_rules! count_exprs {
() => (0);
($head:expr) => (1);
($head:expr, $($tail:expr),*) => (1 + count_exprs!($($tail),*));
}
macro_rules! fixed_type {
($expr:expr, $type:ty) => {
$type
};
}
macro_rules! impl_point_for_tuple {
($($index:expr => $name:ident),+) => {
impl<S> Point for ($(fixed_type!($index, S),)+)
where
S: RTreeNum
{
type Scalar = S;
const DIMENSIONS: usize = count_exprs!($($index),*);
fn generate(mut generator: impl FnMut(usize) -> S) -> Self {
($(generator($index),)+)
}
#[inline]
fn nth(&self, index: usize) -> Self::Scalar {
let ($($name,)+) = self;
match index {
$($index => *$name,)+
_ => unreachable!("index {} out of bounds for tuple", index),
}
}
#[inline]
fn nth_mut(&mut self, index: usize) -> &mut Self::Scalar {
let ($($name,)+) = self;
match index {
$($index => $name,)+
_ => unreachable!("index {} out of bounds for tuple", index),
}
}
}
};
}
impl_point_for_tuple!(0 => a);
impl_point_for_tuple!(0 => a, 1 => b);
impl_point_for_tuple!(0 => a, 1 => b, 2 => c);
impl_point_for_tuple!(0 => a, 1 => b, 2 => c, 3 => d);
impl_point_for_tuple!(0 => a, 1 => b, 2 => c, 3 => d, 4 => e);
impl_point_for_tuple!(0 => a, 1 => b, 2 => c, 3 => d, 4 => e, 5 => f);
impl_point_for_tuple!(0 => a, 1 => b, 2 => c, 3 => d, 4 => e, 5 => f, 6 => g);
impl_point_for_tuple!(0 => a, 1 => b, 2 => c, 3 => d, 4 => e, 5 => f, 6 => g, 7 => h);
impl_point_for_tuple!(0 => a, 1 => b, 2 => c, 3 => d, 4 => e, 5 => f, 6 => g, 7 => h, 8 => i);
impl_point_for_tuple!(0 => a, 1 => b, 2 => c, 3 => d, 4 => e, 5 => f, 6 => g, 7 => h, 8 => i, 9 => j);
#[cfg(test)]
mod tests {
use super::*;
use core::num::Wrapping;
#[test]
fn test_types() {
fn assert_impl_rtreenum<S: RTreeNum>() {}
assert_impl_rtreenum::<i8>();
assert_impl_rtreenum::<i16>();
assert_impl_rtreenum::<i32>();
assert_impl_rtreenum::<i64>();
assert_impl_rtreenum::<i128>();
assert_impl_rtreenum::<isize>();
assert_impl_rtreenum::<Wrapping<i8>>();
assert_impl_rtreenum::<Wrapping<i16>>();
assert_impl_rtreenum::<Wrapping<i32>>();
assert_impl_rtreenum::<Wrapping<i64>>();
assert_impl_rtreenum::<Wrapping<i128>>();
assert_impl_rtreenum::<Wrapping<isize>>();
assert_impl_rtreenum::<f32>();
assert_impl_rtreenum::<f64>();
}
macro_rules! test_tuple_configuration {
($($index:expr),*) => {
let a = ($($index),*);
$(assert_eq!(a.nth($index), $index));*
}
}
#[test]
fn test_tuples() {
// Test a couple of simple cases
let simple_int = (0, 1, 2);
assert_eq!(simple_int.nth(2), 2);
let simple_float = (0.5, 0.67, 1234.56);
assert_eq!(simple_float.nth(2), 1234.56);
let long_int = (0, 1, 2, 3, 4, 5, 6, 7, 8);
assert_eq!(long_int.nth(8), 8);
// Generate the code to test every nth function for every Tuple length
test_tuple_configuration!(0, 1);
test_tuple_configuration!(0, 1, 2);
test_tuple_configuration!(0, 1, 2, 3);
test_tuple_configuration!(0, 1, 2, 3, 4);
test_tuple_configuration!(0, 1, 2, 3, 4, 5);
test_tuple_configuration!(0, 1, 2, 3, 4, 5, 6);
test_tuple_configuration!(0, 1, 2, 3, 4, 5, 6, 7);
test_tuple_configuration!(0, 1, 2, 3, 4, 5, 6, 7, 8);
}
}