rstar/rtree.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
use crate::algorithm::bulk_load;
use crate::algorithm::iterators::*;
use crate::algorithm::nearest_neighbor;
use crate::algorithm::nearest_neighbor::NearestNeighborDistance2Iterator;
use crate::algorithm::nearest_neighbor::NearestNeighborIterator;
use crate::algorithm::removal;
use crate::algorithm::selection_functions::*;
use crate::envelope::Envelope;
use crate::node::ParentNode;
use crate::object::{PointDistance, RTreeObject};
use crate::params::{verify_parameters, DefaultParams, InsertionStrategy, RTreeParams};
use crate::Point;
use core::ops::ControlFlow;
#[cfg(not(test))]
use alloc::vec::Vec;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
impl<T, Params> Default for RTree<T, Params>
where
T: RTreeObject,
Params: RTreeParams,
{
fn default() -> Self {
Self::new_with_params()
}
}
/// An n-dimensional r-tree data structure.
///
/// # R-Trees
/// R-Trees are data structures containing multi-dimensional objects like points, rectangles
/// or polygons. They are optimized for retrieving the nearest neighbor at any point.
///
/// R-trees can efficiently find answers to queries like "Find the nearest point of a polygon",
/// "Find all police stations within a rectangle" or "Find the 10 nearest restaurants, sorted
/// by their distances". Compared to a naive implementation for these scenarios that runs
/// in `O(n)` for `n` inserted elements, r-trees reduce this time to `O(log(n))`.
///
/// However, creating an r-tree is time consuming
/// and runs in `O(n * log(n))`. Thus, r-trees are suited best if many queries and only few
/// insertions are made. `rstar` also supports [bulk loading](RTree::bulk_load),
/// which cuts down the constant factors when creating an r-tree significantly compared to
/// sequential insertions.
///
/// R-trees are also _dynamic_: points can be inserted and removed from an existing tree.
///
/// ## Partitioning heuristics
/// The inserted objects are internally partitioned into several boxes which should have small
/// overlap and volume. This is done heuristically. While the originally proposed heuristic focused
/// on fast insertion operations, the resulting r-trees were often suboptimally structured. Another
/// heuristic, called `R*-tree` (r-star-tree), was proposed to improve the tree structure at the cost of
/// longer insertion operations and is currently the crate's only implemented
/// [InsertionStrategy].
///
/// # Usage
/// The items inserted into an r-tree must implement the [RTreeObject]
/// trait. To support nearest neighbor queries, implement the [PointDistance]
/// trait. Some useful geometric primitives that implement the above traits can be found in the
/// [crate::primitives] module. Several primitives in the [`geo-types`](https://docs.rs/geo-types/) crate also
/// implement these traits.
///
/// ## Example
/// ```
/// use rstar::RTree;
///
/// let mut tree = RTree::new();
/// tree.insert([0.1, 0.0f32]);
/// tree.insert([0.2, 0.1]);
/// tree.insert([0.3, 0.0]);
///
/// assert_eq!(tree.nearest_neighbor(&[0.4, -0.1]), Some(&[0.3, 0.0]));
/// tree.remove(&[0.3, 0.0]);
/// assert_eq!(tree.nearest_neighbor(&[0.4, 0.3]), Some(&[0.2, 0.1]));
///
/// assert_eq!(tree.size(), 2);
/// // &RTree implements IntoIterator!
/// for point in &tree {
/// println!("Tree contains a point {:?}", point);
/// }
/// ```
///
/// ## Supported point types
/// All types implementing the [Point] trait can be used as underlying point type.
/// By default, fixed size arrays can be used as points.
///
/// # Associating Data with Geometries
/// Users wishing to store associated data with geometries can use [crate::primitives::GeomWithData].
///
/// # Runtime and Performance
/// The runtime of query operations (e.g. `nearest neighbor` or `contains`) is usually
/// `O(log(n))`, where `n` refers to the number of elements contained in the r-tree.
/// A naive sequential algorithm would take `O(n)` time. However, r-trees incur higher
/// build up times: inserting an element into an r-tree costs `O(log(n))` time.
///
/// Most of the selection methods, meaning those with names beginning with `locate_`,
/// return iterators which are driven externally and can therefore be combined into
/// more complex pipelines using the combinators defined on the [`Iterator`] trait.
///
/// This flexiblity does come at the cost of temporary heap allocations required
/// to keep track of the iteration state. Alternative methods using internal iteration
/// are provided to avoid this overhead, their names ending in `_int` or `_int_mut`.
///
/// They use a callback-based interface to pass the selected objects on to the caller
/// thereby being able to use the stack to keep track of the state required for
/// traversing the tree.
///
/// # Bulk loading
/// In many scenarios, insertion is only carried out once for many points. In this case,
/// [RTree::bulk_load] will be considerably faster. Its total run time
/// is still `O(nlog(n))`, i.e. `O(log(n))` per element inserted, but the scaling
/// factor is, on average, significantly improved compared with performing single
/// insertion n times in a row. **Note the performance caveat
/// related to the computation of the envelope**.
///
/// # Element distribution
/// The tree's performance heavily relies on the spatial distribution of its elements.
/// Best performance is achieved if:
/// * No element is inserted more than once
/// * The overlapping area of elements is as small as
/// possible.
///
/// For the edge case that all elements are overlapping (e.g, one and the same element
/// is contained `n` times), the performance of most operations usually degrades to `O(n)`.
///
/// # Type Parameters
/// * `T`: The type of objects stored in the r-tree.
/// * `Params`: Compile time parameters that change the r-tree's internal layout. Refer to the
/// [RTreeParams] trait for more information.
///
/// # Defining methods generic over r-trees
/// If a library defines a method that should be generic over the r-tree type signature, make
/// sure to include both type parameters like this:
/// ```
/// # use rstar::{RTree,RTreeObject, RTreeParams};
/// pub fn generic_rtree_function<T, Params>(tree: &mut RTree<T, Params>)
/// where
/// T: RTreeObject,
/// Params: RTreeParams
/// {
/// // ...
/// }
/// ```
/// Otherwise, any user of `generic_rtree_function` would be forced to use
/// a tree with default parameters.
///
/// # (De)Serialization
/// Enable the `serde` feature for [Serde](https://crates.io/crates/serde) support.
///
/// ## Further reading
/// For more information refer to the [wikipedia article](https://en.wikipedia.org/wiki/R-tree).
///
#[derive(Clone)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "serde",
serde(bound(
serialize = "T: Serialize, T::Envelope: Serialize",
deserialize = "T: Deserialize<'de>, T::Envelope: Deserialize<'de>"
))
)]
pub struct RTree<T, Params = DefaultParams>
where
Params: RTreeParams,
T: RTreeObject,
{
root: ParentNode<T>,
size: usize,
_params: ::core::marker::PhantomData<Params>,
}
struct DebugHelper<'a, T, Params>
where
T: RTreeObject + ::core::fmt::Debug + 'a,
Params: RTreeParams + 'a,
{
rtree: &'a RTree<T, Params>,
}
impl<'a, T, Params> ::core::fmt::Debug for DebugHelper<'a, T, Params>
where
T: RTreeObject + ::core::fmt::Debug,
Params: RTreeParams,
{
fn fmt(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
formatter.debug_set().entries(self.rtree.iter()).finish()
}
}
impl<T, Params> ::core::fmt::Debug for RTree<T, Params>
where
Params: RTreeParams,
T: RTreeObject + ::core::fmt::Debug,
{
fn fmt(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
formatter
.debug_struct("RTree")
.field("size", &self.size)
.field("items", &DebugHelper { rtree: self })
.finish()
}
}
impl<T> RTree<T>
where
T: RTreeObject,
{
/// Creates a new, empty r-tree.
///
/// The created r-tree is configured with [default parameters](DefaultParams).
pub fn new() -> Self {
Self::new_with_params()
}
/// Creates a new r-tree with some elements already inserted.
///
/// This method should be the preferred way for creating r-trees. It both
/// runs faster and yields an r-tree with better internal structure that
/// improves query performance.
///
/// This method implements the overlap minimizing top-down bulk loading algorithm (OMT)
/// as described in [this paper by Lee and Lee (2003)](http://ceur-ws.org/Vol-74/files/FORUM_18.pdf).
///
/// # Runtime
/// Bulk loading runs in `O(n * log(n))`, where `n` is the number of loaded
/// elements.
///
/// # Note
/// The envelope of each element will be accessed many times during loading. If that computation
/// is expensive, **consider memoizing it** using [`CachedEnvelope`][crate::primitives::CachedEnvelope].
pub fn bulk_load(elements: Vec<T>) -> Self {
Self::bulk_load_with_params(elements)
}
}
impl<T, Params> RTree<T, Params>
where
Params: RTreeParams,
T: RTreeObject,
{
/// Creates a new, empty r-tree.
///
/// The tree's compile time parameters must be specified. Refer to the
/// [RTreeParams] trait for more information and a usage example.
pub fn new_with_params() -> Self {
verify_parameters::<T, Params>();
RTree {
root: ParentNode::new_root::<Params>(),
size: 0,
_params: Default::default(),
}
}
/// Creates a new r-tree with some given elements and configurable parameters.
///
/// For more information refer to [RTree::bulk_load]
/// and [RTreeParams].
pub fn bulk_load_with_params(elements: Vec<T>) -> Self {
Self::new_from_bulk_loading(elements, bulk_load::bulk_load_sequential::<_, Params>)
}
/// Returns the number of objects in an r-tree.
///
/// # Example
/// ```
/// use rstar::RTree;
///
/// let mut tree = RTree::new();
/// assert_eq!(tree.size(), 0);
/// tree.insert([0.0, 1.0, 2.0]);
/// assert_eq!(tree.size(), 1);
/// tree.remove(&[0.0, 1.0, 2.0]);
/// assert_eq!(tree.size(), 0);
/// ```
pub fn size(&self) -> usize {
self.size
}
pub(crate) fn size_mut(&mut self) -> &mut usize {
&mut self.size
}
/// Returns an iterator over all elements contained in the tree.
///
/// The order in which the elements are returned is not specified.
///
/// # Example
/// ```
/// use rstar::RTree;
/// let tree = RTree::bulk_load(vec![(0.0, 0.1), (0.3, 0.2), (0.4, 0.2)]);
/// for point in tree.iter() {
/// println!("This tree contains point {:?}", point);
/// }
/// ```
pub fn iter(&self) -> RTreeIterator<T> {
RTreeIterator::new(&self.root, SelectAllFunc)
}
/// Returns an iterator over all mutable elements contained in the tree.
///
/// The order in which the elements are returned is not specified.
///
/// *Note*: It is a logic error to change an inserted item's position or dimensions. This
/// method is primarily meant for own implementations of [RTreeObject]
/// which can contain arbitrary additional data.
/// If the position or location of an inserted object need to change, you will need to [RTree::remove]
/// and reinsert it.
///
pub fn iter_mut(&mut self) -> RTreeIteratorMut<T> {
RTreeIteratorMut::new(&mut self.root, SelectAllFunc)
}
/// Returns all elements contained in an [Envelope].
///
/// Usually, an envelope is an [axis aligned bounding box](crate::AABB). This
/// method can be used to retrieve all elements that are fully contained within an envelope.
///
/// # Example
/// ```
/// use rstar::{RTree, AABB};
/// let mut tree = RTree::bulk_load(vec![
/// [0.0, 0.0],
/// [0.0, 1.0],
/// [1.0, 1.0]
/// ]);
/// let half_unit_square = AABB::from_corners([0.0, 0.0], [0.5, 1.0]);
/// let unit_square = AABB::from_corners([0.0, 0.0], [1.0, 1.0]);
/// let elements_in_half_unit_square = tree.locate_in_envelope(&half_unit_square);
/// let elements_in_unit_square = tree.locate_in_envelope(&unit_square);
/// assert_eq!(elements_in_half_unit_square.count(), 2);
/// assert_eq!(elements_in_unit_square.count(), 3);
/// ```
pub fn locate_in_envelope(&self, envelope: &T::Envelope) -> LocateInEnvelope<T> {
LocateInEnvelope::new(&self.root, SelectInEnvelopeFunction::new(envelope.clone()))
}
/// Mutable variant of [locate_in_envelope](#method.locate_in_envelope).
pub fn locate_in_envelope_mut(&mut self, envelope: &T::Envelope) -> LocateInEnvelopeMut<T> {
LocateInEnvelopeMut::new(
&mut self.root,
SelectInEnvelopeFunction::new(envelope.clone()),
)
}
/// Variant of [`locate_in_envelope`][Self::locate_in_envelope] using internal iteration.
pub fn locate_in_envelope_int<'a, V, B>(
&'a self,
envelope: &T::Envelope,
mut visitor: V,
) -> ControlFlow<B>
where
V: FnMut(&'a T) -> ControlFlow<B>,
{
select_nodes(
self.root(),
&SelectInEnvelopeFunction::new(envelope.clone()),
&mut visitor,
)
}
/// Mutable variant of [`locate_in_envelope_mut`][Self::locate_in_envelope_mut].
pub fn locate_in_envelope_int_mut<'a, V, B>(
&'a mut self,
envelope: &T::Envelope,
mut visitor: V,
) -> ControlFlow<B>
where
V: FnMut(&'a mut T) -> ControlFlow<B>,
{
select_nodes_mut(
self.root_mut(),
&SelectInEnvelopeFunction::new(envelope.clone()),
&mut visitor,
)
}
/// Returns a draining iterator over all elements contained in the tree.
///
/// The order in which the elements are returned is not specified.
///
/// See
/// [drain_with_selection_function](#method.drain_with_selection_function)
/// for more information.
pub fn drain(&mut self) -> DrainIterator<T, SelectAllFunc, Params> {
self.drain_with_selection_function(SelectAllFunc)
}
/// Draining variant of [locate_in_envelope](#method.locate_in_envelope).
pub fn drain_in_envelope(
&mut self,
envelope: T::Envelope,
) -> DrainIterator<T, SelectInEnvelopeFunction<T>, Params> {
let sel = SelectInEnvelopeFunction::new(envelope);
self.drain_with_selection_function(sel)
}
/// Returns all elements whose envelope intersects a given envelope.
///
/// Any element fully contained within an envelope is also returned by this method. Two
/// envelopes that "touch" each other (e.g. by sharing only a common corner) are also
/// considered to intersect. Usually, an envelope is an [axis aligned bounding box](crate::AABB).
/// This method will return all elements whose AABB has some common area with
/// a given AABB.
///
/// # Example
/// ```
/// use rstar::{RTree, AABB};
/// use rstar::primitives::Rectangle;
///
/// let left_piece = AABB::from_corners([0.0, 0.0], [0.4, 1.0]);
/// let right_piece = AABB::from_corners([0.6, 0.0], [1.0, 1.0]);
/// let middle_piece = AABB::from_corners([0.25, 0.0], [0.75, 1.0]);
///
/// let mut tree = RTree::<Rectangle<_>>::bulk_load(vec![
/// left_piece.into(),
/// right_piece.into(),
/// middle_piece.into(),
/// ]);
///
/// let elements_intersecting_left_piece = tree.locate_in_envelope_intersecting(&left_piece);
/// // The left piece should not intersect the right piece!
/// assert_eq!(elements_intersecting_left_piece.count(), 2);
/// let elements_intersecting_middle = tree.locate_in_envelope_intersecting(&middle_piece);
/// // Only the middle piece intersects all pieces within the tree
/// assert_eq!(elements_intersecting_middle.count(), 3);
///
/// let large_piece = AABB::from_corners([-100., -100.], [100., 100.]);
/// let elements_intersecting_large_piece = tree.locate_in_envelope_intersecting(&large_piece);
/// // Any element that is fully contained should also be returned:
/// assert_eq!(elements_intersecting_large_piece.count(), 3);
/// ```
pub fn locate_in_envelope_intersecting(
&self,
envelope: &T::Envelope,
) -> LocateInEnvelopeIntersecting<T> {
LocateInEnvelopeIntersecting::new(
&self.root,
SelectInEnvelopeFuncIntersecting::new(envelope.clone()),
)
}
/// Mutable variant of [locate_in_envelope_intersecting](#method.locate_in_envelope_intersecting)
pub fn locate_in_envelope_intersecting_mut(
&mut self,
envelope: &T::Envelope,
) -> LocateInEnvelopeIntersectingMut<T> {
LocateInEnvelopeIntersectingMut::new(
&mut self.root,
SelectInEnvelopeFuncIntersecting::new(envelope.clone()),
)
}
/// Variant of [`locate_in_envelope_intersecting`][Self::locate_in_envelope_intersecting] using internal iteration.
pub fn locate_in_envelope_intersecting_int<'a, V, B>(
&'a self,
envelope: &T::Envelope,
mut visitor: V,
) -> ControlFlow<B>
where
V: FnMut(&'a T) -> ControlFlow<B>,
{
select_nodes(
self.root(),
&SelectInEnvelopeFuncIntersecting::new(envelope.clone()),
&mut visitor,
)
}
/// Mutable variant of [`locate_in_envelope_intersecting_int`][Self::locate_in_envelope_intersecting_int].
pub fn locate_in_envelope_intersecting_int_mut<'a, V, B>(
&'a mut self,
envelope: &T::Envelope,
mut visitor: V,
) -> ControlFlow<B>
where
V: FnMut(&'a mut T) -> ControlFlow<B>,
{
select_nodes_mut(
self.root_mut(),
&SelectInEnvelopeFuncIntersecting::new(envelope.clone()),
&mut visitor,
)
}
/// Locates elements in the r-tree defined by a selection function.
///
/// Refer to the documentation of [`SelectionFunction`] for
/// more information.
///
/// Usually, other `locate` methods should cover most common use cases. This method is only required
/// in more specific situations.
pub fn locate_with_selection_function<S: SelectionFunction<T>>(
&self,
selection_function: S,
) -> SelectionIterator<T, S> {
SelectionIterator::new(&self.root, selection_function)
}
/// Mutable variant of [`locate_with_selection_function`](#method.locate_with_selection_function).
pub fn locate_with_selection_function_mut<S: SelectionFunction<T>>(
&mut self,
selection_function: S,
) -> SelectionIteratorMut<T, S> {
SelectionIteratorMut::new(&mut self.root, selection_function)
}
/// Returns all possible intersecting objects of this and another tree.
///
/// This will return all objects whose _envelopes_ intersect. No geometric intersection
/// checking is performed.
pub fn intersection_candidates_with_other_tree<'a, U>(
&'a self,
other: &'a RTree<U>,
) -> IntersectionIterator<'a, T, U>
where
U: RTreeObject<Envelope = T::Envelope>,
{
IntersectionIterator::new(self.root(), other.root())
}
/// Returns the tree's root node.
///
/// Usually, you will not need to call this method. However, for debugging purposes or for
/// advanced algorithms, knowledge about the tree's internal structure may be required.
/// For these cases, this method serves as an entry point.
pub fn root(&self) -> &ParentNode<T> {
&self.root
}
pub(crate) fn root_mut(&mut self) -> &mut ParentNode<T> {
&mut self.root
}
fn new_from_bulk_loading(
elements: Vec<T>,
root_loader: impl Fn(Vec<T>) -> ParentNode<T>,
) -> Self {
verify_parameters::<T, Params>();
let size = elements.len();
let root = if size == 0 {
ParentNode::new_root::<Params>()
} else {
root_loader(elements)
};
RTree {
root,
size,
_params: Default::default(),
}
}
/// Removes and returns a single element from the tree. The element to remove is specified
/// by a [`SelectionFunction`].
///
/// See also: [`RTree::remove`], [`RTree::remove_at_point`]
///
pub fn remove_with_selection_function<F>(&mut self, function: F) -> Option<T>
where
F: SelectionFunction<T>,
{
removal::DrainIterator::new(self, function).take(1).last()
}
/// Drain elements selected by a [`SelectionFunction`]. Returns an
/// iterator that successively removes selected elements and returns
/// them. This is the most generic drain API, see also:
/// [`RTree::drain_in_envelope_intersecting`],
/// [`RTree::drain_within_distance`].
///
/// # Remarks
///
/// This API is similar to `Vec::drain_filter`, but stopping the
/// iteration would stop the removal. However, the returned iterator
/// must be properly dropped. Leaking this iterator leads to a leak
/// amplification, where all the elements in the tree are leaked.
pub fn drain_with_selection_function<F>(&mut self, function: F) -> DrainIterator<T, F, Params>
where
F: SelectionFunction<T>,
{
removal::DrainIterator::new(self, function)
}
/// Drains elements intersecting the `envelope`. Similar to
/// `locate_in_envelope_intersecting`, except the elements are removed
/// and returned via an iterator.
pub fn drain_in_envelope_intersecting(
&mut self,
envelope: T::Envelope,
) -> DrainIterator<T, SelectInEnvelopeFuncIntersecting<T>, Params> {
let selection_function = SelectInEnvelopeFuncIntersecting::new(envelope);
self.drain_with_selection_function(selection_function)
}
}
impl<T, Params> RTree<T, Params>
where
Params: RTreeParams,
T: PointDistance,
{
/// Returns a single object that covers a given point.
///
/// Method [contains_point](PointDistance::contains_point)
/// is used to determine if a tree element contains the given point.
///
/// If multiple elements contain the given point, any of them is returned.
pub fn locate_at_point(&self, point: &<T::Envelope as Envelope>::Point) -> Option<&T> {
self.locate_all_at_point(point).next()
}
/// Mutable variant of [RTree::locate_at_point].
pub fn locate_at_point_mut(
&mut self,
point: &<T::Envelope as Envelope>::Point,
) -> Option<&mut T> {
self.locate_all_at_point_mut(point).next()
}
/// Variant of [`locate_at_point`][Self::locate_at_point] using internal iteration.
pub fn locate_at_point_int(&self, point: &<T::Envelope as Envelope>::Point) -> Option<&T> {
match self.locate_all_at_point_int(point, ControlFlow::Break) {
ControlFlow::Break(node) => Some(node),
ControlFlow::Continue(()) => None,
}
}
/// Mutable variant of [`locate_at_point_int`][Self::locate_at_point_int].
pub fn locate_at_point_int_mut(
&mut self,
point: &<T::Envelope as Envelope>::Point,
) -> Option<&mut T> {
match self.locate_all_at_point_int_mut(point, ControlFlow::Break) {
ControlFlow::Break(node) => Some(node),
ControlFlow::Continue(()) => None,
}
}
/// Locate all elements containing a given point.
///
/// Method [PointDistance::contains_point] is used
/// to determine if a tree element contains the given point.
/// # Example
/// ```
/// use rstar::RTree;
/// use rstar::primitives::Rectangle;
///
/// let tree = RTree::bulk_load(vec![
/// Rectangle::from_corners([0.0, 0.0], [2.0, 2.0]),
/// Rectangle::from_corners([1.0, 1.0], [3.0, 3.0])
/// ]);
///
/// assert_eq!(tree.locate_all_at_point(&[1.5, 1.5]).count(), 2);
/// assert_eq!(tree.locate_all_at_point(&[0.0, 0.0]).count(), 1);
/// assert_eq!(tree.locate_all_at_point(&[-1., 0.0]).count(), 0);
/// ```
pub fn locate_all_at_point(
&self,
point: &<T::Envelope as Envelope>::Point,
) -> LocateAllAtPoint<T> {
LocateAllAtPoint::new(&self.root, SelectAtPointFunction::new(point.clone()))
}
/// Mutable variant of [`locate_all_at_point`][Self::locate_all_at_point].
pub fn locate_all_at_point_mut(
&mut self,
point: &<T::Envelope as Envelope>::Point,
) -> LocateAllAtPointMut<T> {
LocateAllAtPointMut::new(&mut self.root, SelectAtPointFunction::new(point.clone()))
}
/// Variant of [`locate_all_at_point`][Self::locate_all_at_point] using internal iteration.
pub fn locate_all_at_point_int<'a, V, B>(
&'a self,
point: &<T::Envelope as Envelope>::Point,
mut visitor: V,
) -> ControlFlow<B>
where
V: FnMut(&'a T) -> ControlFlow<B>,
{
select_nodes(
&self.root,
&SelectAtPointFunction::new(point.clone()),
&mut visitor,
)
}
/// Mutable variant of [`locate_all_at_point_int`][Self::locate_all_at_point_int].
pub fn locate_all_at_point_int_mut<'a, V, B>(
&'a mut self,
point: &<T::Envelope as Envelope>::Point,
mut visitor: V,
) -> ControlFlow<B>
where
V: FnMut(&'a mut T) -> ControlFlow<B>,
{
select_nodes_mut(
&mut self.root,
&SelectAtPointFunction::new(point.clone()),
&mut visitor,
)
}
/// Removes an element containing a given point.
///
/// The removed element, if any, is returned. If multiple elements cover the given point,
/// only one of them is removed and returned.
///
/// # Example
/// ```
/// use rstar::RTree;
/// use rstar::primitives::Rectangle;
///
/// let mut tree = RTree::bulk_load(vec![
/// Rectangle::from_corners([0.0, 0.0], [2.0, 2.0]),
/// Rectangle::from_corners([1.0, 1.0], [3.0, 3.0])
/// ]);
///
/// assert!(tree.remove_at_point(&[1.5, 1.5]).is_some());
/// assert!(tree.remove_at_point(&[1.5, 1.5]).is_some());
/// assert!(tree.remove_at_point(&[1.5, 1.5]).is_none());
///```
pub fn remove_at_point(&mut self, point: &<T::Envelope as Envelope>::Point) -> Option<T> {
let removal_function = SelectAtPointFunction::new(point.clone());
self.remove_with_selection_function(removal_function)
}
}
impl<T, Params> RTree<T, Params>
where
Params: RTreeParams,
T: RTreeObject + PartialEq,
{
/// Returns `true` if a given element is equal (`==`) to an element in the
/// r-tree.
///
/// This method will only work correctly if two equal elements also have the
/// same envelope.
///
/// # Example
/// ```
/// use rstar::RTree;
///
/// let mut tree = RTree::new();
/// assert!(!tree.contains(&[0.0, 2.0]));
/// tree.insert([0.0, 2.0]);
/// assert!(tree.contains(&[0.0, 2.0]));
/// ```
pub fn contains(&self, t: &T) -> bool {
self.locate_in_envelope(&t.envelope()).any(|e| e == t)
}
/// Removes and returns an element of the r-tree equal (`==`) to a given element.
///
/// If multiple elements equal to the given elements are contained in the tree, only
/// one of them is removed and returned.
///
/// This method will only work correctly if two equal elements also have the
/// same envelope.
///
/// # Example
/// ```
/// use rstar::RTree;
///
/// let mut tree = RTree::new();
/// tree.insert([0.0, 2.0]);
/// // The element can be inserted twice just fine
/// tree.insert([0.0, 2.0]);
/// assert!(tree.remove(&[0.0, 2.0]).is_some());
/// assert!(tree.remove(&[0.0, 2.0]).is_some());
/// assert!(tree.remove(&[0.0, 2.0]).is_none());
/// ```
pub fn remove(&mut self, t: &T) -> Option<T> {
let removal_function = SelectEqualsFunction::new(t);
self.remove_with_selection_function(removal_function)
}
}
impl<T, Params> RTree<T, Params>
where
Params: RTreeParams,
T: PointDistance,
{
/// Returns the nearest neighbor for a given point.
///
/// The distance is calculated by calling
/// [PointDistance::distance_2]
///
/// # Example
/// ```
/// use rstar::RTree;
/// let tree = RTree::bulk_load(vec![
/// [0.0, 0.0],
/// [0.0, 1.0],
/// ]);
/// assert_eq!(tree.nearest_neighbor(&[-1., 0.0]), Some(&[0.0, 0.0]));
/// assert_eq!(tree.nearest_neighbor(&[0.0, 2.0]), Some(&[0.0, 1.0]));
/// ```
pub fn nearest_neighbor(&self, query_point: &<T::Envelope as Envelope>::Point) -> Option<&T> {
if self.size > 0 {
// The single-nearest-neighbor retrieval may in rare cases return None due to
// rounding issues. The iterator will still work, though.
nearest_neighbor::nearest_neighbor(&self.root, query_point.clone())
.or_else(|| self.nearest_neighbor_iter(query_point).next())
} else {
None
}
}
/// Returns the nearest neighbors for a given point.
///
/// The distance is calculated by calling
/// [PointDistance::distance_2]
///
/// All returned values will have the exact same distance from the given query point.
/// Returns an empty `Vec` if the tree is empty.
///
/// # Example
/// ```
/// use rstar::RTree;
/// let tree = RTree::bulk_load(vec![
/// [0.0, 0.0],
/// [0.0, 1.0],
/// [1.0, 0.0],
/// ]);
///
/// // A single nearest neighbor
/// assert_eq!(tree.nearest_neighbors(&[0.01, 0.01]), &[&[0.0, 0.0]]);
///
/// // Two nearest neighbors
/// let nearest_two = tree.nearest_neighbors(&[1.0, 1.0]);
/// assert_eq!(nearest_two.len(), 2);
/// assert!(nearest_two.contains(&&[0.0, 1.0]));
/// assert!(nearest_two.contains(&&[1.0, 0.0]));
/// ```
pub fn nearest_neighbors(&self, query_point: &<T::Envelope as Envelope>::Point) -> Vec<&T> {
nearest_neighbor::nearest_neighbors(&self.root, query_point.clone())
}
/// Returns all elements of the tree within a certain distance.
///
/// The elements may be returned in any order. Each returned element
/// will have a squared distance less or equal to the given squared distance.
///
/// This method makes use of [PointDistance::distance_2_if_less_or_equal].
/// If performance is critical and the distance calculation to the object is fast,
/// overwriting this function may be beneficial.
pub fn locate_within_distance(
&self,
query_point: <T::Envelope as Envelope>::Point,
max_squared_radius: <<T::Envelope as Envelope>::Point as Point>::Scalar,
) -> LocateWithinDistanceIterator<T> {
let selection_function = SelectWithinDistanceFunction::new(query_point, max_squared_radius);
LocateWithinDistanceIterator::new(self.root(), selection_function)
}
/// Drain all elements of the tree within a certain distance.
///
/// Similar to [`RTree::locate_within_distance`], but removes and
/// returns the elements via an iterator.
pub fn drain_within_distance(
&mut self,
query_point: <T::Envelope as Envelope>::Point,
max_squared_radius: <<T::Envelope as Envelope>::Point as Point>::Scalar,
) -> DrainIterator<T, SelectWithinDistanceFunction<T>, Params> {
let selection_function = SelectWithinDistanceFunction::new(query_point, max_squared_radius);
self.drain_with_selection_function(selection_function)
}
/// Returns all elements of the tree sorted by their distance to a given point.
///
/// # Runtime
/// Every `next()` call runs in `O(log(n))`. Creating the iterator runs in
/// `O(log(n))`.
/// The [r-tree documentation](RTree) contains more information about
/// r-tree performance.
///
/// # Example
/// ```
/// use rstar::RTree;
/// let tree = RTree::bulk_load(vec![
/// [0.0, 0.0],
/// [0.0, 1.0],
/// ]);
///
/// let nearest_neighbors = tree.nearest_neighbor_iter(&[0.5, 0.0]).collect::<Vec<_>>();
/// assert_eq!(nearest_neighbors, vec![&[0.0, 0.0], &[0.0, 1.0]]);
/// ```
pub fn nearest_neighbor_iter(
&self,
query_point: &<T::Envelope as Envelope>::Point,
) -> NearestNeighborIterator<T> {
nearest_neighbor::NearestNeighborIterator::new(&self.root, query_point.clone())
}
/// Returns `(element, distance^2)` tuples of the tree sorted by their distance to a given point.
///
/// The distance is calculated by calling
/// [PointDistance::distance_2].
#[deprecated(note = "Please use nearest_neighbor_iter_with_distance_2 instead")]
pub fn nearest_neighbor_iter_with_distance(
&self,
query_point: &<T::Envelope as Envelope>::Point,
) -> NearestNeighborDistance2Iterator<T> {
nearest_neighbor::NearestNeighborDistance2Iterator::new(&self.root, query_point.clone())
}
/// Returns `(element, distance^2)` tuples of the tree sorted by their distance to a given point.
///
/// The distance is calculated by calling
/// [PointDistance::distance_2].
pub fn nearest_neighbor_iter_with_distance_2(
&self,
query_point: &<T::Envelope as Envelope>::Point,
) -> NearestNeighborDistance2Iterator<T> {
nearest_neighbor::NearestNeighborDistance2Iterator::new(&self.root, query_point.clone())
}
/// Removes the nearest neighbor for a given point and returns it.
///
/// The distance is calculated by calling
/// [PointDistance::distance_2].
///
/// # Example
/// ```
/// use rstar::RTree;
/// let mut tree = RTree::bulk_load(vec![
/// [0.0, 0.0],
/// [0.0, 1.0],
/// ]);
/// assert_eq!(tree.pop_nearest_neighbor(&[0.0, 0.0]), Some([0.0, 0.0]));
/// assert_eq!(tree.pop_nearest_neighbor(&[0.0, 0.0]), Some([0.0, 1.0]));
/// assert_eq!(tree.pop_nearest_neighbor(&[0.0, 0.0]), None);
/// ```
pub fn pop_nearest_neighbor(
&mut self,
query_point: &<T::Envelope as Envelope>::Point,
) -> Option<T> {
if let Some(neighbor) = self.nearest_neighbor(query_point) {
let removal_function = SelectByAddressFunction::new(neighbor.envelope(), neighbor);
self.remove_with_selection_function(removal_function)
} else {
None
}
}
}
impl<T, Params> RTree<T, Params>
where
T: RTreeObject,
Params: RTreeParams,
{
/// Inserts a new element into the r-tree.
///
/// If the element is already present in the tree, it will now be present twice.
///
/// # Runtime
/// This method runs in `O(log(n))`.
/// The [r-tree documentation](RTree) contains more information about
/// r-tree performance.
pub fn insert(&mut self, t: T) {
Params::DefaultInsertionStrategy::insert(self, t);
self.size += 1;
}
}
impl<T, Params> IntoIterator for RTree<T, Params>
where
T: RTreeObject,
Params: RTreeParams,
{
type IntoIter = IntoIter<T>;
type Item = T;
fn into_iter(self) -> Self::IntoIter {
IntoIter::new(self.root)
}
}
impl<'a, T, Params> IntoIterator for &'a RTree<T, Params>
where
T: RTreeObject,
Params: RTreeParams,
{
type IntoIter = RTreeIterator<'a, T>;
type Item = &'a T;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<'a, T, Params> IntoIterator for &'a mut RTree<T, Params>
where
T: RTreeObject,
Params: RTreeParams,
{
type IntoIter = RTreeIteratorMut<'a, T>;
type Item = &'a mut T;
fn into_iter(self) -> Self::IntoIter {
self.iter_mut()
}
}
#[cfg(test)]
mod test {
use super::RTree;
use crate::algorithm::rstar::RStarInsertionStrategy;
use crate::params::RTreeParams;
use crate::test_utilities::{create_random_points, SEED_1};
use crate::DefaultParams;
struct TestParams;
impl RTreeParams for TestParams {
const MIN_SIZE: usize = 10;
const MAX_SIZE: usize = 20;
const REINSERTION_COUNT: usize = 1;
type DefaultInsertionStrategy = RStarInsertionStrategy;
}
#[test]
fn test_remove_capacity() {
pub struct WeirdParams;
impl RTreeParams for WeirdParams {
const MIN_SIZE: usize = 1;
const MAX_SIZE: usize = 10;
const REINSERTION_COUNT: usize = 1;
type DefaultInsertionStrategy = RStarInsertionStrategy;
}
let mut items: Vec<[f32; 2]> = Vec::new();
for i in 0..2 {
items.push([i as f32, i as f32]);
}
let mut tree: RTree<_, WeirdParams> = RTree::bulk_load_with_params(items);
assert_eq!(tree.remove(&[1.0, 1.0]).unwrap(), [1.0, 1.0]);
}
#[test]
fn test_create_rtree_with_parameters() {
let tree: RTree<[f32; 2], TestParams> = RTree::new_with_params();
assert_eq!(tree.size(), 0);
}
#[test]
fn test_insert_single() {
let mut tree: RTree<_> = RTree::new();
tree.insert([0.02f32, 0.4f32]);
assert_eq!(tree.size(), 1);
assert!(tree.contains(&[0.02, 0.4]));
assert!(!tree.contains(&[0.3, 0.2]));
}
#[test]
fn test_insert_many() {
const NUM_POINTS: usize = 1000;
let points = create_random_points(NUM_POINTS, SEED_1);
let mut tree = RTree::new();
for p in &points {
tree.insert(*p);
tree.root.sanity_check::<DefaultParams>(true);
}
assert_eq!(tree.size(), NUM_POINTS);
for p in &points {
assert!(tree.contains(p));
}
}
#[test]
fn test_fmt_debug() {
let tree = RTree::bulk_load(vec![[0, 1], [0, 1]]);
let debug: String = format!("{:?}", tree);
assert_eq!(debug, "RTree { size: 2, items: {[0, 1], [0, 1]} }");
}
#[test]
fn test_default() {
let tree: RTree<[f32; 2]> = Default::default();
assert_eq!(tree.size(), 0);
}
#[cfg(feature = "serde")]
#[test]
fn test_serialization() {
use crate::test_utilities::create_random_integers;
use serde_json;
const SIZE: usize = 20;
let points = create_random_integers::<[i32; 2]>(SIZE, SEED_1);
let tree = RTree::bulk_load(points.clone());
let json = serde_json::to_string(&tree).expect("Serializing tree failed");
let parsed: RTree<[i32; 2]> =
serde_json::from_str(&json).expect("Deserializing tree failed");
assert_eq!(parsed.size(), SIZE);
for point in &points {
assert!(parsed.contains(point));
}
}
#[test]
fn test_bulk_load_crash() {
let bulk_nodes = vec![
[570.0, 1080.0, 89.0],
[30.0, 1080.0, 627.0],
[1916.0, 1080.0, 68.0],
[274.0, 1080.0, 790.0],
[476.0, 1080.0, 895.0],
[1557.0, 1080.0, 250.0],
[1546.0, 1080.0, 883.0],
[1512.0, 1080.0, 610.0],
[1729.0, 1080.0, 358.0],
[1841.0, 1080.0, 434.0],
[1752.0, 1080.0, 696.0],
[1674.0, 1080.0, 705.0],
[136.0, 1080.0, 22.0],
[1593.0, 1080.0, 71.0],
[586.0, 1080.0, 272.0],
[348.0, 1080.0, 373.0],
[502.0, 1080.0, 2.0],
[1488.0, 1080.0, 1072.0],
[31.0, 1080.0, 526.0],
[1695.0, 1080.0, 559.0],
[1663.0, 1080.0, 298.0],
[316.0, 1080.0, 417.0],
[1348.0, 1080.0, 731.0],
[784.0, 1080.0, 126.0],
[225.0, 1080.0, 847.0],
[79.0, 1080.0, 819.0],
[320.0, 1080.0, 504.0],
[1714.0, 1080.0, 1026.0],
[264.0, 1080.0, 229.0],
[108.0, 1080.0, 158.0],
[1665.0, 1080.0, 604.0],
[496.0, 1080.0, 231.0],
[1813.0, 1080.0, 865.0],
[1200.0, 1080.0, 326.0],
[1661.0, 1080.0, 818.0],
[135.0, 1080.0, 229.0],
[424.0, 1080.0, 1016.0],
[1708.0, 1080.0, 791.0],
[1626.0, 1080.0, 682.0],
[442.0, 1080.0, 895.0],
];
let nodes = vec![
[1916.0, 1060.0, 68.0],
[1664.0, 1060.0, 298.0],
[1594.0, 1060.0, 71.0],
[225.0, 1060.0, 846.0],
[1841.0, 1060.0, 434.0],
[502.0, 1060.0, 2.0],
[1625.5852, 1060.0122, 682.0],
[1348.5273, 1060.0029, 731.08124],
[316.36127, 1060.0298, 418.24515],
[1729.3253, 1060.0023, 358.50134],
];
let mut tree = RTree::bulk_load(bulk_nodes);
for node in nodes {
// Bulk loading will create nodes larger than Params::MAX_SIZE,
// which is intentional and not harmful.
tree.insert(node);
tree.root().sanity_check::<DefaultParams>(false);
}
}
}