stackfuture/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
//! This crate defines a `StackFuture` wrapper around futures that stores the wrapped
//! future in space provided by the caller. This can be used to emulate dyn async traits
//! without requiring heap allocation.
//!
//! For more details, see the documentation on the [`StackFuture`] struct.
// std is needed to run tests, but otherwise we don't need it.
#![cfg_attr(not(test), no_std)]
#![warn(missing_docs)]
use core::fmt::Debug;
use core::fmt::Display;
use core::future::Future;
use core::marker::PhantomData;
use core::mem;
use core::mem::MaybeUninit;
use core::pin::Pin;
use core::ptr;
use core::task::Context;
use core::task::Poll;
#[cfg(feature = "alloc")]
extern crate alloc;
#[cfg(feature = "alloc")]
use alloc::boxed::Box;
/// A wrapper that stores a future in space allocated by the container
///
/// Often this space comes from the calling function's stack, but it could just
/// as well come from some other allocation.
///
/// A `StackFuture` can be used to emulate async functions in dyn Trait objects.
/// For example:
///
/// ```
/// # use stackfuture::*;
/// trait PseudoAsyncTrait {
/// fn do_something(&self) -> StackFuture<'_, (), { 512 }>;
/// }
///
/// impl PseudoAsyncTrait for i32 {
/// fn do_something(&self) -> StackFuture<'_, (), { 512 }> {
/// StackFuture::from(async {
/// // function body goes here
/// })
/// }
/// }
///
/// async fn use_dyn_async_trait(x: &dyn PseudoAsyncTrait) {
/// x.do_something().await;
/// }
///
/// async fn call_with_dyn_async_trait() {
/// use_dyn_async_trait(&42).await;
/// }
/// ```
///
/// This example defines `PseudoAsyncTrait` with a single method `do_something`.
/// The `do_something` method can be called as if it were declared as
/// `async fn do_something(&self)`. To implement `do_something`, the easiest thing
/// to do is to wrap the body of the function in `StackFuture::from(async { ... })`,
/// which creates an anonymous future for the body and stores it in a `StackFuture`.
///
/// Because `StackFuture` does not know the size of the future it wraps, the maximum
/// size of the future must be specified in the `STACK_SIZE` parameter. In the example
/// here, we've used a stack size of 512, which is probably much larger than necessary
/// but would accommodate many futures besides the simple one we've shown here.
///
/// `StackFuture` ensures when wrapping a future that enough space is available, and
/// it also respects any alignment requirements for the wrapped future. Note that the
/// wrapped future's alignment must be less than or equal to that of the overall
/// `StackFuture` struct.
#[repr(C)] // Ensures the data first does not have any padding before it in the struct
pub struct StackFuture<'a, T, const STACK_SIZE: usize> {
/// An array of bytes that is used to store the wrapped future.
data: [MaybeUninit<u8>; STACK_SIZE],
/// Since the type of `StackFuture` does not know the underlying future that it is wrapping,
/// we keep a manual vtable that serves pointers to Poll::poll and Drop::drop. These are
/// generated and filled in by `StackFuture::from`.
///
/// This field stores a pointer to the poll function wrapper.
poll_fn: fn(this: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<T>,
/// Stores a pointer to the drop function wrapper
///
/// See the documentation on `poll_fn` for more details.
drop_fn: fn(this: &mut Self),
/// StackFuture can be used similarly to a `dyn Future`. We keep a PhantomData
/// here so the type system knows this.
_phantom: PhantomData<dyn Future<Output = T> + Send + 'a>,
}
impl<'a, T, const STACK_SIZE: usize> StackFuture<'a, T, { STACK_SIZE }> {
/// Creates a `StackFuture` from an existing future
///
/// See the documentation on [`StackFuture`] for examples of how to use this.
///
/// The size and alignment requirements are statically checked, so it is a compiler error
/// to use this with a future that does not fit within the [`StackFuture`]'s size and
/// alignment requirements.
///
/// The following example illustrates a compile error for a future that is too large.
/// ```compile_fail
/// # use stackfuture::StackFuture;
/// // Fails because the future contains a large array and is therefore too big to fit in
/// // a 16-byte `StackFuture`.
/// let f = StackFuture::<_, { 16 }>::from(async {
/// let x = [0u8; 4096];
/// async {}.await;
/// println!("{}", x.len());
/// });
/// # #[cfg(miri)] break rust; // FIXME: miri doesn't detect this breakage for some reason...
/// ```
///
/// The example below illustrates a compiler error for a future whose alignment is too large.
/// ```compile_fail
/// # use stackfuture::StackFuture;
///
/// #[derive(Debug)]
/// #[repr(align(256))]
/// struct BigAlignment(usize);
///
/// // Fails because the future contains a large array and is therefore too big to fit in
/// // a 16-byte `StackFuture`.
/// let f = StackFuture::<_, { 16 }>::from(async {
/// let x = BigAlignment(42);
/// async {}.await;
/// println!("{x:?}");
/// });
/// # #[cfg(miri)] break rust; // FIXME: miri doesn't detect this breakage for some reason...
/// ```
pub fn from<F>(future: F) -> Self
where
F: Future<Output = T> + Send + 'a, // the bounds here should match those in the _phantom field
{
// Ideally we would provide this as:
//
// impl<'a, F, const STACK_SIZE: usize> From<F> for StackFuture<'a, F::Output, { STACK_SIZE }>
// where
// F: Future + Send + 'a
//
// However, libcore provides a blanket `impl<T> From<T> for T`, and since `StackFuture: Future`,
// both impls end up being applicable to do `From<StackFuture> for StackFuture`.
// Statically assert that `F` meets all the size and alignment requirements
#[allow(clippy::let_unit_value)]
let _ = AssertFits::<F, STACK_SIZE>::ASSERT;
Self::try_from(future).unwrap()
}
/// Attempts to create a `StackFuture` from an existing future
///
/// If the `StackFuture` is not large enough to hold `future`, this function returns an
/// `Err` with the argument `future` returned to you.
///
/// Panics
///
/// If we cannot satisfy the alignment requirements for `F`, this function will panic.
pub fn try_from<F>(future: F) -> Result<Self, IntoStackFutureError<F>>
where
F: Future<Output = T> + Send + 'a, // the bounds here should match those in the _phantom field
{
if Self::has_space_for_val(&future) && Self::has_alignment_for_val(&future) {
let mut result = StackFuture {
data: [MaybeUninit::uninit(); STACK_SIZE],
poll_fn: Self::poll_inner::<F>,
drop_fn: Self::drop_inner::<F>,
_phantom: PhantomData,
};
// Ensure result.data is at the beginning of the struct so we don't need to do
// alignment adjustments.
assert_eq!(result.data.as_ptr() as usize, &result as *const _ as usize);
// SAFETY: result.as_mut_ptr returns a pointer into result.data, which is an
// uninitialized array of bytes. result.as_mut_ptr ensures the returned pointer
// is correctly aligned, and the if expression we are in ensures the buffer is
// large enough.
//
// Because `future` is bound by `'a` and `StackFuture` is also bound by `'a`,
// we can be sure anything that `future` closes over will also outlive `result`.
unsafe { result.as_mut_ptr::<F>().write(future) };
Ok(result)
} else {
Err(IntoStackFutureError::new::<Self>(future))
}
}
/// Creates a StackFuture from the given future, boxing if necessary
///
/// This version will succeed even if the future is larger than `STACK_SIZE`. If the future
/// is too large, `from_or_box` will allocate a `Box` on the heap and store the resulting
/// boxed future in the `StackFuture`.
///
/// The same thing also happens if the wrapped future's alignment is larger than StackFuture's
/// alignment.
///
/// This function requires the "alloc" crate feature.
#[cfg(feature = "alloc")]
pub fn from_or_box<F>(future: F) -> Self
where
F: Future<Output = T> + Send + 'a, // the bounds here should match those in the _phantom field
{
Self::try_from(future).unwrap_or_else(|err| Self::from(Box::pin(err.into_inner())))
}
/// A wrapper around the inner future's poll function, which we store in the poll_fn field
/// of this struct.
fn poll_inner<F: Future>(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<F::Output> {
self.as_pin_mut_ref::<F>().poll(cx)
}
/// A wrapper around the inner future's drop function, which we store in the drop_fn field
/// of this struct.
fn drop_inner<F>(&mut self) {
// SAFETY: *this.as_mut_ptr() was previously written as type F
unsafe { ptr::drop_in_place(self.as_mut_ptr::<F>()) }
}
/// Returns a pointer into self.data that meets the alignment requirements for type `F`
///
/// Before writing to the returned pointer, the caller must ensure that self.data is large
/// enough to hold F and any required padding.
fn as_mut_ptr<F>(&mut self) -> *mut F {
assert!(Self::has_space_for::<F>());
// SAFETY: Self is laid out so that the space for the future comes at offset 0.
// This is checked by an assertion in Self::from. Thus it's safe to cast a pointer
// to Self into a pointer to the wrapped future.
unsafe { mem::transmute(self) }
}
/// Returns a pinned mutable reference to a type F stored in self.data
fn as_pin_mut_ref<F>(self: Pin<&mut Self>) -> Pin<&mut F> {
// SAFETY: `StackFuture` is only created by `StackFuture::from`, which
// writes an `F` to `self.as_mut_ptr(), so it's okay to cast the `*mut F`
// to an `&mut F` with the same lifetime as `self`.
//
// For pinning, since self is already pinned, we know the wrapped future
// is also pinned.
//
// This function is only doing pointer arithmetic and casts, so we aren't moving
// any pinned data.
unsafe { self.map_unchecked_mut(|this| &mut *this.as_mut_ptr()) }
}
/// Computes how much space is required to store a value of type `F`
const fn required_space<F>() -> usize {
mem::size_of::<F>()
}
/// Determines whether this `StackFuture` can hold a value of type `F`
pub const fn has_space_for<F>() -> bool {
Self::required_space::<F>() <= STACK_SIZE
}
/// Determines whether this `StackFuture` can hold the referenced value
pub const fn has_space_for_val<F>(_: &F) -> bool {
Self::has_space_for::<F>()
}
/// Determines whether this `StackFuture`'s alignment is compatible with the
/// type `F`.
pub const fn has_alignment_for<F>() -> bool {
mem::align_of::<F>() <= mem::align_of::<Self>()
}
/// Determines whether this `StackFuture`'s alignment is compatible with the
/// referenced value.
pub const fn has_alignment_for_val<F>(_: &F) -> bool {
Self::has_alignment_for::<F>()
}
}
impl<'a, T, const STACK_SIZE: usize> Future for StackFuture<'a, T, { STACK_SIZE }> {
type Output = T;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
// SAFETY: This is doing pin projection. We unpin self so we can
// access self.poll_fn, and then re-pin self to pass it into poll_in.
// The part of the struct that needs to be pinned is data, since it
// contains a potentially self-referential future object, but since we
// do not touch that while self is unpinned and we do not move self
// while unpinned we are okay.
unsafe {
let this = self.get_unchecked_mut();
(this.poll_fn)(Pin::new_unchecked(this), cx)
}
}
}
impl<'a, T, const STACK_SIZE: usize> Drop for StackFuture<'a, T, { STACK_SIZE }> {
fn drop(&mut self) {
(self.drop_fn)(self);
}
}
struct AssertFits<F, const STACK_SIZE: usize>(PhantomData<F>);
impl<F, const STACK_SIZE: usize> AssertFits<F, STACK_SIZE> {
const ASSERT: () = {
if !StackFuture::<F, STACK_SIZE>::has_space_for::<F>() {
panic!("F is too large");
}
if !StackFuture::<F, STACK_SIZE>::has_alignment_for::<F>() {
panic!("F has incompatible alignment");
}
};
}
/// Captures information about why a future could not be converted into a [`StackFuture`]
///
/// It also contains the original future so that callers can still run the future in error
/// recovery paths, such as by boxing the future instead of wrapping it in [`StackFuture`].
pub struct IntoStackFutureError<F> {
/// The size of the StackFuture we tried to convert the future into
maximum_size: usize,
/// The StackFuture's alignment
maximum_alignment: usize,
/// The future that was attempted to be wrapped
future: F,
}
impl<F> IntoStackFutureError<F> {
fn new<Target>(future: F) -> Self {
Self {
maximum_size: mem::size_of::<Target>(),
maximum_alignment: mem::align_of::<Target>(),
future,
}
}
/// Returns true if the target [`StackFuture`] was too small to hold the given future.
pub fn insufficient_space(&self) -> bool {
self.maximum_size < mem::size_of_val(&self.future)
}
/// Returns true if the target [`StackFuture`]'s alignment was too small to accommodate the given future.
pub fn alignment_too_small(&self) -> bool {
self.maximum_alignment < mem::align_of_val(&self.future)
}
/// Returns the alignment of the wrapped future.
pub fn required_alignment(&self) -> usize {
mem::align_of_val(&self.future)
}
/// Returns the size of the wrapped future.
pub fn required_space(&self) -> usize {
mem::size_of_val(&self.future)
}
/// Returns the alignment of the target [`StackFuture`], which is also the maximum alignment
/// that can be wrapped.
pub const fn available_alignment(&self) -> usize {
self.maximum_alignment
}
/// Returns the amount of space that was available in the target [`StackFuture`].
pub const fn available_space(&self) -> usize {
self.maximum_size
}
/// Returns the underlying future that caused this error
///
/// Can be used to try again, either by directly awaiting the future, wrapping it in a `Box`,
/// or some other method.
fn into_inner(self) -> F {
self.future
}
}
impl<F> Display for IntoStackFutureError<F> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
match (self.alignment_too_small(), self.insufficient_space()) {
(true, true) => write!(f,
"cannot create StackFuture, required size is {}, available space is {}; required alignment is {} but maximum alignment is {}",
self.required_space(),
self.available_space(),
self.required_alignment(),
self.available_alignment()
),
(true, false) => write!(f,
"cannot create StackFuture, required alignment is {} but maximum alignment is {}",
self.required_alignment(),
self.available_alignment()
),
(false, true) => write!(f,
"cannot create StackFuture, required size is {}, available space is {}",
self.required_space(),
self.available_space()
),
// If we have space and alignment, then `try_from` would have succeeded
(false, false) => unreachable!(),
}
}
}
impl<F> Debug for IntoStackFutureError<F> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.debug_struct("IntoStackFutureError")
.field("maximum_size", &self.maximum_size)
.field("maximum_alignment", &self.maximum_alignment)
.field("future", &core::any::type_name::<F>())
.finish()
}
}
#[cfg(test)]
mod tests;