zerocopy/
split_at.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
// Copyright 2025 The Fuchsia Authors
//
// Licensed under the 2-Clause BSD License <LICENSE-BSD or
// https://opensource.org/license/bsd-2-clause>, Apache License, Version 2.0
// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
// This file may not be copied, modified, or distributed except according to
// those terms.

use super::*;
use crate::pointer::invariant::{Aligned, Exclusive, Invariants, Shared, Valid};

/// Types that can be split in two.
///
/// This trait generalizes Rust's existing support for splitting slices to
/// support slices and slice-based dynamically-sized types ("slice DSTs").
///
/// # Implementation
///
/// **Do not implement this trait yourself!** Instead, use
/// [`#[derive(SplitAt)]`][derive]; e.g.:
///
/// ```
/// # use zerocopy_derive::{SplitAt, KnownLayout};
/// #[derive(SplitAt, KnownLayout)]
/// #[repr(C)]
/// struct MyStruct<T: ?Sized> {
/// # /*
///     ...,
/// # */
///     // `SplitAt` types must have at least one field.
///     field: T,
/// }
/// ```
///
/// This derive performs a sophisticated, compile-time safety analysis to
/// determine whether a type is `SplitAt`.
///
/// # Safety
///
/// This trait does not convey any safety guarantees to code outside this crate.
///
/// You must not rely on the `#[doc(hidden)]` internals of `SplitAt`. Future
/// releases of zerocopy may make backwards-breaking changes to these items,
/// including changes that only affect soundness, which may cause code which
/// uses those items to silently become unsound.
///
#[cfg_attr(feature = "derive", doc = "[derive]: zerocopy_derive::SplitAt")]
#[cfg_attr(
    not(feature = "derive"),
    doc = concat!("[derive]: https://docs.rs/zerocopy/", env!("CARGO_PKG_VERSION"), "/zerocopy/derive.SplitAt.html"),
)]
#[cfg_attr(
    zerocopy_diagnostic_on_unimplemented_1_78_0,
    diagnostic::on_unimplemented(note = "Consider adding `#[derive(SplitAt)]` to `{Self}`")
)]
// # Safety
//
// The trailing slice is well-aligned for its element type. `Self` is `[T]`, or
// a `repr(C)` or `repr(transparent)` slice DST.
pub unsafe trait SplitAt: KnownLayout<PointerMetadata = usize> {
    /// The element type of the trailing slice.
    type Elem;

    #[doc(hidden)]
    fn only_derive_is_allowed_to_implement_this_trait()
    where
        Self: Sized;

    /// Unsafely splits `self` in two.
    ///
    /// # Safety
    ///
    /// The caller promises that `l_len` is not greater than the length of
    /// `self`'s trailing slice.
    #[inline]
    #[must_use]
    unsafe fn split_at_unchecked(&self, l_len: usize) -> Split<&Self> {
        // SAFETY: By precondition on the caller, `l_len <= self.len()`.
        unsafe { Split::<&Self>::new(self, l_len) }
    }

    /// Attempts to split `self` in two.
    ///
    /// Returns `None` if `l_len` is greater than the length of `self`'s
    /// trailing slice.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::{SplitAt, FromBytes};
    /// # use zerocopy_derive::*;
    ///
    /// #[derive(SplitAt, FromBytes, KnownLayout, Immutable)]
    /// #[repr(C)]
    /// struct Packet {
    ///     length: u8,
    ///     body: [u8],
    /// }
    ///
    /// // These bytes encode a `Packet`.
    /// let bytes = &[4, 1, 2, 3, 4, 5, 6, 7, 8, 9][..];
    ///
    /// let packet = Packet::ref_from_bytes(bytes).unwrap();
    ///
    /// assert_eq!(packet.length, 4);
    /// assert_eq!(packet.body, [1, 2, 3, 4, 5, 6, 7, 8, 9]);
    ///
    /// // Attempt to split `packet` at `length`.
    /// let split = packet.split_at(packet.length as usize).unwrap();
    ///
    /// // Use the `Immutable` bound on `Packet` to prove that it's okay to
    /// // return concurrent references to `packet` and `rest`.
    /// let (packet, rest) = split.via_immutable();
    ///
    /// assert_eq!(packet.length, 4);
    /// assert_eq!(packet.body, [1, 2, 3, 4]);
    /// assert_eq!(rest, [5, 6, 7, 8, 9]);
    /// ```
    #[inline]
    #[must_use = "has no side effects"]
    fn split_at(&self, l_len: usize) -> Option<Split<&Self>> {
        MetadataOf::new_in_bounds(self, l_len).map(
            #[inline(always)]
            |l_len| {
                // SAFETY: We have ensured that `l_len <= self.len()` (by
                // post-condition on `MetadataOf::new_in_bounds`)
                unsafe { Split::new(self, l_len.get()) }
            },
        )
    }

    /// Unsafely splits `self` in two.
    ///
    /// # Safety
    ///
    /// The caller promises that `l_len` is not greater than the length of
    /// `self`'s trailing slice.
    #[inline]
    #[must_use]
    unsafe fn split_at_mut_unchecked(&mut self, l_len: usize) -> Split<&mut Self> {
        // SAFETY: By precondition on the caller, `l_len <= self.len()`.
        unsafe { Split::<&mut Self>::new(self, l_len) }
    }

    /// Attempts to split `self` in two.
    ///
    /// Returns `None` if `l_len` is greater than the length of `self`'s
    /// trailing slice, or if the given `l_len` would result in [the trailing
    /// padding](KnownLayout#slice-dst-layout) of the left portion overlapping
    /// the right portion.
    ///
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::{SplitAt, FromBytes};
    /// # use zerocopy_derive::*;
    ///
    /// #[derive(SplitAt, FromBytes, KnownLayout, IntoBytes)]
    /// #[repr(C)]
    /// struct Packet<B: ?Sized> {
    ///     length: u8,
    ///     body: B,
    /// }
    ///
    /// // These bytes encode a `Packet`.
    /// let mut bytes = &mut [4, 1, 2, 3, 4, 5, 6, 7, 8, 9][..];
    ///
    /// let packet = Packet::<[u8]>::mut_from_bytes(bytes).unwrap();
    ///
    /// assert_eq!(packet.length, 4);
    /// assert_eq!(packet.body, [1, 2, 3, 4, 5, 6, 7, 8, 9]);
    ///
    /// {
    ///     // Attempt to split `packet` at `length`.
    ///     let split = packet.split_at_mut(packet.length as usize).unwrap();
    ///
    ///     // Use the `IntoBytes` bound on `Packet` to prove that it's okay to
    ///     // return concurrent references to `packet` and `rest`.
    ///     let (packet, rest) = split.via_into_bytes();
    ///
    ///     assert_eq!(packet.length, 4);
    ///     assert_eq!(packet.body, [1, 2, 3, 4]);
    ///     assert_eq!(rest, [5, 6, 7, 8, 9]);
    ///
    ///     rest.fill(0);
    /// }
    ///
    /// assert_eq!(packet.length, 4);
    /// assert_eq!(packet.body, [1, 2, 3, 4, 0, 0, 0, 0, 0]);
    /// ```
    #[inline]
    fn split_at_mut(&mut self, l_len: usize) -> Option<Split<&mut Self>> {
        MetadataOf::new_in_bounds(self, l_len).map(
            #[inline(always)]
            |l_len| {
                // SAFETY: We have ensured that `l_len <= self.len()` (by
                // post-condition on `MetadataOf::new_in_bounds`)
                unsafe { Split::new(self, l_len.get()) }
            },
        )
    }
}

// SAFETY: `[T]`'s trailing slice is `[T]`, which is trivially aligned.
unsafe impl<T> SplitAt for [T] {
    type Elem = T;

    #[inline]
    #[allow(dead_code)]
    fn only_derive_is_allowed_to_implement_this_trait()
    where
        Self: Sized,
    {
    }
}

/// A `T` that has been split into two possibly-overlapping parts.
///
/// For some dynamically sized types, the padding that appears after the
/// trailing slice field [is a dynamic function of the trailing slice
/// length](KnownLayout#slice-dst-layout). If `T` is split at a length that
/// requires trailing padding, the trailing padding of the left part of the
/// split `T` will overlap the right part. If `T` is a mutable reference or
/// permits interior mutation, you must ensure that the left and right parts do
/// not overlap. You can do this at zero-cost using using
/// [`Self::via_immutable`], [`Self::via_into_bytes`], or
/// [`Self::via_unaligned`], or with a dynamic check by using
/// [`Self::via_runtime_check`].
#[derive(Debug)]
pub struct Split<T> {
    /// A pointer to the source slice DST.
    source: T,
    /// The length of the future left half of `source`.
    ///
    /// # Safety
    ///
    /// If `source` is a pointer to a slice DST, `l_len` is no greater than
    /// `source`'s length.
    l_len: usize,
}

impl<T> Split<T> {
    /// Produces a `Split` of `source` with `l_len`.
    ///
    /// # Safety
    ///
    /// `l_len` is no greater than `source`'s length.
    #[inline(always)]
    unsafe fn new(source: T, l_len: usize) -> Self {
        Self { source, l_len }
    }
}

impl<'a, T> Split<&'a T>
where
    T: ?Sized + SplitAt,
{
    #[inline(always)]
    fn into_ptr(self) -> Split<Ptr<'a, T, (Shared, Aligned, Valid)>> {
        let source = Ptr::from_ref(self.source);
        // SAFETY: `Ptr::from_ref(self.source)` points to exactly `self.source`
        // and thus maintains the invariants of `self` with respect to `l_len`.
        unsafe { Split::new(source, self.l_len) }
    }

    /// Produces the split parts of `self`, using [`Immutable`] to ensure that
    /// it is sound to have concurrent references to both parts.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::{SplitAt, FromBytes};
    /// # use zerocopy_derive::*;
    ///
    /// #[derive(SplitAt, FromBytes, KnownLayout, Immutable)]
    /// #[repr(C)]
    /// struct Packet {
    ///     length: u8,
    ///     body: [u8],
    /// }
    ///
    /// // These bytes encode a `Packet`.
    /// let bytes = &[4, 1, 2, 3, 4, 5, 6, 7, 8, 9][..];
    ///
    /// let packet = Packet::ref_from_bytes(bytes).unwrap();
    ///
    /// assert_eq!(packet.length, 4);
    /// assert_eq!(packet.body, [1, 2, 3, 4, 5, 6, 7, 8, 9]);
    ///
    /// // Attempt to split `packet` at `length`.
    /// let split = packet.split_at(packet.length as usize).unwrap();
    ///
    /// // Use the `Immutable` bound on `Packet` to prove that it's okay to
    /// // return concurrent references to `packet` and `rest`.
    /// let (packet, rest) = split.via_immutable();
    ///
    /// assert_eq!(packet.length, 4);
    /// assert_eq!(packet.body, [1, 2, 3, 4]);
    /// assert_eq!(rest, [5, 6, 7, 8, 9]);
    /// ```
    #[must_use = "has no side effects"]
    #[inline(always)]
    pub fn via_immutable(self) -> (&'a T, &'a [T::Elem])
    where
        T: Immutable,
    {
        let (l, r) = self.into_ptr().via_immutable();
        (l.as_ref(), r.as_ref())
    }

    /// Produces the split parts of `self`, using [`IntoBytes`] to ensure that
    /// it is sound to have concurrent references to both parts.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::{SplitAt, FromBytes};
    /// # use zerocopy_derive::*;
    ///
    /// #[derive(SplitAt, FromBytes, KnownLayout, Immutable, IntoBytes)]
    /// #[repr(C)]
    /// struct Packet<B: ?Sized> {
    ///     length: u8,
    ///     body: B,
    /// }
    ///
    /// // These bytes encode a `Packet`.
    /// let bytes = &[4, 1, 2, 3, 4, 5, 6, 7, 8, 9][..];
    ///
    /// let packet = Packet::<[u8]>::ref_from_bytes(bytes).unwrap();
    ///
    /// assert_eq!(packet.length, 4);
    /// assert_eq!(packet.body, [1, 2, 3, 4, 5, 6, 7, 8, 9]);
    ///
    /// // Attempt to split `packet` at `length`.
    /// let split = packet.split_at(packet.length as usize).unwrap();
    ///
    /// // Use the `IntoBytes` bound on `Packet` to prove that it's okay to
    /// // return concurrent references to `packet` and `rest`.
    /// let (packet, rest) = split.via_into_bytes();
    ///
    /// assert_eq!(packet.length, 4);
    /// assert_eq!(packet.body, [1, 2, 3, 4]);
    /// assert_eq!(rest, [5, 6, 7, 8, 9]);
    /// ```
    #[must_use = "has no side effects"]
    #[inline(always)]
    pub fn via_into_bytes(self) -> (&'a T, &'a [T::Elem])
    where
        T: IntoBytes,
    {
        let (l, r) = self.into_ptr().via_into_bytes();
        (l.as_ref(), r.as_ref())
    }

    /// Produces the split parts of `self`, using [`Unaligned`] to ensure that
    /// it is sound to have concurrent references to both parts.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::{SplitAt, FromBytes};
    /// # use zerocopy_derive::*;
    ///
    /// #[derive(SplitAt, FromBytes, KnownLayout, Immutable, Unaligned)]
    /// #[repr(C)]
    /// struct Packet {
    ///     length: u8,
    ///     body: [u8],
    /// }
    ///
    /// // These bytes encode a `Packet`.
    /// let bytes = &[4, 1, 2, 3, 4, 5, 6, 7, 8, 9][..];
    ///
    /// let packet = Packet::ref_from_bytes(bytes).unwrap();
    ///
    /// assert_eq!(packet.length, 4);
    /// assert_eq!(packet.body, [1, 2, 3, 4, 5, 6, 7, 8, 9]);
    ///
    /// // Attempt to split `packet` at `length`.
    /// let split = packet.split_at(packet.length as usize).unwrap();
    ///
    /// // Use the `Unaligned` bound on `Packet` to prove that it's okay to
    /// // return concurrent references to `packet` and `rest`.
    /// let (packet, rest) = split.via_unaligned();
    ///
    /// assert_eq!(packet.length, 4);
    /// assert_eq!(packet.body, [1, 2, 3, 4]);
    /// assert_eq!(rest, [5, 6, 7, 8, 9]);
    /// ```
    #[must_use = "has no side effects"]
    #[inline(always)]
    pub fn via_unaligned(self) -> (&'a T, &'a [T::Elem])
    where
        T: Unaligned,
    {
        let (l, r) = self.into_ptr().via_unaligned();
        (l.as_ref(), r.as_ref())
    }

    /// Produces the split parts of `self`, using a dynamic check to ensure that
    /// it is sound to have concurrent references to both parts. You should
    /// prefer using [`Self::via_immutable`], [`Self::via_into_bytes`], or
    /// [`Self::via_unaligned`], which have no runtime cost.
    ///
    /// Note that this check is overly conservative if `T` is [`Immutable`]; for
    /// some types, this check will reject some splits which
    /// [`Self::via_immutable`] will accept.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::{SplitAt, FromBytes, IntoBytes, network_endian::U16};
    /// # use zerocopy_derive::*;
    ///
    /// #[derive(SplitAt, FromBytes, KnownLayout, Immutable, Debug)]
    /// #[repr(C, align(2))]
    /// struct Packet {
    ///     length: U16,
    ///     body: [u8],
    /// }
    ///
    /// // These bytes encode a `Packet`.
    /// let bytes = [
    ///     4u16.to_be(),
    ///     1u16.to_be(),
    ///     2u16.to_be(),
    ///     3u16.to_be(),
    ///     4u16.to_be()
    /// ];
    ///
    /// let packet = Packet::ref_from_bytes(bytes.as_bytes()).unwrap();
    ///
    /// assert_eq!(packet.length, 4);
    /// assert_eq!(packet.body, [0, 1, 0, 2, 0, 3, 0, 4]);
    ///
    /// // Attempt to split `packet` at `length`.
    /// let split = packet.split_at(packet.length.into()).unwrap();
    ///
    /// // Use a dynamic check to prove that it's okay to return concurrent
    /// // references to `packet` and `rest`.
    /// let (packet, rest) = split.via_runtime_check().unwrap();
    ///
    /// assert_eq!(packet.length, 4);
    /// assert_eq!(packet.body, [0, 1, 0, 2]);
    /// assert_eq!(rest, [0, 3, 0, 4]);
    ///
    /// // Attempt to split `packet` at `length - 1`.
    /// let idx = packet.length.get() - 1;
    /// let split = packet.split_at(idx as usize).unwrap();
    ///
    /// // Attempt (and fail) to use a dynamic check to prove that it's okay
    /// // to return concurrent references to `packet` and `rest`. Note that
    /// // this is a case of `via_runtime_check` being overly conservative.
    /// // Although the left and right parts indeed overlap, the `Immutable`
    /// // bound ensures that concurrently referencing these overlapping
    /// // parts is sound.
    /// assert!(split.via_runtime_check().is_err());
    /// ```
    #[must_use = "has no side effects"]
    #[inline(always)]
    pub fn via_runtime_check(self) -> Result<(&'a T, &'a [T::Elem]), Self> {
        match self.into_ptr().via_runtime_check() {
            Ok((l, r)) => Ok((l.as_ref(), r.as_ref())),
            Err(s) => Err(s.into_ref()),
        }
    }

    /// Unsafely produces the split parts of `self`.
    ///
    /// # Safety
    ///
    /// If `T` permits interior mutation, the trailing padding bytes of the left
    /// portion must not overlap the right portion. For some dynamically sized
    /// types, the padding that appears after the trailing slice field [is a
    /// dynamic function of the trailing slice
    /// length](KnownLayout#slice-dst-layout). Thus, for some types, this
    /// condition is dependent on the length of the left portion.
    #[must_use = "has no side effects"]
    #[inline(always)]
    pub unsafe fn via_unchecked(self) -> (&'a T, &'a [T::Elem]) {
        // SAFETY: The aliasing of `self.into_ptr()` is not `Exclusive`, but the
        // caller has promised that if `T` permits interior mutation then the
        // left and right portions of `self` split at `l_len` do not overlap.
        let (l, r) = unsafe { self.into_ptr().via_unchecked() };
        (l.as_ref(), r.as_ref())
    }
}

impl<'a, T> Split<&'a mut T>
where
    T: ?Sized + SplitAt,
{
    #[inline(always)]
    fn into_ptr(self) -> Split<Ptr<'a, T, (Exclusive, Aligned, Valid)>> {
        let source = Ptr::from_mut(self.source);
        // SAFETY: `Ptr::from_mut(self.source)` points to exactly `self.source`,
        // and thus maintains the invariants of `self` with respect to `l_len`.
        unsafe { Split::new(source, self.l_len) }
    }

    /// Produces the split parts of `self`, using [`IntoBytes`] to ensure that
    /// it is sound to have concurrent references to both parts.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::{SplitAt, FromBytes};
    /// # use zerocopy_derive::*;
    ///
    /// #[derive(SplitAt, FromBytes, KnownLayout, IntoBytes)]
    /// #[repr(C)]
    /// struct Packet<B: ?Sized> {
    ///     length: u8,
    ///     body: B,
    /// }
    ///
    /// // These bytes encode a `Packet`.
    /// let mut bytes = &mut [4, 1, 2, 3, 4, 5, 6, 7, 8, 9][..];
    ///
    /// let packet = Packet::<[u8]>::mut_from_bytes(bytes).unwrap();
    ///
    /// assert_eq!(packet.length, 4);
    /// assert_eq!(packet.body, [1, 2, 3, 4, 5, 6, 7, 8, 9]);
    ///
    /// {
    ///     // Attempt to split `packet` at `length`.
    ///     let split = packet.split_at_mut(packet.length as usize).unwrap();
    ///
    ///     // Use the `IntoBytes` bound on `Packet` to prove that it's okay to
    ///     // return concurrent references to `packet` and `rest`.
    ///     let (packet, rest) = split.via_into_bytes();
    ///
    ///     assert_eq!(packet.length, 4);
    ///     assert_eq!(packet.body, [1, 2, 3, 4]);
    ///     assert_eq!(rest, [5, 6, 7, 8, 9]);
    ///
    ///     rest.fill(0);
    /// }
    ///
    /// assert_eq!(packet.length, 4);
    /// assert_eq!(packet.body, [1, 2, 3, 4, 0, 0, 0, 0, 0]);
    /// ```
    #[must_use = "has no side effects"]
    #[inline(always)]
    pub fn via_into_bytes(self) -> (&'a mut T, &'a mut [T::Elem])
    where
        T: IntoBytes,
    {
        let (l, r) = self.into_ptr().via_into_bytes();
        (l.as_mut(), r.as_mut())
    }

    /// Produces the split parts of `self`, using [`Unaligned`] to ensure that
    /// it is sound to have concurrent references to both parts.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::{SplitAt, FromBytes};
    /// # use zerocopy_derive::*;
    ///
    /// #[derive(SplitAt, FromBytes, KnownLayout, IntoBytes, Unaligned)]
    /// #[repr(C)]
    /// struct Packet<B: ?Sized> {
    ///     length: u8,
    ///     body: B,
    /// }
    ///
    /// // These bytes encode a `Packet`.
    /// let mut bytes = &mut [4, 1, 2, 3, 4, 5, 6, 7, 8, 9][..];
    ///
    /// let packet = Packet::<[u8]>::mut_from_bytes(bytes).unwrap();
    ///
    /// assert_eq!(packet.length, 4);
    /// assert_eq!(packet.body, [1, 2, 3, 4, 5, 6, 7, 8, 9]);
    ///
    /// {
    ///     // Attempt to split `packet` at `length`.
    ///     let split = packet.split_at_mut(packet.length as usize).unwrap();
    ///
    ///     // Use the `Unaligned` bound on `Packet` to prove that it's okay to
    ///     // return concurrent references to `packet` and `rest`.
    ///     let (packet, rest) = split.via_unaligned();
    ///
    ///     assert_eq!(packet.length, 4);
    ///     assert_eq!(packet.body, [1, 2, 3, 4]);
    ///     assert_eq!(rest, [5, 6, 7, 8, 9]);
    ///
    ///     rest.fill(0);
    /// }
    ///
    /// assert_eq!(packet.length, 4);
    /// assert_eq!(packet.body, [1, 2, 3, 4, 0, 0, 0, 0, 0]);
    /// ```
    #[must_use = "has no side effects"]
    #[inline(always)]
    pub fn via_unaligned(self) -> (&'a mut T, &'a mut [T::Elem])
    where
        T: Unaligned,
    {
        let (l, r) = self.into_ptr().via_unaligned();
        (l.as_mut(), r.as_mut())
    }

    /// Produces the split parts of `self`, using a dynamic check to ensure that
    /// it is sound to have concurrent references to both parts. You should
    /// prefer using [`Self::via_into_bytes`] or [`Self::via_unaligned`], which
    /// have no runtime cost.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::{SplitAt, FromBytes};
    /// # use zerocopy_derive::*;
    ///
    /// #[derive(SplitAt, FromBytes, KnownLayout, IntoBytes, Debug)]
    /// #[repr(C)]
    /// struct Packet<B: ?Sized> {
    ///     length: u8,
    ///     body: B,
    /// }
    ///
    /// // These bytes encode a `Packet`.
    /// let mut bytes = &mut [4, 1, 2, 3, 4, 5, 6, 7, 8, 9][..];
    ///
    /// let packet = Packet::<[u8]>::mut_from_bytes(bytes).unwrap();
    ///
    /// assert_eq!(packet.length, 4);
    /// assert_eq!(packet.body, [1, 2, 3, 4, 5, 6, 7, 8, 9]);
    ///
    /// {
    ///     // Attempt to split `packet` at `length`.
    ///     let split = packet.split_at_mut(packet.length as usize).unwrap();
    ///
    ///     // Use a dynamic check to prove that it's okay to return concurrent
    ///     // references to `packet` and `rest`.
    ///     let (packet, rest) = split.via_runtime_check().unwrap();
    ///
    ///     assert_eq!(packet.length, 4);
    ///     assert_eq!(packet.body, [1, 2, 3, 4]);
    ///     assert_eq!(rest, [5, 6, 7, 8, 9]);
    ///
    ///     rest.fill(0);
    /// }
    ///
    /// assert_eq!(packet.length, 4);
    /// assert_eq!(packet.body, [1, 2, 3, 4, 0, 0, 0, 0, 0]);
    /// ```
    #[must_use = "has no side effects"]
    #[inline(always)]
    pub fn via_runtime_check(self) -> Result<(&'a mut T, &'a mut [T::Elem]), Self> {
        match self.into_ptr().via_runtime_check() {
            Ok((l, r)) => Ok((l.as_mut(), r.as_mut())),
            Err(s) => Err(s.into_mut()),
        }
    }

    /// Unsafely produces the split parts of `self`.
    ///
    /// # Safety
    ///
    /// The trailing padding bytes of the left portion must not overlap the
    /// right portion. For some dynamically sized types, the padding that
    /// appears after the trailing slice field [is a dynamic function of the
    /// trailing slice length](KnownLayout#slice-dst-layout). Thus, for some
    /// types, this condition is dependent on the length of the left portion.
    #[must_use = "has no side effects"]
    #[inline(always)]
    pub unsafe fn via_unchecked(self) -> (&'a mut T, &'a mut [T::Elem]) {
        // SAFETY: The aliasing of `self.into_ptr()` is `Exclusive`, and the
        // caller has promised that the left and right portions of `self` split
        // at `l_len` do not overlap.
        let (l, r) = unsafe { self.into_ptr().via_unchecked() };
        (l.as_mut(), r.as_mut())
    }
}

impl<'a, T, I> Split<Ptr<'a, T, I>>
where
    T: ?Sized + SplitAt,
    I: Invariants<Alignment = Aligned, Validity = Valid>,
{
    fn into_ref(self) -> Split<&'a T>
    where
        I: Invariants<Aliasing = Shared>,
    {
        // SAFETY: `self.source.as_ref()` points to exactly the same referent as
        // `self.source` and thus maintains the invariants of `self` with
        // respect to `l_len`.
        unsafe { Split::new(self.source.as_ref(), self.l_len) }
    }

    fn into_mut(self) -> Split<&'a mut T>
    where
        I: Invariants<Aliasing = Exclusive>,
    {
        // SAFETY: `self.source.as_mut()` points to exactly the same referent as
        // `self.source` and thus maintains the invariants of `self` with
        // respect to `l_len`.
        unsafe { Split::new(self.source.unify_invariants().as_mut(), self.l_len) }
    }

    /// Produces the length of `self`'s left part.
    #[inline(always)]
    fn l_len(&self) -> MetadataOf<T> {
        // SAFETY: By invariant on `Split`, `self.l_len` is not greater than the
        // length of `self.source`.
        unsafe { MetadataOf::<T>::new_unchecked(self.l_len) }
    }

    /// Produces the split parts of `self`, using [`Immutable`] to ensure that
    /// it is sound to have concurrent references to both parts.
    #[inline(always)]
    fn via_immutable(self) -> (Ptr<'a, T, I>, Ptr<'a, [T::Elem], I>)
    where
        T: Immutable,
        I: Invariants<Aliasing = Shared>,
    {
        // SAFETY: `Aliasing = Shared` and `T: Immutable`.
        unsafe { self.via_unchecked() }
    }

    /// Produces the split parts of `self`, using [`IntoBytes`] to ensure that
    /// it is sound to have concurrent references to both parts.
    #[inline(always)]
    fn via_into_bytes(self) -> (Ptr<'a, T, I>, Ptr<'a, [T::Elem], I>)
    where
        T: IntoBytes,
    {
        // SAFETY: By `T: IntoBytes`, `T` has no padding for any length.
        // Consequently, `T` can be split into non-overlapping parts at any
        // index.
        unsafe { self.via_unchecked() }
    }

    /// Produces the split parts of `self`, using [`Unaligned`] to ensure that
    /// it is sound to have concurrent references to both parts.
    #[inline(always)]
    fn via_unaligned(self) -> (Ptr<'a, T, I>, Ptr<'a, [T::Elem], I>)
    where
        T: Unaligned,
    {
        // SAFETY: By `T: SplitAt + Unaligned`, `T` is either a slice or a
        // `repr(C)` or `repr(transparent)` slice DST that is well-aligned at
        // any address and length. If `T` is a slice DST with alignment 1,
        // `repr(C)` or `repr(transparent)` ensures that no padding is placed
        // after the final element of the trailing slice. Consequently, `T` can
        // be split into strictly non-overlapping parts any any index.
        unsafe { self.via_unchecked() }
    }

    /// Produces the split parts of `self`, using a dynamic check to ensure that
    /// it is sound to have concurrent references to both parts. You should
    /// prefer using [`Self::via_immutable`], [`Self::via_into_bytes`], or
    /// [`Self::via_unaligned`], which have no runtime cost.
    #[inline(always)]
    fn via_runtime_check(self) -> Result<(Ptr<'a, T, I>, Ptr<'a, [T::Elem], I>), Self> {
        let l_len = self.l_len();
        // FIXME(#1290): Once we require `KnownLayout` on all fields, add an
        // `IS_IMMUTABLE` associated const, and add `T::IS_IMMUTABLE ||` to the
        // below check.
        if l_len.padding_needed_for() == 0 {
            // SAFETY: By `T: SplitAt`, `T` is either `[T]`, or a `repr(C)` or
            // `repr(transparent)` slice DST, for which the trailing padding
            // needed to accomodate `l_len` trailing elements is
            // `l_len.padding_needed_for()`. If no trailing padding is required,
            // the left and right parts are strictly non-overlapping.
            Ok(unsafe { self.via_unchecked() })
        } else {
            Err(self)
        }
    }

    /// Unsafely produces the split parts of `self`.
    ///
    /// # Safety
    ///
    /// The caller promises that if `I::Aliasing` is [`Exclusive`] or `T`
    /// permits interior mutation, then `l_len.padding_needed_for() == 0`.
    #[inline(always)]
    unsafe fn via_unchecked(self) -> (Ptr<'a, T, I>, Ptr<'a, [T::Elem], I>) {
        let l_len = self.l_len();
        let inner = self.source.as_inner();

        // SAFETY: By invariant on `Self::l_len`, `l_len` is not greater than
        // the length of `inner`'s trailing slice.
        let (left, right) = unsafe { inner.split_at_unchecked(l_len) };

        // Lemma 0: `left` and `right` conform to the aliasing invariant
        // `I::Aliasing`. Proof: If `I::Aliasing` is `Exclusive` or `T` permits
        // interior mutation, the caller promises that `l_len.padding_needed_for()
        // == 0`. Consequently, by post-condition on `PtrInner::split_at_unchecked`,
        // there is no trailing padding after `left`'s final element that would
        // overlap into `right`. If `I::Aliasing` is shared and `T` forbids interior
        // mutation, then overlap between their referents is permissible.

        // SAFETY:
        // 0. `left` conforms to the aliasing invariant of `I::Aliasing`, by Lemma 0.
        // 1. `left` conforms to the alignment invariant of `I::Alignment, because
        //    the referents of `left` and `Self` have the same address and type
        //    (and, thus, alignment requirement).
        // 2. `left` conforms to the validity invariant of `I::Validity`, neither
        //    the type nor bytes of `left`'s referent have been changed.
        let left = unsafe { Ptr::from_inner(left) };

        // SAFETY:
        // 0. `right` conforms to the aliasing invariant of `I::Aliasing`, by Lemma
        //    0.
        // 1. `right` conforms to the alignment invariant of `I::Alignment, because
        //    if `ptr` with `I::Alignment = Aligned`, then by invariant on `T:
        //    SplitAt`, the trailing slice of `ptr` (from which `right` is derived)
        //    will also be well-aligned.
        // 2. `right` conforms to the validity invariant of `I::Validity`,
        //    because `right: [T::Elem]` is derived from the trailing slice of
        //    `ptr`, which, by contract on `T: SplitAt::Elem`, has type
        //    `[T::Elem]`. The `left` part cannot be used to invalidate `right`,
        //    because the caller promises that if `I::Aliasing` is `Exclusive`
        //    or `T` permits interior mutation, then `l_len.padding_needed_for()
        //    == 0` and thus the parts will be non-overlapping.
        let right = unsafe { Ptr::from_inner(right) };

        (left, right)
    }
}

#[cfg(test)]
mod tests {
    #[cfg(feature = "derive")]
    #[test]
    fn test_split_at() {
        use crate::{FromBytes, Immutable, IntoBytes, KnownLayout, SplitAt};

        #[derive(FromBytes, KnownLayout, SplitAt, IntoBytes, Immutable, Debug)]
        #[repr(C)]
        struct SliceDst<const OFFSET: usize> {
            prefix: [u8; OFFSET],
            trailing: [u8],
        }

        #[allow(clippy::as_conversions)]
        fn test_split_at<const OFFSET: usize, const BUFFER_SIZE: usize>() {
            // Test `split_at`
            let n: usize = BUFFER_SIZE - OFFSET;
            let arr = [1; BUFFER_SIZE];
            let dst = SliceDst::<OFFSET>::ref_from_bytes(&arr[..]).unwrap();
            for i in 0..=n {
                let (l, r) = dst.split_at(i).unwrap().via_runtime_check().unwrap();
                let l_sum: u8 = l.trailing.iter().sum();
                let r_sum: u8 = r.iter().sum();
                assert_eq!(l_sum, i as u8);
                assert_eq!(r_sum, (n - i) as u8);
                assert_eq!(l_sum + r_sum, n as u8);
            }

            // Test `split_at_mut`
            let n: usize = BUFFER_SIZE - OFFSET;
            let mut arr = [1; BUFFER_SIZE];
            let dst = SliceDst::<OFFSET>::mut_from_bytes(&mut arr[..]).unwrap();
            for i in 0..=n {
                let (l, r) = dst.split_at_mut(i).unwrap().via_runtime_check().unwrap();
                let l_sum: u8 = l.trailing.iter().sum();
                let r_sum: u8 = r.iter().sum();
                assert_eq!(l_sum, i as u8);
                assert_eq!(r_sum, (n - i) as u8);
                assert_eq!(l_sum + r_sum, n as u8);
            }
        }

        test_split_at::<0, 16>();
        test_split_at::<1, 17>();
        test_split_at::<2, 18>();
    }

    #[cfg(feature = "derive")]
    #[test]
    #[allow(clippy::as_conversions)]
    fn test_split_at_overlapping() {
        use crate::{FromBytes, Immutable, IntoBytes, KnownLayout, SplitAt};

        #[derive(FromBytes, KnownLayout, SplitAt, Immutable)]
        #[repr(C, align(2))]
        struct SliceDst {
            prefix: u8,
            trailing: [u8],
        }

        const N: usize = 16;

        let arr = [1u16; N];
        let dst = SliceDst::ref_from_bytes(arr.as_bytes()).unwrap();

        for i in 0..N {
            let split = dst.split_at(i).unwrap().via_runtime_check();
            if i % 2 == 1 {
                assert!(split.is_ok());
            } else {
                assert!(split.is_err());
            }
        }
    }
}