zerocopy/util/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
// Copyright 2023 The Fuchsia Authors
//
// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
// This file may not be copied, modified, or distributed except according to
// those terms.

#[macro_use]
mod macros;

#[doc(hidden)]
pub mod macro_util;

use core::{
    marker::PhantomData,
    mem::{self, ManuallyDrop},
    num::NonZeroUsize,
    ptr::NonNull,
};

use super::*;

/// Like [`PhantomData`], but [`Send`] and [`Sync`] regardless of whether the
/// wrapped `T` is.
pub(crate) struct SendSyncPhantomData<T: ?Sized>(PhantomData<T>);

// SAFETY: `SendSyncPhantomData` does not enable any behavior which isn't sound
// to be called from multiple threads.
unsafe impl<T: ?Sized> Send for SendSyncPhantomData<T> {}
// SAFETY: `SendSyncPhantomData` does not enable any behavior which isn't sound
// to be called from multiple threads.
unsafe impl<T: ?Sized> Sync for SendSyncPhantomData<T> {}

impl<T: ?Sized> Default for SendSyncPhantomData<T> {
    fn default() -> SendSyncPhantomData<T> {
        SendSyncPhantomData(PhantomData)
    }
}

impl<T: ?Sized> PartialEq for SendSyncPhantomData<T> {
    fn eq(&self, other: &Self) -> bool {
        self.0.eq(&other.0)
    }
}

impl<T: ?Sized> Eq for SendSyncPhantomData<T> {}

pub(crate) trait AsAddress {
    fn addr(self) -> usize;
}

impl<T: ?Sized> AsAddress for &T {
    #[inline(always)]
    fn addr(self) -> usize {
        let ptr: *const T = self;
        AsAddress::addr(ptr)
    }
}

impl<T: ?Sized> AsAddress for &mut T {
    #[inline(always)]
    fn addr(self) -> usize {
        let ptr: *const T = self;
        AsAddress::addr(ptr)
    }
}

impl<T: ?Sized> AsAddress for NonNull<T> {
    #[inline(always)]
    fn addr(self) -> usize {
        AsAddress::addr(self.as_ptr())
    }
}

impl<T: ?Sized> AsAddress for *const T {
    #[inline(always)]
    fn addr(self) -> usize {
        // TODO(#181), TODO(https://github.com/rust-lang/rust/issues/95228): Use
        // `.addr()` instead of `as usize` once it's stable, and get rid of this
        // `allow`. Currently, `as usize` is the only way to accomplish this.
        #[allow(clippy::as_conversions)]
        #[cfg_attr(
            __ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS,
            allow(lossy_provenance_casts)
        )]
        return self.cast::<()>() as usize;
    }
}

impl<T: ?Sized> AsAddress for *mut T {
    #[inline(always)]
    fn addr(self) -> usize {
        let ptr: *const T = self;
        AsAddress::addr(ptr)
    }
}

/// Validates that `t` is aligned to `align_of::<U>()`.
#[inline(always)]
pub(crate) fn validate_aligned_to<T: AsAddress, U>(t: T) -> Result<(), AlignmentError<(), U>> {
    // `mem::align_of::<U>()` is guaranteed to return a non-zero value, which in
    // turn guarantees that this mod operation will not panic.
    #[allow(clippy::arithmetic_side_effects)]
    let remainder = t.addr() % mem::align_of::<U>();
    if remainder == 0 {
        Ok(())
    } else {
        // SAFETY: We just confirmed that `t.addr() % align_of::<U>() != 0`.
        // That's only possible if `align_of::<U>() > 1`.
        Err(unsafe { AlignmentError::new_unchecked(()) })
    }
}

/// Returns the bytes needed to pad `len` to the next multiple of `align`.
///
/// This function assumes that align is a power of two; there are no guarantees
/// on the answer it gives if this is not the case.
#[cfg_attr(
    kani,
    kani::requires(len <= isize::MAX as usize),
    kani::requires(align.is_power_of_two()),
    kani::ensures(|&p| (len + p) % align.get() == 0),
    // Ensures that we add the minimum required padding.
    kani::ensures(|&p| p < align.get()),
)]
pub(crate) const fn padding_needed_for(len: usize, align: NonZeroUsize) -> usize {
    #[cfg(kani)]
    #[kani::proof_for_contract(padding_needed_for)]
    fn proof() {
        padding_needed_for(kani::any(), kani::any());
    }

    // Abstractly, we want to compute:
    //   align - (len % align).
    // Handling the case where len%align is 0.
    // Because align is a power of two, len % align = len & (align-1).
    // Guaranteed not to underflow as align is nonzero.
    #[allow(clippy::arithmetic_side_effects)]
    let mask = align.get() - 1;

    // To efficiently subtract this value from align, we can use the bitwise complement.
    // Note that ((!len) & (align-1)) gives us a number that with (len &
    // (align-1)) sums to align-1. So subtracting 1 from x before taking the
    // complement subtracts `len` from `align`. Some quick inspection of
    // cases shows that this also handles the case where `len % align = 0`
    // correctly too: len-1 % align then equals align-1, so the complement mod
    // align will be 0, as desired.
    //
    // The following reasoning can be verified quickly by an SMT solver
    // supporting the theory of bitvectors:
    // ```smtlib
    // ; Naive implementation of padding
    // (define-fun padding1 (
    //     (len (_ BitVec 32))
    //     (align (_ BitVec 32))) (_ BitVec 32)
    //    (ite
    //      (= (_ bv0 32) (bvand len (bvsub align (_ bv1 32))))
    //      (_ bv0 32)
    //      (bvsub align (bvand len (bvsub align (_ bv1 32))))))
    //
    // ; The implementation below
    // (define-fun padding2 (
    //     (len (_ BitVec 32))
    //     (align (_ BitVec 32))) (_ BitVec 32)
    // (bvand (bvnot (bvsub len (_ bv1 32))) (bvsub align (_ bv1 32))))
    //
    // (define-fun is-power-of-two ((x (_ BitVec 32))) Bool
    //   (= (_ bv0 32) (bvand x (bvsub x (_ bv1 32)))))
    //
    // (declare-const len (_ BitVec 32))
    // (declare-const align (_ BitVec 32))
    // ; Search for a case where align is a power of two and padding2 disagrees with padding1
    // (assert (and (is-power-of-two align)
    //              (not (= (padding1 len align) (padding2 len align)))))
    // (simplify (padding1 (_ bv300 32) (_ bv32 32))) ; 20
    // (simplify (padding2 (_ bv300 32) (_ bv32 32))) ; 20
    // (simplify (padding1 (_ bv322 32) (_ bv32 32))) ; 30
    // (simplify (padding2 (_ bv322 32) (_ bv32 32))) ; 30
    // (simplify (padding1 (_ bv8 32) (_ bv8 32)))    ; 0
    // (simplify (padding2 (_ bv8 32) (_ bv8 32)))    ; 0
    // (check-sat) ; unsat, also works for 64-bit bitvectors
    // ```
    !(len.wrapping_sub(1)) & mask
}

/// Rounds `n` down to the largest value `m` such that `m <= n` and `m % align
/// == 0`.
///
/// # Panics
///
/// May panic if `align` is not a power of two. Even if it doesn't panic in this
/// case, it will produce nonsense results.
#[inline(always)]
#[cfg_attr(
    kani,
    kani::requires(align.is_power_of_two()),
    kani::ensures(|&m| m <= n && m % align.get() == 0),
    // Guarantees that `m` is the *largest* value such that `m % align == 0`.
    kani::ensures(|&m| {
        // If this `checked_add` fails, then the next multiple would wrap
        // around, which trivially satisfies the "largest value" requirement.
        m.checked_add(align.get()).map(|next_mul| next_mul > n).unwrap_or(true)
    })
)]
pub(crate) const fn round_down_to_next_multiple_of_alignment(
    n: usize,
    align: NonZeroUsize,
) -> usize {
    #[cfg(kani)]
    #[kani::proof_for_contract(round_down_to_next_multiple_of_alignment)]
    fn proof() {
        round_down_to_next_multiple_of_alignment(kani::any(), kani::any());
    }

    let align = align.get();
    #[cfg(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)]
    debug_assert!(align.is_power_of_two());

    // Subtraction can't underflow because `align.get() >= 1`.
    #[allow(clippy::arithmetic_side_effects)]
    let mask = !(align - 1);
    n & mask
}

pub(crate) const fn max(a: NonZeroUsize, b: NonZeroUsize) -> NonZeroUsize {
    if a.get() < b.get() {
        b
    } else {
        a
    }
}

pub(crate) const fn min(a: NonZeroUsize, b: NonZeroUsize) -> NonZeroUsize {
    if a.get() > b.get() {
        b
    } else {
        a
    }
}

/// Copies `src` into the prefix of `dst`.
///
/// # Safety
///
/// The caller guarantees that `src.len() <= dst.len()`.
#[inline(always)]
pub(crate) unsafe fn copy_unchecked(src: &[u8], dst: &mut [u8]) {
    debug_assert!(src.len() <= dst.len());
    // SAFETY: This invocation satisfies the safety contract of
    // copy_nonoverlapping [1]:
    // - `src.as_ptr()` is trivially valid for reads of `src.len()` bytes
    // - `dst.as_ptr()` is valid for writes of `src.len()` bytes, because the
    //   caller has promised that `src.len() <= dst.len()`
    // - `src` and `dst` are, trivially, properly aligned
    // - the region of memory beginning at `src` with a size of `src.len()`
    //   bytes does not overlap with the region of memory beginning at `dst`
    //   with the same size, because `dst` is derived from an exclusive
    //   reference.
    unsafe {
        core::ptr::copy_nonoverlapping(src.as_ptr(), dst.as_mut_ptr(), src.len());
    };
}

/// Unsafely transmutes the given `src` into a type `Dst`.
///
/// # Safety
///
/// The value `src` must be a valid instance of `Dst`.
#[inline(always)]
pub(crate) const unsafe fn transmute_unchecked<Src, Dst>(src: Src) -> Dst {
    static_assert!(Src, Dst => core::mem::size_of::<Src>() == core::mem::size_of::<Dst>());

    #[repr(C)]
    union Transmute<Src, Dst> {
        src: ManuallyDrop<Src>,
        dst: ManuallyDrop<Dst>,
    }

    // SAFETY: Since `Transmute<Src, Dst>` is `#[repr(C)]`, its `src` and `dst`
    // fields both start at the same offset and the types of those fields are
    // transparent wrappers around `Src` and `Dst` [1]. Consequently,
    // initializng `Transmute` with with `src` and then reading out `dst` is
    // equivalent to transmuting from `Src` to `Dst` [2]. Transmuting from `src`
    // to `Dst` is valid because — by contract on the caller — `src` is a valid
    // instance of `Dst`.
    //
    // [1] Per https://doc.rust-lang.org/1.82.0/std/mem/struct.ManuallyDrop.html:
    //
    //     `ManuallyDrop<T>` is guaranteed to have the same layout and bit
    //     validity as `T`, and is subject to the same layout optimizations as
    //     `T`.
    //
    // [2] Per https://doc.rust-lang.org/1.82.0/reference/items/unions.html#reading-and-writing-union-fields:
    //
    //     Effectively, writing to and then reading from a union with the C
    //     representation is analogous to a transmute from the type used for
    //     writing to the type used for reading.
    unsafe { ManuallyDrop::into_inner(Transmute { src: ManuallyDrop::new(src) }.dst) }
}

/// Uses `allocate` to create a `Box<T>`.
///
/// # Errors
///
/// Returns an error on allocation failure. Allocation failure is guaranteed
/// never to cause a panic or an abort.
///
/// # Safety
///
/// `allocate` must be either `alloc::alloc::alloc` or
/// `alloc::alloc::alloc_zeroed`. The referent of the box returned by `new_box`
/// has the same bit-validity as the referent of the pointer returned by the
/// given `allocate` and sufficient size to store `T` with `meta`.
#[must_use = "has no side effects (other than allocation)"]
#[cfg(feature = "alloc")]
#[inline]
pub(crate) unsafe fn new_box<T>(
    meta: T::PointerMetadata,
    allocate: unsafe fn(core::alloc::Layout) -> *mut u8,
) -> Result<alloc::boxed::Box<T>, AllocError>
where
    T: ?Sized + crate::KnownLayout,
{
    let size = match meta.size_for_metadata(T::LAYOUT) {
        Some(size) => size,
        None => return Err(AllocError),
    };

    let align = T::LAYOUT.align.get();
    // On stable Rust versions <= 1.64.0, `Layout::from_size_align` has a bug in
    // which sufficiently-large allocations (those which, when rounded up to the
    // alignment, overflow `isize`) are not rejected, which can cause undefined
    // behavior. See #64 for details.
    //
    // TODO(#67): Once our MSRV is > 1.64.0, remove this assertion.
    #[allow(clippy::as_conversions)]
    let max_alloc = (isize::MAX as usize).saturating_sub(align);
    if size > max_alloc {
        return Err(AllocError);
    }

    // TODO(https://github.com/rust-lang/rust/issues/55724): Use
    // `Layout::repeat` once it's stabilized.
    let layout = Layout::from_size_align(size, align).or(Err(AllocError))?;

    let ptr = if layout.size() != 0 {
        // SAFETY: By contract on the caller, `allocate` is either
        // `alloc::alloc::alloc` or `alloc::alloc::alloc_zeroed`. The above
        // check ensures their shared safety precondition: that the supplied
        // layout is not zero-sized type [1].
        //
        // [1] Per https://doc.rust-lang.org/stable/std/alloc/trait.GlobalAlloc.html#tymethod.alloc:
        //
        //     This function is unsafe because undefined behavior can result if
        //     the caller does not ensure that layout has non-zero size.
        let ptr = unsafe { allocate(layout) };
        match NonNull::new(ptr) {
            Some(ptr) => ptr,
            None => return Err(AllocError),
        }
    } else {
        let align = T::LAYOUT.align.get();
        // We use `transmute` instead of an `as` cast since Miri (with strict
        // provenance enabled) notices and complains that an `as` cast creates a
        // pointer with no provenance. Miri isn't smart enough to realize that
        // we're only executing this branch when we're constructing a zero-sized
        // `Box`, which doesn't require provenance.
        //
        // SAFETY: any initialized bit sequence is a bit-valid `*mut u8`. All
        // bits of a `usize` are initialized.
        #[allow(clippy::useless_transmute)]
        let dangling = unsafe { mem::transmute::<usize, *mut u8>(align) };
        // SAFETY: `dangling` is constructed from `T::LAYOUT.align`, which is a
        // `NonZeroUsize`, which is guaranteed to be non-zero.
        //
        // `Box<[T]>` does not allocate when `T` is zero-sized or when `len` is
        // zero, but it does require a non-null dangling pointer for its
        // allocation.
        //
        // TODO(https://github.com/rust-lang/rust/issues/95228): Use
        // `std::ptr::without_provenance` once it's stable. That may optimize
        // better. As written, Rust may assume that this consumes "exposed"
        // provenance, and thus Rust may have to assume that this may consume
        // provenance from any pointer whose provenance has been exposed.
        unsafe { NonNull::new_unchecked(dangling) }
    };

    let ptr = T::raw_from_ptr_len(ptr, meta);

    // TODO(#429): Add a "SAFETY" comment and remove this `allow`. Make sure to
    // include a justification that `ptr.as_ptr()` is validly-aligned in the ZST
    // case (in which we manually construct a dangling pointer) and to justify
    // why `Box` is safe to drop (it's because `allocate` uses the system
    // allocator).
    #[allow(clippy::undocumented_unsafe_blocks)]
    Ok(unsafe { alloc::boxed::Box::from_raw(ptr.as_ptr()) })
}

/// Since we support multiple versions of Rust, there are often features which
/// have been stabilized in the most recent stable release which do not yet
/// exist (stably) on our MSRV. This module provides polyfills for those
/// features so that we can write more "modern" code, and just remove the
/// polyfill once our MSRV supports the corresponding feature. Without this,
/// we'd have to write worse/more verbose code and leave TODO comments sprinkled
/// throughout the codebase to update to the new pattern once it's stabilized.
///
/// Each trait is imported as `_` at the crate root; each polyfill should "just
/// work" at usage sites.
pub(crate) mod polyfills {
    use core::ptr::{self, NonNull};

    // A polyfill for `NonNull::slice_from_raw_parts` that we can use before our
    // MSRV is 1.70, when that function was stabilized.
    //
    // The `#[allow(unused)]` is necessary because, on sufficiently recent
    // toolchain versions, `ptr.slice_from_raw_parts()` resolves to the inherent
    // method rather than to this trait, and so this trait is considered unused.
    //
    // TODO(#67): Once our MSRV is 1.70, remove this.
    #[allow(unused)]
    pub(crate) trait NonNullExt<T> {
        fn slice_from_raw_parts(data: Self, len: usize) -> NonNull<[T]>;
    }

    impl<T> NonNullExt<T> for NonNull<T> {
        // NOTE on coverage: this will never be tested in nightly since it's a
        // polyfill for a feature which has been stabilized on our nightly
        // toolchain.
        #[cfg_attr(
            all(coverage_nightly, __ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS),
            coverage(off)
        )]
        #[inline(always)]
        fn slice_from_raw_parts(data: Self, len: usize) -> NonNull<[T]> {
            let ptr = ptr::slice_from_raw_parts_mut(data.as_ptr(), len);
            // SAFETY: `ptr` is converted from `data`, which is non-null.
            unsafe { NonNull::new_unchecked(ptr) }
        }
    }

    // A polyfill for `Self::unchecked_sub` that we can use until methods like
    // `usize::unchecked_sub` is stabilized.
    //
    // The `#[allow(unused)]` is necessary because, on sufficiently recent
    // toolchain versions, `ptr.slice_from_raw_parts()` resolves to the inherent
    // method rather than to this trait, and so this trait is considered unused.
    //
    // TODO(#67): Once our MSRV is high enough, remove this.
    #[allow(unused)]
    pub(crate) trait NumExt {
        /// Subtract without checking for underflow.
        ///
        /// # Safety
        ///
        /// The caller promises that the subtraction will not underflow.
        unsafe fn unchecked_sub(self, rhs: Self) -> Self;
    }

    impl NumExt for usize {
        // NOTE on coverage: this will never be tested in nightly since it's a
        // polyfill for a feature which has been stabilized on our nightly
        // toolchain.
        #[cfg_attr(
            all(coverage_nightly, __ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS),
            coverage(off)
        )]
        #[inline(always)]
        unsafe fn unchecked_sub(self, rhs: usize) -> usize {
            match self.checked_sub(rhs) {
                Some(x) => x,
                None => {
                    // SAFETY: The caller promises that the subtraction will not
                    // underflow.
                    unsafe { core::hint::unreachable_unchecked() }
                }
            }
        }
    }
}

#[cfg(test)]
pub(crate) mod testutil {
    use crate::*;

    /// A `T` which is aligned to at least `align_of::<A>()`.
    #[derive(Default)]
    pub(crate) struct Align<T, A> {
        pub(crate) t: T,
        _a: [A; 0],
    }

    impl<T: Default, A> Align<T, A> {
        pub(crate) fn set_default(&mut self) {
            self.t = T::default();
        }
    }

    impl<T, A> Align<T, A> {
        pub(crate) const fn new(t: T) -> Align<T, A> {
            Align { t, _a: [] }
        }
    }

    /// A `T` which is guaranteed not to satisfy `align_of::<A>()`.
    ///
    /// It must be the case that `align_of::<T>() < align_of::<A>()` in order
    /// fot this type to work properly.
    #[repr(C)]
    pub(crate) struct ForceUnalign<T: Unaligned, A> {
        // The outer struct is aligned to `A`, and, thanks to `repr(C)`, `t` is
        // placed at the minimum offset that guarantees its alignment. If
        // `align_of::<T>() < align_of::<A>()`, then that offset will be
        // guaranteed *not* to satisfy `align_of::<A>()`.
        //
        // Note that we need `T: Unaligned` in order to guarantee that there is
        // no padding between `_u` and `t`.
        _u: u8,
        pub(crate) t: T,
        _a: [A; 0],
    }

    impl<T: Unaligned, A> ForceUnalign<T, A> {
        pub(crate) fn new(t: T) -> ForceUnalign<T, A> {
            ForceUnalign { _u: 0, t, _a: [] }
        }
    }
    // A `u64` with alignment 8.
    //
    // Though `u64` has alignment 8 on some platforms, it's not guaranteed. By
    // contrast, `AU64` is guaranteed to have alignment 8 on all platforms.
    #[derive(
        KnownLayout,
        Immutable,
        FromBytes,
        IntoBytes,
        Eq,
        PartialEq,
        Ord,
        PartialOrd,
        Default,
        Debug,
        Copy,
        Clone,
    )]
    #[repr(C, align(8))]
    pub(crate) struct AU64(pub(crate) u64);

    impl AU64 {
        // Converts this `AU64` to bytes using this platform's endianness.
        pub(crate) fn to_bytes(self) -> [u8; 8] {
            crate::transmute!(self)
        }
    }

    impl Display for AU64 {
        #[cfg_attr(
            all(coverage_nightly, __ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS),
            coverage(off)
        )]
        fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
            Display::fmt(&self.0, f)
        }
    }

    #[derive(Immutable, FromBytes, Eq, PartialEq, Ord, PartialOrd, Default, Debug, Copy, Clone)]
    #[repr(C)]
    pub(crate) struct Nested<T, U: ?Sized> {
        _t: T,
        _u: U,
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_round_down_to_next_multiple_of_alignment() {
        fn alt_impl(n: usize, align: NonZeroUsize) -> usize {
            let mul = n / align.get();
            mul * align.get()
        }

        for align in [1, 2, 4, 8, 16] {
            for n in 0..256 {
                let align = NonZeroUsize::new(align).unwrap();
                let want = alt_impl(n, align);
                let got = round_down_to_next_multiple_of_alignment(n, align);
                assert_eq!(got, want, "round_down_to_next_multiple_of_alignment({}, {})", n, align);
            }
        }
    }

    #[rustversion::since(1.57.0)]
    #[test]
    #[should_panic]
    fn test_round_down_to_next_multiple_of_alignment_zerocopy_panic_in_const_and_vec_try_reserve() {
        round_down_to_next_multiple_of_alignment(0, NonZeroUsize::new(3).unwrap());
    }
}