zerocopy/util/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
// Copyright 2023 The Fuchsia Authors
//
// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
// This file may not be copied, modified, or distributed except according to
// those terms.
#[macro_use]
mod macros;
#[doc(hidden)]
pub mod macro_util;
use core::{
marker::PhantomData,
mem::{self, ManuallyDrop},
num::NonZeroUsize,
ptr::NonNull,
};
use super::*;
/// Like [`PhantomData`], but [`Send`] and [`Sync`] regardless of whether the
/// wrapped `T` is.
pub(crate) struct SendSyncPhantomData<T: ?Sized>(PhantomData<T>);
// SAFETY: `SendSyncPhantomData` does not enable any behavior which isn't sound
// to be called from multiple threads.
unsafe impl<T: ?Sized> Send for SendSyncPhantomData<T> {}
// SAFETY: `SendSyncPhantomData` does not enable any behavior which isn't sound
// to be called from multiple threads.
unsafe impl<T: ?Sized> Sync for SendSyncPhantomData<T> {}
impl<T: ?Sized> Default for SendSyncPhantomData<T> {
fn default() -> SendSyncPhantomData<T> {
SendSyncPhantomData(PhantomData)
}
}
impl<T: ?Sized> PartialEq for SendSyncPhantomData<T> {
fn eq(&self, other: &Self) -> bool {
self.0.eq(&other.0)
}
}
impl<T: ?Sized> Eq for SendSyncPhantomData<T> {}
pub(crate) trait AsAddress {
fn addr(self) -> usize;
}
impl<T: ?Sized> AsAddress for &T {
#[inline(always)]
fn addr(self) -> usize {
let ptr: *const T = self;
AsAddress::addr(ptr)
}
}
impl<T: ?Sized> AsAddress for &mut T {
#[inline(always)]
fn addr(self) -> usize {
let ptr: *const T = self;
AsAddress::addr(ptr)
}
}
impl<T: ?Sized> AsAddress for NonNull<T> {
#[inline(always)]
fn addr(self) -> usize {
AsAddress::addr(self.as_ptr())
}
}
impl<T: ?Sized> AsAddress for *const T {
#[inline(always)]
fn addr(self) -> usize {
// TODO(#181), TODO(https://github.com/rust-lang/rust/issues/95228): Use
// `.addr()` instead of `as usize` once it's stable, and get rid of this
// `allow`. Currently, `as usize` is the only way to accomplish this.
#[allow(clippy::as_conversions)]
#[cfg_attr(
__ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS,
allow(lossy_provenance_casts)
)]
return self.cast::<()>() as usize;
}
}
impl<T: ?Sized> AsAddress for *mut T {
#[inline(always)]
fn addr(self) -> usize {
let ptr: *const T = self;
AsAddress::addr(ptr)
}
}
/// Validates that `t` is aligned to `align_of::<U>()`.
#[inline(always)]
pub(crate) fn validate_aligned_to<T: AsAddress, U>(t: T) -> Result<(), AlignmentError<(), U>> {
// `mem::align_of::<U>()` is guaranteed to return a non-zero value, which in
// turn guarantees that this mod operation will not panic.
#[allow(clippy::arithmetic_side_effects)]
let remainder = t.addr() % mem::align_of::<U>();
if remainder == 0 {
Ok(())
} else {
// SAFETY: We just confirmed that `t.addr() % align_of::<U>() != 0`.
// That's only possible if `align_of::<U>() > 1`.
Err(unsafe { AlignmentError::new_unchecked(()) })
}
}
/// Returns the bytes needed to pad `len` to the next multiple of `align`.
///
/// This function assumes that align is a power of two; there are no guarantees
/// on the answer it gives if this is not the case.
#[cfg_attr(
kani,
kani::requires(len <= isize::MAX as usize),
kani::requires(align.is_power_of_two()),
kani::ensures(|&p| (len + p) % align.get() == 0),
// Ensures that we add the minimum required padding.
kani::ensures(|&p| p < align.get()),
)]
pub(crate) const fn padding_needed_for(len: usize, align: NonZeroUsize) -> usize {
#[cfg(kani)]
#[kani::proof_for_contract(padding_needed_for)]
fn proof() {
padding_needed_for(kani::any(), kani::any());
}
// Abstractly, we want to compute:
// align - (len % align).
// Handling the case where len%align is 0.
// Because align is a power of two, len % align = len & (align-1).
// Guaranteed not to underflow as align is nonzero.
#[allow(clippy::arithmetic_side_effects)]
let mask = align.get() - 1;
// To efficiently subtract this value from align, we can use the bitwise complement.
// Note that ((!len) & (align-1)) gives us a number that with (len &
// (align-1)) sums to align-1. So subtracting 1 from x before taking the
// complement subtracts `len` from `align`. Some quick inspection of
// cases shows that this also handles the case where `len % align = 0`
// correctly too: len-1 % align then equals align-1, so the complement mod
// align will be 0, as desired.
//
// The following reasoning can be verified quickly by an SMT solver
// supporting the theory of bitvectors:
// ```smtlib
// ; Naive implementation of padding
// (define-fun padding1 (
// (len (_ BitVec 32))
// (align (_ BitVec 32))) (_ BitVec 32)
// (ite
// (= (_ bv0 32) (bvand len (bvsub align (_ bv1 32))))
// (_ bv0 32)
// (bvsub align (bvand len (bvsub align (_ bv1 32))))))
//
// ; The implementation below
// (define-fun padding2 (
// (len (_ BitVec 32))
// (align (_ BitVec 32))) (_ BitVec 32)
// (bvand (bvnot (bvsub len (_ bv1 32))) (bvsub align (_ bv1 32))))
//
// (define-fun is-power-of-two ((x (_ BitVec 32))) Bool
// (= (_ bv0 32) (bvand x (bvsub x (_ bv1 32)))))
//
// (declare-const len (_ BitVec 32))
// (declare-const align (_ BitVec 32))
// ; Search for a case where align is a power of two and padding2 disagrees with padding1
// (assert (and (is-power-of-two align)
// (not (= (padding1 len align) (padding2 len align)))))
// (simplify (padding1 (_ bv300 32) (_ bv32 32))) ; 20
// (simplify (padding2 (_ bv300 32) (_ bv32 32))) ; 20
// (simplify (padding1 (_ bv322 32) (_ bv32 32))) ; 30
// (simplify (padding2 (_ bv322 32) (_ bv32 32))) ; 30
// (simplify (padding1 (_ bv8 32) (_ bv8 32))) ; 0
// (simplify (padding2 (_ bv8 32) (_ bv8 32))) ; 0
// (check-sat) ; unsat, also works for 64-bit bitvectors
// ```
!(len.wrapping_sub(1)) & mask
}
/// Rounds `n` down to the largest value `m` such that `m <= n` and `m % align
/// == 0`.
///
/// # Panics
///
/// May panic if `align` is not a power of two. Even if it doesn't panic in this
/// case, it will produce nonsense results.
#[inline(always)]
#[cfg_attr(
kani,
kani::requires(align.is_power_of_two()),
kani::ensures(|&m| m <= n && m % align.get() == 0),
// Guarantees that `m` is the *largest* value such that `m % align == 0`.
kani::ensures(|&m| {
// If this `checked_add` fails, then the next multiple would wrap
// around, which trivially satisfies the "largest value" requirement.
m.checked_add(align.get()).map(|next_mul| next_mul > n).unwrap_or(true)
})
)]
pub(crate) const fn round_down_to_next_multiple_of_alignment(
n: usize,
align: NonZeroUsize,
) -> usize {
#[cfg(kani)]
#[kani::proof_for_contract(round_down_to_next_multiple_of_alignment)]
fn proof() {
round_down_to_next_multiple_of_alignment(kani::any(), kani::any());
}
let align = align.get();
#[cfg(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)]
debug_assert!(align.is_power_of_two());
// Subtraction can't underflow because `align.get() >= 1`.
#[allow(clippy::arithmetic_side_effects)]
let mask = !(align - 1);
n & mask
}
pub(crate) const fn max(a: NonZeroUsize, b: NonZeroUsize) -> NonZeroUsize {
if a.get() < b.get() {
b
} else {
a
}
}
pub(crate) const fn min(a: NonZeroUsize, b: NonZeroUsize) -> NonZeroUsize {
if a.get() > b.get() {
b
} else {
a
}
}
/// Copies `src` into the prefix of `dst`.
///
/// # Safety
///
/// The caller guarantees that `src.len() <= dst.len()`.
#[inline(always)]
pub(crate) unsafe fn copy_unchecked(src: &[u8], dst: &mut [u8]) {
debug_assert!(src.len() <= dst.len());
// SAFETY: This invocation satisfies the safety contract of
// copy_nonoverlapping [1]:
// - `src.as_ptr()` is trivially valid for reads of `src.len()` bytes
// - `dst.as_ptr()` is valid for writes of `src.len()` bytes, because the
// caller has promised that `src.len() <= dst.len()`
// - `src` and `dst` are, trivially, properly aligned
// - the region of memory beginning at `src` with a size of `src.len()`
// bytes does not overlap with the region of memory beginning at `dst`
// with the same size, because `dst` is derived from an exclusive
// reference.
unsafe {
core::ptr::copy_nonoverlapping(src.as_ptr(), dst.as_mut_ptr(), src.len());
};
}
/// Unsafely transmutes the given `src` into a type `Dst`.
///
/// # Safety
///
/// The value `src` must be a valid instance of `Dst`.
#[inline(always)]
pub(crate) const unsafe fn transmute_unchecked<Src, Dst>(src: Src) -> Dst {
static_assert!(Src, Dst => core::mem::size_of::<Src>() == core::mem::size_of::<Dst>());
#[repr(C)]
union Transmute<Src, Dst> {
src: ManuallyDrop<Src>,
dst: ManuallyDrop<Dst>,
}
// SAFETY: Since `Transmute<Src, Dst>` is `#[repr(C)]`, its `src` and `dst`
// fields both start at the same offset and the types of those fields are
// transparent wrappers around `Src` and `Dst` [1]. Consequently,
// initializng `Transmute` with with `src` and then reading out `dst` is
// equivalent to transmuting from `Src` to `Dst` [2]. Transmuting from `src`
// to `Dst` is valid because — by contract on the caller — `src` is a valid
// instance of `Dst`.
//
// [1] Per https://doc.rust-lang.org/1.82.0/std/mem/struct.ManuallyDrop.html:
//
// `ManuallyDrop<T>` is guaranteed to have the same layout and bit
// validity as `T`, and is subject to the same layout optimizations as
// `T`.
//
// [2] Per https://doc.rust-lang.org/1.82.0/reference/items/unions.html#reading-and-writing-union-fields:
//
// Effectively, writing to and then reading from a union with the C
// representation is analogous to a transmute from the type used for
// writing to the type used for reading.
unsafe { ManuallyDrop::into_inner(Transmute { src: ManuallyDrop::new(src) }.dst) }
}
/// Uses `allocate` to create a `Box<T>`.
///
/// # Errors
///
/// Returns an error on allocation failure. Allocation failure is guaranteed
/// never to cause a panic or an abort.
///
/// # Safety
///
/// `allocate` must be either `alloc::alloc::alloc` or
/// `alloc::alloc::alloc_zeroed`. The referent of the box returned by `new_box`
/// has the same bit-validity as the referent of the pointer returned by the
/// given `allocate` and sufficient size to store `T` with `meta`.
#[must_use = "has no side effects (other than allocation)"]
#[cfg(feature = "alloc")]
#[inline]
pub(crate) unsafe fn new_box<T>(
meta: T::PointerMetadata,
allocate: unsafe fn(core::alloc::Layout) -> *mut u8,
) -> Result<alloc::boxed::Box<T>, AllocError>
where
T: ?Sized + crate::KnownLayout,
{
let size = match meta.size_for_metadata(T::LAYOUT) {
Some(size) => size,
None => return Err(AllocError),
};
let align = T::LAYOUT.align.get();
// On stable Rust versions <= 1.64.0, `Layout::from_size_align` has a bug in
// which sufficiently-large allocations (those which, when rounded up to the
// alignment, overflow `isize`) are not rejected, which can cause undefined
// behavior. See #64 for details.
//
// TODO(#67): Once our MSRV is > 1.64.0, remove this assertion.
#[allow(clippy::as_conversions)]
let max_alloc = (isize::MAX as usize).saturating_sub(align);
if size > max_alloc {
return Err(AllocError);
}
// TODO(https://github.com/rust-lang/rust/issues/55724): Use
// `Layout::repeat` once it's stabilized.
let layout = Layout::from_size_align(size, align).or(Err(AllocError))?;
let ptr = if layout.size() != 0 {
// SAFETY: By contract on the caller, `allocate` is either
// `alloc::alloc::alloc` or `alloc::alloc::alloc_zeroed`. The above
// check ensures their shared safety precondition: that the supplied
// layout is not zero-sized type [1].
//
// [1] Per https://doc.rust-lang.org/stable/std/alloc/trait.GlobalAlloc.html#tymethod.alloc:
//
// This function is unsafe because undefined behavior can result if
// the caller does not ensure that layout has non-zero size.
let ptr = unsafe { allocate(layout) };
match NonNull::new(ptr) {
Some(ptr) => ptr,
None => return Err(AllocError),
}
} else {
let align = T::LAYOUT.align.get();
// We use `transmute` instead of an `as` cast since Miri (with strict
// provenance enabled) notices and complains that an `as` cast creates a
// pointer with no provenance. Miri isn't smart enough to realize that
// we're only executing this branch when we're constructing a zero-sized
// `Box`, which doesn't require provenance.
//
// SAFETY: any initialized bit sequence is a bit-valid `*mut u8`. All
// bits of a `usize` are initialized.
#[allow(clippy::useless_transmute)]
let dangling = unsafe { mem::transmute::<usize, *mut u8>(align) };
// SAFETY: `dangling` is constructed from `T::LAYOUT.align`, which is a
// `NonZeroUsize`, which is guaranteed to be non-zero.
//
// `Box<[T]>` does not allocate when `T` is zero-sized or when `len` is
// zero, but it does require a non-null dangling pointer for its
// allocation.
//
// TODO(https://github.com/rust-lang/rust/issues/95228): Use
// `std::ptr::without_provenance` once it's stable. That may optimize
// better. As written, Rust may assume that this consumes "exposed"
// provenance, and thus Rust may have to assume that this may consume
// provenance from any pointer whose provenance has been exposed.
unsafe { NonNull::new_unchecked(dangling) }
};
let ptr = T::raw_from_ptr_len(ptr, meta);
// TODO(#429): Add a "SAFETY" comment and remove this `allow`. Make sure to
// include a justification that `ptr.as_ptr()` is validly-aligned in the ZST
// case (in which we manually construct a dangling pointer) and to justify
// why `Box` is safe to drop (it's because `allocate` uses the system
// allocator).
#[allow(clippy::undocumented_unsafe_blocks)]
Ok(unsafe { alloc::boxed::Box::from_raw(ptr.as_ptr()) })
}
/// Since we support multiple versions of Rust, there are often features which
/// have been stabilized in the most recent stable release which do not yet
/// exist (stably) on our MSRV. This module provides polyfills for those
/// features so that we can write more "modern" code, and just remove the
/// polyfill once our MSRV supports the corresponding feature. Without this,
/// we'd have to write worse/more verbose code and leave TODO comments sprinkled
/// throughout the codebase to update to the new pattern once it's stabilized.
///
/// Each trait is imported as `_` at the crate root; each polyfill should "just
/// work" at usage sites.
pub(crate) mod polyfills {
use core::ptr::{self, NonNull};
// A polyfill for `NonNull::slice_from_raw_parts` that we can use before our
// MSRV is 1.70, when that function was stabilized.
//
// The `#[allow(unused)]` is necessary because, on sufficiently recent
// toolchain versions, `ptr.slice_from_raw_parts()` resolves to the inherent
// method rather than to this trait, and so this trait is considered unused.
//
// TODO(#67): Once our MSRV is 1.70, remove this.
#[allow(unused)]
pub(crate) trait NonNullExt<T> {
fn slice_from_raw_parts(data: Self, len: usize) -> NonNull<[T]>;
}
impl<T> NonNullExt<T> for NonNull<T> {
// NOTE on coverage: this will never be tested in nightly since it's a
// polyfill for a feature which has been stabilized on our nightly
// toolchain.
#[cfg_attr(
all(coverage_nightly, __ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS),
coverage(off)
)]
#[inline(always)]
fn slice_from_raw_parts(data: Self, len: usize) -> NonNull<[T]> {
let ptr = ptr::slice_from_raw_parts_mut(data.as_ptr(), len);
// SAFETY: `ptr` is converted from `data`, which is non-null.
unsafe { NonNull::new_unchecked(ptr) }
}
}
// A polyfill for `Self::unchecked_sub` that we can use until methods like
// `usize::unchecked_sub` is stabilized.
//
// The `#[allow(unused)]` is necessary because, on sufficiently recent
// toolchain versions, `ptr.slice_from_raw_parts()` resolves to the inherent
// method rather than to this trait, and so this trait is considered unused.
//
// TODO(#67): Once our MSRV is high enough, remove this.
#[allow(unused)]
pub(crate) trait NumExt {
/// Subtract without checking for underflow.
///
/// # Safety
///
/// The caller promises that the subtraction will not underflow.
unsafe fn unchecked_sub(self, rhs: Self) -> Self;
}
impl NumExt for usize {
// NOTE on coverage: this will never be tested in nightly since it's a
// polyfill for a feature which has been stabilized on our nightly
// toolchain.
#[cfg_attr(
all(coverage_nightly, __ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS),
coverage(off)
)]
#[inline(always)]
unsafe fn unchecked_sub(self, rhs: usize) -> usize {
match self.checked_sub(rhs) {
Some(x) => x,
None => {
// SAFETY: The caller promises that the subtraction will not
// underflow.
unsafe { core::hint::unreachable_unchecked() }
}
}
}
}
}
#[cfg(test)]
pub(crate) mod testutil {
use crate::*;
/// A `T` which is aligned to at least `align_of::<A>()`.
#[derive(Default)]
pub(crate) struct Align<T, A> {
pub(crate) t: T,
_a: [A; 0],
}
impl<T: Default, A> Align<T, A> {
pub(crate) fn set_default(&mut self) {
self.t = T::default();
}
}
impl<T, A> Align<T, A> {
pub(crate) const fn new(t: T) -> Align<T, A> {
Align { t, _a: [] }
}
}
/// A `T` which is guaranteed not to satisfy `align_of::<A>()`.
///
/// It must be the case that `align_of::<T>() < align_of::<A>()` in order
/// fot this type to work properly.
#[repr(C)]
pub(crate) struct ForceUnalign<T: Unaligned, A> {
// The outer struct is aligned to `A`, and, thanks to `repr(C)`, `t` is
// placed at the minimum offset that guarantees its alignment. If
// `align_of::<T>() < align_of::<A>()`, then that offset will be
// guaranteed *not* to satisfy `align_of::<A>()`.
//
// Note that we need `T: Unaligned` in order to guarantee that there is
// no padding between `_u` and `t`.
_u: u8,
pub(crate) t: T,
_a: [A; 0],
}
impl<T: Unaligned, A> ForceUnalign<T, A> {
pub(crate) fn new(t: T) -> ForceUnalign<T, A> {
ForceUnalign { _u: 0, t, _a: [] }
}
}
// A `u64` with alignment 8.
//
// Though `u64` has alignment 8 on some platforms, it's not guaranteed. By
// contrast, `AU64` is guaranteed to have alignment 8 on all platforms.
#[derive(
KnownLayout,
Immutable,
FromBytes,
IntoBytes,
Eq,
PartialEq,
Ord,
PartialOrd,
Default,
Debug,
Copy,
Clone,
)]
#[repr(C, align(8))]
pub(crate) struct AU64(pub(crate) u64);
impl AU64 {
// Converts this `AU64` to bytes using this platform's endianness.
pub(crate) fn to_bytes(self) -> [u8; 8] {
crate::transmute!(self)
}
}
impl Display for AU64 {
#[cfg_attr(
all(coverage_nightly, __ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS),
coverage(off)
)]
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
Display::fmt(&self.0, f)
}
}
#[derive(Immutable, FromBytes, Eq, PartialEq, Ord, PartialOrd, Default, Debug, Copy, Clone)]
#[repr(C)]
pub(crate) struct Nested<T, U: ?Sized> {
_t: T,
_u: U,
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_round_down_to_next_multiple_of_alignment() {
fn alt_impl(n: usize, align: NonZeroUsize) -> usize {
let mul = n / align.get();
mul * align.get()
}
for align in [1, 2, 4, 8, 16] {
for n in 0..256 {
let align = NonZeroUsize::new(align).unwrap();
let want = alt_impl(n, align);
let got = round_down_to_next_multiple_of_alignment(n, align);
assert_eq!(got, want, "round_down_to_next_multiple_of_alignment({}, {})", n, align);
}
}
}
#[rustversion::since(1.57.0)]
#[test]
#[should_panic]
fn test_round_down_to_next_multiple_of_alignment_zerocopy_panic_in_const_and_vec_try_reserve() {
round_down_to_next_multiple_of_alignment(0, NonZeroUsize::new(3).unwrap());
}
}