bevy_ecs/storage/
blob_array.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
use super::blob_vec::array_layout;
use crate::storage::blob_vec::array_layout_unchecked;
use alloc::alloc::handle_alloc_error;
use bevy_ptr::{OwningPtr, Ptr, PtrMut};
use bevy_utils::OnDrop;
use core::{alloc::Layout, cell::UnsafeCell, num::NonZeroUsize, ptr::NonNull};

/// A flat, type-erased data storage type similar to a [`BlobVec`](super::blob_vec::BlobVec), but with the length and capacity cut out
/// for performance reasons. This type is reliant on its owning type to store the capacity and length information.
///
/// Used to densely store homogeneous ECS data. A blob is usually just an arbitrary block of contiguous memory without any identity, and
/// could be used to represent any arbitrary data (i.e. string, arrays, etc). This type only stores meta-data about the Blob that it stores,
/// and a pointer to the location of the start of the array, similar to a C array.
pub(super) struct BlobArray {
    item_layout: Layout,
    // the `data` ptr's layout is always `array_layout(item_layout, capacity)`
    data: NonNull<u8>,
    // None if the underlying type doesn't need to be dropped
    pub drop: Option<unsafe fn(OwningPtr<'_>)>,
    #[cfg(debug_assertions)]
    capacity: usize,
}

impl BlobArray {
    /// Create a new [`BlobArray`] with a specified `capacity`.
    /// If `capacity` is 0, no allocations will be made.
    ///
    /// `drop` is an optional function pointer that is meant to be invoked when any element in the [`BlobArray`]
    /// should be dropped. For all Rust-based types, this should match 1:1 with the implementation of [`Drop`]
    /// if present, and should be `None` if `T: !Drop`. For non-Rust based types, this should match any cleanup
    /// processes typically associated with the stored element.
    ///
    /// # Safety
    /// `drop` should be safe to call with an [`OwningPtr`] pointing to any item that's been placed into this [`BlobArray`].
    /// If `drop` is `None`, the items will be leaked. This should generally be set as None based on [`needs_drop`].
    ///
    /// [`needs_drop`]: std::mem::needs_drop
    pub unsafe fn with_capacity(
        item_layout: Layout,
        drop_fn: Option<unsafe fn(OwningPtr<'_>)>,
        capacity: usize,
    ) -> Self {
        if capacity == 0 {
            let align = NonZeroUsize::new(item_layout.align()).expect("alignment must be > 0");
            let data = bevy_ptr::dangling_with_align(align);
            Self {
                item_layout,
                drop: drop_fn,
                data,
                #[cfg(debug_assertions)]
                capacity,
            }
        } else {
            let mut arr = Self::with_capacity(item_layout, drop_fn, 0);
            // SAFETY: `capacity` > 0
            unsafe { arr.alloc(NonZeroUsize::new_unchecked(capacity)) }
            arr
        }
    }

    /// Returns the [`Layout`] of the element type stored in the vector.
    #[inline]
    pub fn layout(&self) -> Layout {
        self.item_layout
    }

    /// Return `true` if this [`BlobArray`] stores `ZSTs`.
    pub fn is_zst(&self) -> bool {
        self.item_layout.size() == 0
    }

    /// Returns a reference to the element at `index`, without doing bounds checking.
    ///
    /// *`len` refers to the length of the array, the number of elements that have been initialized, and are safe to read.
    /// Just like [`Vec::len`], or [`BlobVec::len`](super::blob_vec::BlobVec::len).*
    ///
    /// # Safety
    /// - The element at index `index` is safe to access.
    ///     (If the safety requirements of every method that has been used on `Self` have been fulfilled, the caller just needs to ensure that `index` < `len`)
    #[inline]
    pub unsafe fn get_unchecked(&self, index: usize) -> Ptr<'_> {
        #[cfg(debug_assertions)]
        debug_assert!(index < self.capacity);
        let size = self.item_layout.size();
        // SAFETY:
        // - The caller ensures that `index` fits in this array,
        //   so this operation will not overflow the original allocation.
        // - `size` is a multiple of the erased type's alignment,
        //   so adding a multiple of `size` will preserve alignment.
        unsafe { self.get_ptr().byte_add(index * size) }
    }

    /// Returns a mutable reference to the element at `index`, without doing bounds checking.
    ///
    /// *`len` refers to the length of the array, the number of elements that have been initialized, and are safe to read.
    /// Just like [`Vec::len`], or [`BlobVec::len`](super::blob_vec::BlobVec::len).*
    ///
    /// # Safety
    /// - The element with at index `index` is safe to access.
    ///     (If the safety requirements of every method that has been used on `Self` have been fulfilled, the caller just needs to ensure that `index` < `len`)
    #[inline]
    pub unsafe fn get_unchecked_mut(&mut self, index: usize) -> PtrMut<'_> {
        #[cfg(debug_assertions)]
        debug_assert!(index < self.capacity);
        let size = self.item_layout.size();
        // SAFETY:
        // - The caller ensures that `index` fits in this vector,
        //   so this operation will not overflow the original allocation.
        // - `size` is a multiple of the erased type's alignment,
        //  so adding a multiple of `size` will preserve alignment.
        unsafe { self.get_ptr_mut().byte_add(index * size) }
    }

    /// Gets a [`Ptr`] to the start of the array
    #[inline]
    pub fn get_ptr(&self) -> Ptr<'_> {
        // SAFETY: the inner data will remain valid for as long as 'self.
        unsafe { Ptr::new(self.data) }
    }

    /// Gets a [`PtrMut`] to the start of the array
    #[inline]
    pub fn get_ptr_mut(&mut self) -> PtrMut<'_> {
        // SAFETY: the inner data will remain valid for as long as 'self.
        unsafe { PtrMut::new(self.data) }
    }

    /// Get a slice of the first `slice_len` elements in [`BlobArray`] as if it were an array with elements of type `T`
    /// To get a slice to the entire array, the caller must plug `len` in `slice_len`.
    ///
    /// *`len` refers to the length of the array, the number of elements that have been initialized, and are safe to read.
    /// Just like [`Vec::len`], or [`BlobVec::len`](super::blob_vec::BlobVec::len).*
    ///
    /// # Safety
    /// - The type `T` must be the type of the items in this [`BlobArray`].
    /// - `slice_len` <= `len`
    pub unsafe fn get_sub_slice<T>(&self, slice_len: usize) -> &[UnsafeCell<T>] {
        #[cfg(debug_assertions)]
        debug_assert!(slice_len <= self.capacity);
        // SAFETY: the inner data will remain valid for as long as 'self.
        unsafe {
            core::slice::from_raw_parts(self.data.as_ptr() as *const UnsafeCell<T>, slice_len)
        }
    }

    /// Clears the array, i.e. removing (and dropping) all of the elements.
    /// Note that this method has no effect on the allocated capacity of the vector.
    ///
    /// Note that this method will behave exactly the same as [`Vec::clear`].
    ///
    /// # Safety
    /// - For every element with index `i`, if `i` < `len`: It must be safe to call [`Self::get_unchecked_mut`] with `i`.
    ///     (If the safety requirements of every method that has been used on `Self` have been fulfilled, the caller just needs to ensure that `len` is correct.)
    pub unsafe fn clear(&mut self, len: usize) {
        #[cfg(debug_assertions)]
        debug_assert!(self.capacity >= len);
        if let Some(drop) = self.drop {
            // We set `self.drop` to `None` before dropping elements for unwind safety. This ensures we don't
            // accidentally drop elements twice in the event of a drop impl panicking.
            self.drop = None;
            let size = self.item_layout.size();
            for i in 0..len {
                // SAFETY:
                // * 0 <= `i` < `len`, so `i * size` must be in bounds for the allocation.
                // * `size` is a multiple of the erased type's alignment,
                //   so adding a multiple of `size` will preserve alignment.
                // * The item is left unreachable so it can be safely promoted to an `OwningPtr`.
                let item = unsafe { self.get_ptr_mut().byte_add(i * size).promote() };
                // SAFETY: `item` was obtained from this `BlobArray`, so its underlying type must match `drop`.
                unsafe { drop(item) };
            }
            self.drop = Some(drop);
        }
    }

    /// Because this method needs parameters, it can't be the implementation of the `Drop` trait.
    /// The owner of this [`BlobArray`] must call this method with the correct information.
    ///
    /// # Safety
    /// - `cap` and `len` are indeed the capacity and length of this [`BlobArray`]
    /// - This [`BlobArray`] mustn't be used after calling this method.
    pub unsafe fn drop(&mut self, cap: usize, len: usize) {
        #[cfg(debug_assertions)]
        debug_assert_eq!(self.capacity, cap);
        if cap != 0 {
            self.clear(len);
            if !self.is_zst() {
                let layout =
                    array_layout(&self.item_layout, cap).expect("array layout should be valid");
                alloc::alloc::dealloc(self.data.as_ptr().cast(), layout);
            }
            #[cfg(debug_assertions)]
            {
                self.capacity = 0;
            }
        }
    }

    /// Drops the last element in this [`BlobArray`].
    ///
    /// # Safety
    // - `last_element_index` must correspond to the last element in the array.
    // - After this method is called, the last element must not be used
    // unless [`Self::initialize_unchecked`] is called to set the value of the last element.
    pub unsafe fn drop_last_element(&mut self, last_element_index: usize) {
        #[cfg(debug_assertions)]
        debug_assert!(self.capacity > last_element_index);
        if let Some(drop) = self.drop {
            // We set `self.drop` to `None` before dropping elements for unwind safety. This ensures we don't
            // accidentally drop elements twice in the event of a drop impl panicking.
            self.drop = None;
            // SAFETY:
            let item = self.get_unchecked_mut(last_element_index).promote();
            // SAFETY:
            unsafe { drop(item) };
            self.drop = Some(drop);
        }
    }

    /// Allocate a block of memory for the array. This should be used to initialize the array, do not use this
    /// method if there are already elements stored in the array - use [`Self::realloc`] instead.
    pub(super) fn alloc(&mut self, capacity: NonZeroUsize) {
        #[cfg(debug_assertions)]
        debug_assert_eq!(self.capacity, 0);
        if !self.is_zst() {
            let new_layout = array_layout(&self.item_layout, capacity.get())
                .expect("array layout should be valid");
            // SAFETY: layout has non-zero size because capacity > 0, and the blob isn't ZST (`self.is_zst` == false)
            let new_data = unsafe { alloc::alloc::alloc(new_layout) };
            self.data = NonNull::new(new_data).unwrap_or_else(|| handle_alloc_error(new_layout));
        }
        #[cfg(debug_assertions)]
        {
            self.capacity = capacity.into();
        }
    }

    /// Reallocate memory for this array.
    /// For example, if the length (number of stored elements) reached the capacity (number of elements the current allocation can store),
    /// you might want to use this method to increase the allocation, so more data can be stored in the array.
    ///
    /// # Safety
    /// - `current_capacity` is indeed the current capacity of this array.
    /// - After calling this method, the caller must update their saved capacity to reflect the change.
    pub(super) unsafe fn realloc(
        &mut self,
        current_capacity: NonZeroUsize,
        new_capacity: NonZeroUsize,
    ) {
        #[cfg(debug_assertions)]
        debug_assert_eq!(self.capacity, current_capacity.into());
        if !self.is_zst() {
            // SAFETY: `new_capacity` can't overflow usize
            let new_layout =
                unsafe { array_layout_unchecked(&self.item_layout, new_capacity.get()) };
            // SAFETY:
            // - ptr was be allocated via this allocator
            // - the layout used to previously allocate this array is equivalent to `array_layout(&self.item_layout, current_capacity.get())`
            // - `item_layout.size() > 0` (`self.is_zst`==false) and `new_capacity > 0`, so the layout size is non-zero
            // - "new_size, when rounded up to the nearest multiple of layout.align(), must not overflow (i.e., the rounded value must be less than usize::MAX)",
            // since the item size is always a multiple of its align, the rounding cannot happen
            // here and the overflow is handled in `array_layout`
            let new_data = unsafe {
                alloc::alloc::realloc(
                    self.get_ptr_mut().as_ptr(),
                    // SAFETY: This is the Layout of the current array, it must be valid, if it hadn't have been, there would have been a panic on a previous allocation
                    array_layout_unchecked(&self.item_layout, current_capacity.get()),
                    new_layout.size(),
                )
            };
            self.data = NonNull::new(new_data).unwrap_or_else(|| handle_alloc_error(new_layout));
        }
        #[cfg(debug_assertions)]
        {
            self.capacity = new_capacity.into();
        }
    }

    /// Initializes the value at `index` to `value`. This function does not do any bounds checking.
    ///
    /// # Safety
    /// - `index` must be in bounds (`index` < capacity)
    /// - The [`Layout`] of the value must match the layout of the blobs stored in this array,
    ///     and it must be safe to use the `drop` function of this [`BlobArray`] to drop `value`.
    /// - `value` must not point to the same value that is being initialized.
    #[inline]
    pub unsafe fn initialize_unchecked(&mut self, index: usize, value: OwningPtr<'_>) {
        #[cfg(debug_assertions)]
        debug_assert!(self.capacity > index);
        let size = self.item_layout.size();
        let dst = self.get_unchecked_mut(index);
        core::ptr::copy::<u8>(value.as_ptr(), dst.as_ptr(), size);
    }

    /// Replaces the value at `index` with `value`. This function does not do any bounds checking.
    ///
    /// # Safety
    /// - Index must be in-bounds (`index` < `len`)
    /// - `value`'s [`Layout`] must match this [`BlobArray`]'s `item_layout`,
    ///     and it must be safe to use the `drop` function of this [`BlobArray`] to drop `value`.
    /// - `value` must not point to the same value that is being replaced.
    pub unsafe fn replace_unchecked(&mut self, index: usize, value: OwningPtr<'_>) {
        #[cfg(debug_assertions)]
        debug_assert!(self.capacity > index);
        // Pointer to the value in the vector that will get replaced.
        // SAFETY: The caller ensures that `index` fits in this vector.
        let destination = NonNull::from(unsafe { self.get_unchecked_mut(index) });
        let source = value.as_ptr();

        if let Some(drop) = self.drop {
            // We set `self.drop` to `None` before dropping elements for unwind safety. This ensures we don't
            // accidentally drop elements twice in the event of a drop impl panicking.
            self.drop = None;

            // Transfer ownership of the old value out of the vector, so it can be dropped.
            // SAFETY:
            // - `destination` was obtained from a `PtrMut` in this vector, which ensures it is non-null,
            //   well-aligned for the underlying type, and has proper provenance.
            // - The storage location will get overwritten with `value` later, which ensures
            //   that the element will not get observed or double dropped later.
            // - If a panic occurs, `self.len` will remain `0`, which ensures a double-drop
            //   does not occur. Instead, all elements will be forgotten.
            let old_value = unsafe { OwningPtr::new(destination) };

            // This closure will run in case `drop()` panics,
            // which ensures that `value` does not get forgotten.
            let on_unwind = OnDrop::new(|| drop(value));

            drop(old_value);

            // If the above code does not panic, make sure that `value` doesn't get dropped.
            core::mem::forget(on_unwind);

            self.drop = Some(drop);
        }

        // Copy the new value into the vector, overwriting the previous value.
        // SAFETY:
        // - `source` and `destination` were obtained from `OwningPtr`s, which ensures they are
        //   valid for both reads and writes.
        // - The value behind `source` will only be dropped if the above branch panics,
        //   so it must still be initialized and it is safe to transfer ownership into the vector.
        // - `source` and `destination` were obtained from different memory locations,
        //   both of which we have exclusive access to, so they are guaranteed not to overlap.
        unsafe {
            core::ptr::copy_nonoverlapping::<u8>(
                source,
                destination.as_ptr(),
                self.item_layout.size(),
            );
        }
    }

    /// This method will swap two elements in the array, and return the one at `index_to_remove`.
    /// It is the caller's responsibility to drop the returned pointer, if that is desirable.
    ///
    /// # Safety
    /// - `index_to_keep` must be safe to access (within the bounds of the length of the array).
    /// - `index_to_remove` must be safe to access (within the bounds of the length of the array).
    /// - `index_to_remove` != `index_to_keep`
    /// -  The caller should address the inconsistent state of the array that has occurred after the swap, either:
    ///     1) initialize a different value in `index_to_keep`
    ///     2) update the saved length of the array if `index_to_keep` was the last element.
    #[inline]
    #[must_use = "The returned pointer should be used to drop the removed element"]
    pub unsafe fn swap_remove_unchecked(
        &mut self,
        index_to_remove: usize,
        index_to_keep: usize,
    ) -> OwningPtr<'_> {
        #[cfg(debug_assertions)]
        {
            debug_assert!(self.capacity > index_to_keep);
            debug_assert!(self.capacity > index_to_remove);
        }
        if index_to_remove != index_to_keep {
            return self.swap_remove_unchecked_nonoverlapping(index_to_remove, index_to_keep);
        }
        // Now the element that used to be in index `index_to_remove` is now in index `index_to_keep` (after swap)
        // If we are storing ZSTs than the index doesn't actually matter because the size is 0.
        self.get_unchecked_mut(index_to_keep).promote()
    }

    /// The same as [`Self::swap_remove_unchecked`] but the two elements must non-overlapping.
    ///
    /// # Safety
    /// - `index_to_keep` must be safe to access (within the bounds of the length of the array).
    /// - `index_to_remove` must be safe to access (within the bounds of the length of the array).
    /// - `index_to_remove` != `index_to_keep`
    /// -  The caller should address the inconsistent state of the array that has occurred after the swap, either:
    ///     1) initialize a different value in `index_to_keep`
    ///     2) update the saved length of the array if `index_to_keep` was the last element.
    #[inline]
    pub unsafe fn swap_remove_unchecked_nonoverlapping(
        &mut self,
        index_to_remove: usize,
        index_to_keep: usize,
    ) -> OwningPtr<'_> {
        #[cfg(debug_assertions)]
        {
            debug_assert!(self.capacity > index_to_keep);
            debug_assert!(self.capacity > index_to_remove);
            debug_assert_ne!(index_to_keep, index_to_remove);
        }
        debug_assert_ne!(index_to_keep, index_to_remove);
        core::ptr::swap_nonoverlapping::<u8>(
            self.get_unchecked_mut(index_to_keep).as_ptr(),
            self.get_unchecked_mut(index_to_remove).as_ptr(),
            self.item_layout.size(),
        );
        // Now the element that used to be in index `index_to_remove` is now in index `index_to_keep` (after swap)
        // If we are storing ZSTs than the index doesn't actually matter because the size is 0.
        self.get_unchecked_mut(index_to_keep).promote()
    }

    /// This method will can [`Self::swap_remove_unchecked`] and drop the result.
    ///
    /// # Safety
    /// - `index_to_keep` must be safe to access (within the bounds of the length of the array).
    /// - `index_to_remove` must be safe to access (within the bounds of the length of the array).
    /// - `index_to_remove` != `index_to_keep`
    /// -  The caller should address the inconsistent state of the array that has occurred after the swap, either:
    ///     1) initialize a different value in `index_to_keep`
    ///     2) update the saved length of the array if `index_to_keep` was the last element.
    #[inline]
    pub unsafe fn swap_remove_and_drop_unchecked(
        &mut self,
        index_to_remove: usize,
        index_to_keep: usize,
    ) {
        #[cfg(debug_assertions)]
        {
            debug_assert!(self.capacity > index_to_keep);
            debug_assert!(self.capacity > index_to_remove);
        }
        let drop = self.drop;
        let value = self.swap_remove_unchecked(index_to_remove, index_to_keep);
        if let Some(drop) = drop {
            drop(value);
        }
    }

    /// The same as [`Self::swap_remove_and_drop_unchecked`] but the two elements must non-overlapping.
    ///
    /// # Safety
    /// - `index_to_keep` must be safe to access (within the bounds of the length of the array).
    /// - `index_to_remove` must be safe to access (within the bounds of the length of the array).
    /// - `index_to_remove` != `index_to_keep`
    /// -  The caller should address the inconsistent state of the array that has occurred after the swap, either:
    ///     1) initialize a different value in `index_to_keep`
    ///     2) update the saved length of the array if `index_to_keep` was the last element.
    #[inline]
    pub unsafe fn swap_remove_and_drop_unchecked_nonoverlapping(
        &mut self,
        index_to_remove: usize,
        index_to_keep: usize,
    ) {
        #[cfg(debug_assertions)]
        {
            debug_assert!(self.capacity > index_to_keep);
            debug_assert!(self.capacity > index_to_remove);
            debug_assert_ne!(index_to_keep, index_to_remove);
        }
        let drop = self.drop;
        let value = self.swap_remove_unchecked_nonoverlapping(index_to_remove, index_to_keep);
        if let Some(drop) = drop {
            drop(value);
        }
    }
}

#[cfg(test)]
mod tests {
    use crate as bevy_ecs;
    use bevy_ecs::prelude::*;

    #[derive(Component)]
    struct PanicOnDrop;

    impl Drop for PanicOnDrop {
        fn drop(&mut self) {
            panic!("PanicOnDrop is being Dropped");
        }
    }

    #[test]
    #[should_panic(expected = "PanicOnDrop is being Dropped")]
    fn make_sure_zst_components_get_dropped() {
        let mut world = World::new();

        world.spawn(PanicOnDrop);
    }
}