#[repr(C)]pub struct Scale<T, const D: usize> {
pub vector: SVector<T, D>,
}
Expand description
A scale which supports non-uniform scaling.
Fields§
§vector: SVector<T, D>
The scale coordinates, i.e., how much is multiplied to a point’s coordinates when it is scaled.
Implementations§
source§impl<T: Scalar, const D: usize> Scale<T, D>
impl<T: Scalar, const D: usize> Scale<T, D>
sourcepub fn try_inverse(&self) -> Option<Scale<T, D>>
pub fn try_inverse(&self) -> Option<Scale<T, D>>
Inverts self
.
§Example
let t = Scale3::new(1.0, 2.0, 3.0);
assert_eq!(t * t.try_inverse().unwrap(), Scale3::identity());
assert_eq!(t.try_inverse().unwrap() * t, Scale3::identity());
// Work in all dimensions.
let t = Scale2::new(1.0, 2.0);
assert_eq!(t * t.try_inverse().unwrap(), Scale2::identity());
assert_eq!(t.try_inverse().unwrap() * t, Scale2::identity());
// Returns None if any coordinate is 0.
let t = Scale2::new(0.0, 2.0);
assert_eq!(t.try_inverse(), None);
sourcepub unsafe fn inverse_unchecked(&self) -> Scale<T, D>where
T: ClosedDivAssign + One,
pub unsafe fn inverse_unchecked(&self) -> Scale<T, D>where
T: ClosedDivAssign + One,
Inverts self
.
§Example
unsafe {
let t = Scale3::new(1.0, 2.0, 3.0);
assert_eq!(t * t.inverse_unchecked(), Scale3::identity());
assert_eq!(t.inverse_unchecked() * t, Scale3::identity());
// Work in all dimensions.
let t = Scale2::new(1.0, 2.0);
assert_eq!(t * t.inverse_unchecked(), Scale2::identity());
assert_eq!(t.inverse_unchecked() * t, Scale2::identity());
}
§Safety
Should only be used if all scaling is known to be non-zero.
sourcepub fn pseudo_inverse(&self) -> Scale<T, D>
pub fn pseudo_inverse(&self) -> Scale<T, D>
Inverts self
.
§Example
let t = Scale3::new(1.0, 2.0, 3.0);
assert_eq!(t * t.pseudo_inverse(), Scale3::identity());
assert_eq!(t.pseudo_inverse() * t, Scale3::identity());
// Work in all dimensions.
let t = Scale2::new(1.0, 2.0);
assert_eq!(t * t.pseudo_inverse(), Scale2::identity());
assert_eq!(t.pseudo_inverse() * t, Scale2::identity());
// Inverts only non-zero coordinates.
let t = Scale2::new(0.0, 2.0);
assert_eq!(t * t.pseudo_inverse(), Scale2::new(0.0, 1.0));
assert_eq!(t.pseudo_inverse() * t, Scale2::new(0.0, 1.0));
sourcepub fn to_homogeneous(
&self,
) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>where
T: Zero + One + Clone,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<DimNameSum<Const<D>, U1>, U1>,
pub fn to_homogeneous(
&self,
) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>where
T: Zero + One + Clone,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<DimNameSum<Const<D>, U1>, U1>,
Converts this Scale into its equivalent homogeneous transformation matrix.
§Example
let t = Scale3::new(10.0, 20.0, 30.0);
let expected = Matrix4::new(10.0, 0.0, 0.0, 0.0,
0.0, 20.0, 0.0, 0.0,
0.0, 0.0, 30.0, 0.0,
0.0, 0.0, 0.0, 1.0);
assert_eq!(t.to_homogeneous(), expected);
let t = Scale2::new(10.0, 20.0);
let expected = Matrix3::new(10.0, 0.0, 0.0,
0.0, 20.0, 0.0,
0.0, 0.0, 1.0);
assert_eq!(t.to_homogeneous(), expected);
sourcepub fn try_inverse_mut(&mut self) -> bool
pub fn try_inverse_mut(&mut self) -> bool
Inverts self
in-place.
§Example
let t = Scale3::new(1.0, 2.0, 3.0);
let mut inv_t = Scale3::new(1.0, 2.0, 3.0);
assert!(inv_t.try_inverse_mut());
assert_eq!(t * inv_t, Scale3::identity());
assert_eq!(inv_t * t, Scale3::identity());
// Work in all dimensions.
let t = Scale2::new(1.0, 2.0);
let mut inv_t = Scale2::new(1.0, 2.0);
assert!(inv_t.try_inverse_mut());
assert_eq!(t * inv_t, Scale2::identity());
assert_eq!(inv_t * t, Scale2::identity());
// Does not perform any operation if a coordinate is 0.
let mut t = Scale2::new(0.0, 2.0);
assert!(!t.try_inverse_mut());
source§impl<T: Scalar + ClosedMulAssign, const D: usize> Scale<T, D>
impl<T: Scalar + ClosedMulAssign, const D: usize> Scale<T, D>
sourcepub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
pub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
Translate the given point.
This is the same as the multiplication self * pt
.
§Example
let t = Scale3::new(1.0, 2.0, 3.0);
let transformed_point = t.transform_point(&Point3::new(4.0, 5.0, 6.0));
assert_eq!(transformed_point, Point3::new(4.0, 10.0, 18.0));
source§impl<T: Scalar + ClosedDivAssign + ClosedMulAssign + One + Zero, const D: usize> Scale<T, D>
impl<T: Scalar + ClosedDivAssign + ClosedMulAssign + One + Zero, const D: usize> Scale<T, D>
sourcepub fn try_inverse_transform_point(
&self,
pt: &Point<T, D>,
) -> Option<Point<T, D>>
pub fn try_inverse_transform_point( &self, pt: &Point<T, D>, ) -> Option<Point<T, D>>
Translate the given point by the inverse of this Scale.
§Example
let t = Scale3::new(1.0, 2.0, 3.0);
let transformed_point = t.try_inverse_transform_point(&Point3::new(4.0, 6.0, 6.0)).unwrap();
assert_eq!(transformed_point, Point3::new(4.0, 3.0, 2.0));
// Returns None if the inverse doesn't exist.
let t = Scale3::new(1.0, 0.0, 3.0);
let transformed_point = t.try_inverse_transform_point(&Point3::new(4.0, 6.0, 6.0));
assert_eq!(transformed_point, None);
source§impl<T: Scalar, const D: usize> Scale<T, D>
impl<T: Scalar, const D: usize> Scale<T, D>
source§impl<T> Scale<T, 6>
impl<T> Scale<T, 6>
sourcepub const fn new(x: T, y: T, z: T, w: T, a: T, b: T) -> Self
pub const fn new(x: T, y: T, z: T, w: T, a: T, b: T) -> Self
Initializes this Scale from its components.
§Example
let t = Scale6::new(1.0, 2.0, 3.0, 4.0, 5.0, 6.0);
assert!(t.vector.x == 1.0 && t.vector.y == 2.0 && t.vector.z == 3.0 && t.vector.w == 4.0 && t.vector.a == 5.0 && t.vector.b == 6.0);
Trait Implementations§
source§impl<T: Scalar + AbsDiffEq, const D: usize> AbsDiffEq for Scale<T, D>
impl<T: Scalar + AbsDiffEq, const D: usize> AbsDiffEq for Scale<T, D>
source§fn default_epsilon() -> Self::Epsilon
fn default_epsilon() -> Self::Epsilon
The default tolerance to use when testing values that are close together. Read more
source§fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
A test for equality that uses the absolute difference to compute the approximate
equality of two numbers.
source§fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
The inverse of
AbsDiffEq::abs_diff_eq
.source§impl<T: Scalar, const D: usize> From<Matrix<T, Const<D>, Const<1>, <DefaultAllocator as Allocator<Const<D>>>::Buffer<T>>> for Scale<T, D>
impl<T: Scalar, const D: usize> From<Matrix<T, Const<D>, Const<1>, <DefaultAllocator as Allocator<Const<D>>>::Buffer<T>>> for Scale<T, D>
source§impl<T: Scalar + Zero + One, const D: usize> From<Scale<T, D>> for OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<DimNameSum<Const<D>, U1>, U1> + Allocator<Const<D>>,
impl<T: Scalar + Zero + One, const D: usize> From<Scale<T, D>> for OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<DimNameSum<Const<D>, U1>, U1> + Allocator<Const<D>>,
source§impl<'a, 'b, T, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for &'a Scale<T, D>where
T: Scalar + ClosedMulAssign,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'a, 'b, T, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for &'a Scale<T, D>where
T: Scalar + ClosedMulAssign,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<'b, T, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for Scale<T, D>where
T: Scalar + ClosedMulAssign,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'b, T, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for Scale<T, D>where
T: Scalar + ClosedMulAssign,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<'a, 'b, T, const D: usize> Mul<&'b OPoint<T, Const<D>>> for &'a Scale<T, D>where
T: Scalar + ClosedMulAssign,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'a, 'b, T, const D: usize> Mul<&'b OPoint<T, Const<D>>> for &'a Scale<T, D>where
T: Scalar + ClosedMulAssign,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<'b, T, const D: usize> Mul<&'b OPoint<T, Const<D>>> for Scale<T, D>where
T: Scalar + ClosedMulAssign,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'b, T, const D: usize> Mul<&'b OPoint<T, Const<D>>> for Scale<T, D>where
T: Scalar + ClosedMulAssign,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<'a, 'b, T, const D: usize> Mul<&'b Scale<T, D>> for &'a Scale<T, D>where
T: Scalar + ClosedMulAssign,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'a, 'b, T, const D: usize> Mul<&'b Scale<T, D>> for &'a Scale<T, D>where
T: Scalar + ClosedMulAssign,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<'b, T, const D: usize> Mul<&'b Scale<T, D>> for Scale<T, D>where
T: Scalar + ClosedMulAssign,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'b, T, const D: usize> Mul<&'b Scale<T, D>> for Scale<T, D>where
T: Scalar + ClosedMulAssign,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<'a, T, const D: usize> Mul<Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for &'a Scale<T, D>where
T: Scalar + ClosedMulAssign,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'a, T, const D: usize> Mul<Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for &'a Scale<T, D>where
T: Scalar + ClosedMulAssign,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<T, const D: usize> Mul<Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for Scale<T, D>where
T: Scalar + ClosedMulAssign,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<T, const D: usize> Mul<Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for Scale<T, D>where
T: Scalar + ClosedMulAssign,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<'a, T, const D: usize> Mul<OPoint<T, Const<D>>> for &'a Scale<T, D>where
T: Scalar + ClosedMulAssign,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'a, T, const D: usize> Mul<OPoint<T, Const<D>>> for &'a Scale<T, D>where
T: Scalar + ClosedMulAssign,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<T, const D: usize> Mul<OPoint<T, Const<D>>> for Scale<T, D>where
T: Scalar + ClosedMulAssign,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<T, const D: usize> Mul<OPoint<T, Const<D>>> for Scale<T, D>where
T: Scalar + ClosedMulAssign,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<'a, T, const D: usize> Mul<Scale<T, D>> for &'a Scale<T, D>where
T: Scalar + ClosedMulAssign,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'a, T, const D: usize> Mul<Scale<T, D>> for &'a Scale<T, D>where
T: Scalar + ClosedMulAssign,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<'a, T, const D: usize> Mul<T> for &'a Scale<T, D>where
T: Scalar + ClosedMulAssign,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<'a, T, const D: usize> Mul<T> for &'a Scale<T, D>where
T: Scalar + ClosedMulAssign,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<T, const D: usize> Mul<T> for Scale<T, D>where
T: Scalar + ClosedMulAssign,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<T, const D: usize> Mul<T> for Scale<T, D>where
T: Scalar + ClosedMulAssign,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<T, const D: usize> Mul for Scale<T, D>where
T: Scalar + ClosedMulAssign,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
impl<T, const D: usize> Mul for Scale<T, D>where
T: Scalar + ClosedMulAssign,
ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,
source§impl<'b, T, const D: usize> MulAssign<&'b Scale<T, D>> for Scale<T, D>where
T: Scalar + ClosedMulAssign,
impl<'b, T, const D: usize> MulAssign<&'b Scale<T, D>> for Scale<T, D>where
T: Scalar + ClosedMulAssign,
source§fn mul_assign(&mut self, right: &'b Scale<T, D>)
fn mul_assign(&mut self, right: &'b Scale<T, D>)
Performs the
*=
operation. Read moresource§impl<T, const D: usize> MulAssign<T> for Scale<T, D>where
T: Scalar + ClosedMulAssign,
impl<T, const D: usize> MulAssign<T> for Scale<T, D>where
T: Scalar + ClosedMulAssign,
source§fn mul_assign(&mut self, right: T)
fn mul_assign(&mut self, right: T)
Performs the
*=
operation. Read moresource§impl<T, const D: usize> MulAssign for Scale<T, D>where
T: Scalar + ClosedMulAssign,
impl<T, const D: usize> MulAssign for Scale<T, D>where
T: Scalar + ClosedMulAssign,
source§fn mul_assign(&mut self, right: Scale<T, D>)
fn mul_assign(&mut self, right: Scale<T, D>)
Performs the
*=
operation. Read moresource§impl<T: Scalar + RelativeEq, const D: usize> RelativeEq for Scale<T, D>
impl<T: Scalar + RelativeEq, const D: usize> RelativeEq for Scale<T, D>
source§fn default_max_relative() -> Self::Epsilon
fn default_max_relative() -> Self::Epsilon
The default relative tolerance for testing values that are far-apart. Read more
source§fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool
fn relative_eq( &self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon, ) -> bool
A test for equality that uses a relative comparison if the values are far apart.
source§fn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool
fn relative_ne( &self, other: &Rhs, epsilon: Self::Epsilon, max_relative: Self::Epsilon, ) -> bool
The inverse of
RelativeEq::relative_eq
.source§impl<T: Scalar + SimdValue, const D: usize> SimdValue for Scale<T, D>
impl<T: Scalar + SimdValue, const D: usize> SimdValue for Scale<T, D>
source§type Element = Scale<<T as SimdValue>::Element, D>
type Element = Scale<<T as SimdValue>::Element, D>
The type of the elements of each lane of this SIMD value.
source§type SimdBool = <T as SimdValue>::SimdBool
type SimdBool = <T as SimdValue>::SimdBool
Type of the result of comparing two SIMD values like
self
.source§unsafe fn extract_unchecked(&self, i: usize) -> Self::Element
unsafe fn extract_unchecked(&self, i: usize) -> Self::Element
Extracts the i-th lane of
self
without bound-checking. Read moresource§unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element)
unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element)
source§impl<T1, T2, const D: usize> SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<<Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer<T2>>> for Scale<T1, D>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<DimNameSum<Const<D>, U1>, U1>,
impl<T1, T2, const D: usize> SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<<Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer<T2>>> for Scale<T1, D>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<DimNameSum<Const<D>, U1>, U1>,
source§fn to_superset(
&self,
) -> OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
fn to_superset( &self, ) -> OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
The inclusion map: converts
self
to the equivalent element of its superset.source§fn is_in_subset(
m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
) -> bool
fn is_in_subset( m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>, ) -> bool
Checks if
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(
m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
) -> Self
fn from_superset_unchecked( m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>, ) -> Self
Use with care! Same as
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2, const D: usize> SubsetOf<Scale<T2, D>> for Scale<T1, D>
impl<T1, T2, const D: usize> SubsetOf<Scale<T2, D>> for Scale<T1, D>
source§fn to_superset(&self) -> Scale<T2, D>
fn to_superset(&self) -> Scale<T2, D>
The inclusion map: converts
self
to the equivalent element of its superset.source§fn is_in_subset(rot: &Scale<T2, D>) -> bool
fn is_in_subset(rot: &Scale<T2, D>) -> bool
Checks if
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(rot: &Scale<T2, D>) -> Self
fn from_superset_unchecked(rot: &Scale<T2, D>) -> Self
Use with care! Same as
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Scale<T1, D>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<DimNameSum<Const<D>, U1>, U1>,
impl<T1, T2, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Scale<T1, D>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<DimNameSum<Const<D>, U1>, U1>,
source§fn to_superset(&self) -> Transform<T2, C, D>
fn to_superset(&self) -> Transform<T2, C, D>
The inclusion map: converts
self
to the equivalent element of its superset.source§fn is_in_subset(t: &Transform<T2, C, D>) -> bool
fn is_in_subset(t: &Transform<T2, C, D>) -> bool
Checks if
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(t: &Transform<T2, C, D>) -> Self
fn from_superset_unchecked(t: &Transform<T2, C, D>) -> Self
Use with care! Same as
self.to_superset
but without any property checks. Always succeeds.source§impl<T: Scalar + UlpsEq, const D: usize> UlpsEq for Scale<T, D>
impl<T: Scalar + UlpsEq, const D: usize> UlpsEq for Scale<T, D>
impl<T: Copy, const D: usize> Copy for Scale<T, D>
impl<T: Scalar + Eq, const D: usize> Eq for Scale<T, D>
Auto Trait Implementations§
impl<T, const D: usize> Freeze for Scale<T, D>where
T: Freeze,
impl<T, const D: usize> RefUnwindSafe for Scale<T, D>where
T: RefUnwindSafe,
impl<T, const D: usize> Send for Scale<T, D>where
T: Send,
impl<T, const D: usize> Sync for Scale<T, D>where
T: Sync,
impl<T, const D: usize> Unpin for Scale<T, D>where
T: Unpin,
impl<T, const D: usize> UnwindSafe for Scale<T, D>where
T: UnwindSafe,
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
🔬This is a nightly-only experimental API. (
clone_to_uninit
)source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.