pub struct QR<T: ComplexField, R: DimMin<C>, C: Dim>{ /* private fields */ }
Expand description
The QR decomposition of a general matrix.
Implementations§
source§impl<T: ComplexField, R: DimMin<C>, C: Dim> QR<T, R, C>
impl<T: ComplexField, R: DimMin<C>, C: Dim> QR<T, R, C>
sourcepub fn new(matrix: OMatrix<T, R, C>) -> Self
pub fn new(matrix: OMatrix<T, R, C>) -> Self
Computes the QR decomposition using householder reflections.
sourcepub fn r(&self) -> OMatrix<T, DimMinimum<R, C>, C>
pub fn r(&self) -> OMatrix<T, DimMinimum<R, C>, C>
Retrieves the upper trapezoidal submatrix R
of this decomposition.
sourcepub fn unpack_r(self) -> OMatrix<T, DimMinimum<R, C>, C>
pub fn unpack_r(self) -> OMatrix<T, DimMinimum<R, C>, C>
Retrieves the upper trapezoidal submatrix R
of this decomposition.
This is usually faster than r
but consumes self
.
sourcepub fn q(&self) -> OMatrix<T, R, DimMinimum<R, C>>
pub fn q(&self) -> OMatrix<T, R, DimMinimum<R, C>>
Computes the orthogonal matrix Q
of this decomposition.
sourcepub fn unpack(
self
) -> (OMatrix<T, R, DimMinimum<R, C>>, OMatrix<T, DimMinimum<R, C>, C>)where
DimMinimum<R, C>: DimMin<C, Output = DimMinimum<R, C>>,
DefaultAllocator: Allocator<R, DimMinimum<R, C>> + Reallocator<T, R, C, DimMinimum<R, C>, C>,
pub fn unpack(
self
) -> (OMatrix<T, R, DimMinimum<R, C>>, OMatrix<T, DimMinimum<R, C>, C>)where
DimMinimum<R, C>: DimMin<C, Output = DimMinimum<R, C>>,
DefaultAllocator: Allocator<R, DimMinimum<R, C>> + Reallocator<T, R, C, DimMinimum<R, C>, C>,
Unpacks this decomposition into its two matrix factors.
source§impl<T: ComplexField, D: DimMin<D, Output = D>> QR<T, D, D>
impl<T: ComplexField, D: DimMin<D, Output = D>> QR<T, D, D>
sourcepub fn solve<R2: Dim, C2: Dim, S2>(
&self,
b: &Matrix<T, R2, C2, S2>
) -> Option<OMatrix<T, R2, C2>>where
S2: Storage<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
DefaultAllocator: Allocator<R2, C2>,
pub fn solve<R2: Dim, C2: Dim, S2>(
&self,
b: &Matrix<T, R2, C2, S2>
) -> Option<OMatrix<T, R2, C2>>where
S2: Storage<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
DefaultAllocator: Allocator<R2, C2>,
Solves the linear system self * x = b
, where x
is the unknown to be determined.
Returns None
if self
is not invertible.
sourcepub fn solve_mut<R2: Dim, C2: Dim, S2>(
&self,
b: &mut Matrix<T, R2, C2, S2>
) -> bool
pub fn solve_mut<R2: Dim, C2: Dim, S2>( &self, b: &mut Matrix<T, R2, C2, S2> ) -> bool
Solves the linear system self * x = b
, where x
is the unknown to be determined.
If the decomposed matrix is not invertible, this returns false
and its input b
is
overwritten with garbage.
sourcepub fn try_inverse(&self) -> Option<OMatrix<T, D, D>>
pub fn try_inverse(&self) -> Option<OMatrix<T, D, D>>
Computes the inverse of the decomposed matrix.
Returns None
if the decomposed matrix is not invertible.
sourcepub fn is_invertible(&self) -> bool
pub fn is_invertible(&self) -> bool
Indicates if the decomposed matrix is invertible.
Trait Implementations§
impl<T: ComplexField, R: DimMin<C>, C: Dim> Copy for QR<T, R, C>where
DefaultAllocator: Allocator<R, C> + Allocator<DimMinimum<R, C>>,
OMatrix<T, R, C>: Copy,
OVector<T, DimMinimum<R, C>>: Copy,
Auto Trait Implementations§
impl<T, R, C> !Freeze for QR<T, R, C>
impl<T, R, C> !RefUnwindSafe for QR<T, R, C>
impl<T, R, C> !Send for QR<T, R, C>
impl<T, R, C> !Sync for QR<T, R, C>
impl<T, R, C> !Unpin for QR<T, R, C>
impl<T, R, C> !UnwindSafe for QR<T, R, C>
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.