Struct nalgebra::linalg::SymmetricEigen
source · pub struct SymmetricEigen<T: ComplexField, D: Dim>{
pub eigenvectors: OMatrix<T, D, D>,
pub eigenvalues: OVector<T::RealField, D>,
}
Expand description
Eigendecomposition of a symmetric matrix.
Fields§
§eigenvectors: OMatrix<T, D, D>
The eigenvectors of the decomposed matrix.
eigenvalues: OVector<T::RealField, D>
The unsorted eigenvalues of the decomposed matrix.
Implementations§
source§impl<T: ComplexField, D: Dim> SymmetricEigen<T, D>
impl<T: ComplexField, D: Dim> SymmetricEigen<T, D>
sourcepub fn new(m: OMatrix<T, D, D>) -> Self
pub fn new(m: OMatrix<T, D, D>) -> Self
Computes the eigendecomposition of the given symmetric matrix.
Only the lower-triangular parts (including its diagonal) of m
is read.
sourcepub fn try_new(
m: OMatrix<T, D, D>,
eps: T::RealField,
max_niter: usize
) -> Option<Self>
pub fn try_new( m: OMatrix<T, D, D>, eps: T::RealField, max_niter: usize ) -> Option<Self>
Computes the eigendecomposition of the given symmetric matrix with user-specified convergence parameters.
Only the lower-triangular part (including its diagonal) of m
is read.
§Arguments
eps
− tolerance used to determine when a value converged to 0.max_niter
− maximum total number of iterations performed by the algorithm. If this number of iteration is exceeded,None
is returned. Ifniter == 0
, then the algorithm continues indefinitely until convergence.
Trait Implementations§
source§impl<T: Clone + ComplexField, D: Clone + Dim> Clone for SymmetricEigen<T, D>
impl<T: Clone + ComplexField, D: Clone + Dim> Clone for SymmetricEigen<T, D>
source§fn clone(&self) -> SymmetricEigen<T, D>
fn clone(&self) -> SymmetricEigen<T, D>
Returns a copy of the value. Read more
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moresource§impl<T: Debug + ComplexField, D: Debug + Dim> Debug for SymmetricEigen<T, D>
impl<T: Debug + ComplexField, D: Debug + Dim> Debug for SymmetricEigen<T, D>
impl<T: ComplexField, D: Dim> Copy for SymmetricEigen<T, D>
Auto Trait Implementations§
impl<T, D> !Freeze for SymmetricEigen<T, D>
impl<T, D> !RefUnwindSafe for SymmetricEigen<T, D>
impl<T, D> !Send for SymmetricEigen<T, D>
impl<T, D> !Sync for SymmetricEigen<T, D>
impl<T, D> !Unpin for SymmetricEigen<T, D>
impl<T, D> !UnwindSafe for SymmetricEigen<T, D>
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.