Struct nalgebra::linalg::SymmetricTridiagonal
source · pub struct SymmetricTridiagonal<T: ComplexField, D: DimSub<U1>>{ /* private fields */ }
Expand description
Tridiagonalization of a symmetric matrix.
Implementations§
source§impl<T: ComplexField, D: DimSub<U1>> SymmetricTridiagonal<T, D>
impl<T: ComplexField, D: DimSub<U1>> SymmetricTridiagonal<T, D>
sourcepub fn new(m: OMatrix<T, D, D>) -> Self
pub fn new(m: OMatrix<T, D, D>) -> Self
Computes the tridiagonalization of the symmetric matrix m
.
Only the lower-triangular part (including the diagonal) of m
is read.
sourcepub fn unpack(
self
) -> (OMatrix<T, D, D>, OVector<T::RealField, D>, OVector<T::RealField, DimDiff<D, U1>>)
pub fn unpack( self ) -> (OMatrix<T, D, D>, OVector<T::RealField, D>, OVector<T::RealField, DimDiff<D, U1>>)
Retrieve the orthogonal transformation, diagonal, and off diagonal elements of this decomposition.
sourcepub fn unpack_tridiagonal(
self
) -> (OVector<T::RealField, D>, OVector<T::RealField, DimDiff<D, U1>>)
pub fn unpack_tridiagonal( self ) -> (OVector<T::RealField, D>, OVector<T::RealField, DimDiff<D, U1>>)
Retrieve the diagonal, and off diagonal elements of this decomposition.
sourcepub fn diagonal(&self) -> OVector<T::RealField, D>where
DefaultAllocator: Allocator<D>,
pub fn diagonal(&self) -> OVector<T::RealField, D>where
DefaultAllocator: Allocator<D>,
The diagonal components of this decomposition.
Trait Implementations§
source§impl<T: Clone + ComplexField, D: Clone + DimSub<U1>> Clone for SymmetricTridiagonal<T, D>
impl<T: Clone + ComplexField, D: Clone + DimSub<U1>> Clone for SymmetricTridiagonal<T, D>
source§fn clone(&self) -> SymmetricTridiagonal<T, D>
fn clone(&self) -> SymmetricTridiagonal<T, D>
Returns a copy of the value. Read more
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moresource§impl<T: Debug + ComplexField, D: Debug + DimSub<U1>> Debug for SymmetricTridiagonal<T, D>
impl<T: Debug + ComplexField, D: Debug + DimSub<U1>> Debug for SymmetricTridiagonal<T, D>
impl<T: ComplexField, D: DimSub<U1>> Copy for SymmetricTridiagonal<T, D>
Auto Trait Implementations§
impl<T, D> !Freeze for SymmetricTridiagonal<T, D>
impl<T, D> !RefUnwindSafe for SymmetricTridiagonal<T, D>
impl<T, D> !Send for SymmetricTridiagonal<T, D>
impl<T, D> !Sync for SymmetricTridiagonal<T, D>
impl<T, D> !Unpin for SymmetricTridiagonal<T, D>
impl<T, D> !UnwindSafe for SymmetricTridiagonal<T, D>
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.