pub struct UDU<T: RealField, D: Dim>{
pub u: OMatrix<T, D, D>,
pub d: OVector<T, D>,
}
Expand description
UDU factorization.
Fields§
§u: OMatrix<T, D, D>
The upper triangular matrix resulting from the factorization
d: OVector<T, D>
The diagonal matrix resulting from the factorization
Implementations§
source§impl<T: RealField, D: Dim> UDU<T, D>
impl<T: RealField, D: Dim> UDU<T, D>
Trait Implementations§
impl<T: RealField, D: Dim> Copy for UDU<T, D>
Auto Trait Implementations§
impl<T, D> !Freeze for UDU<T, D>
impl<T, D> !RefUnwindSafe for UDU<T, D>
impl<T, D> !Send for UDU<T, D>
impl<T, D> !Sync for UDU<T, D>
impl<T, D> !Unpin for UDU<T, D>
impl<T, D> !UnwindSafe for UDU<T, D>
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.