#[repr(C)]pub struct Complex<T> {
pub re: T,
pub im: T,
}
Expand description
A complex number in Cartesian form.
§Representation and Foreign Function Interface Compatibility
Complex<T>
is memory layout compatible with an array [T; 2]
.
Note that Complex<F>
where F is a floating point type is only memory
layout compatible with C’s complex types, not necessarily calling
convention compatible. This means that for FFI you can only pass
Complex<F>
behind a pointer, not as a value.
§Examples
Example of extern function declaration.
use num_complex::Complex;
use std::os::raw::c_int;
extern "C" {
fn zaxpy_(n: *const c_int, alpha: *const Complex<f64>,
x: *const Complex<f64>, incx: *const c_int,
y: *mut Complex<f64>, incy: *const c_int);
}
Fields§
§re: T
Real portion of the complex number
im: T
Imaginary portion of the complex number
Implementations§
source§impl<T> Complex<T>
impl<T> Complex<T>
source§impl<T> Complex<T>
impl<T> Complex<T>
sourcepub fn l1_norm(&self) -> T
pub fn l1_norm(&self) -> T
Returns the L1 norm |re| + |im|
– the Manhattan distance from the origin.
source§impl<T> Complex<T>where
T: Float,
impl<T> Complex<T>where
T: Float,
sourcepub fn cis(phase: T) -> Complex<T>
pub fn cis(phase: T) -> Complex<T>
Create a new Complex with a given phase: exp(i * phase)
.
See cis (mathematics).
sourcepub fn to_polar(self) -> (T, T)
pub fn to_polar(self) -> (T, T)
Convert to polar form (r, theta), such that
self = r * exp(i * theta)
sourcepub fn from_polar(r: T, theta: T) -> Complex<T>
pub fn from_polar(r: T, theta: T) -> Complex<T>
Convert a polar representation into a complex number.
sourcepub fn exp(self) -> Complex<T>
pub fn exp(self) -> Complex<T>
Computes e^(self)
, where e
is the base of the natural logarithm.
sourcepub fn ln(self) -> Complex<T>
pub fn ln(self) -> Complex<T>
Computes the principal value of natural logarithm of self
.
This function has one branch cut:
(-∞, 0]
, continuous from above.
The branch satisfies -π ≤ arg(ln(z)) ≤ π
.
sourcepub fn sqrt(self) -> Complex<T>
pub fn sqrt(self) -> Complex<T>
Computes the principal value of the square root of self
.
This function has one branch cut:
(-∞, 0)
, continuous from above.
The branch satisfies -π/2 ≤ arg(sqrt(z)) ≤ π/2
.
sourcepub fn cbrt(self) -> Complex<T>
pub fn cbrt(self) -> Complex<T>
Computes the principal value of the cube root of self
.
This function has one branch cut:
(-∞, 0)
, continuous from above.
The branch satisfies -π/3 ≤ arg(cbrt(z)) ≤ π/3
.
Note that this does not match the usual result for the cube root of
negative real numbers. For example, the real cube root of -8
is -2
,
but the principal complex cube root of -8
is 1 + i√3
.
sourcepub fn log(self, base: T) -> Complex<T>
pub fn log(self, base: T) -> Complex<T>
Returns the logarithm of self
with respect to an arbitrary base.
sourcepub fn expf(self, base: T) -> Complex<T>
pub fn expf(self, base: T) -> Complex<T>
Raises a floating point number to the complex power self
.
sourcepub fn asin(self) -> Complex<T>
pub fn asin(self) -> Complex<T>
Computes the principal value of the inverse sine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Re(asin(z)) ≤ π/2
.
sourcepub fn acos(self) -> Complex<T>
pub fn acos(self) -> Complex<T>
Computes the principal value of the inverse cosine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies 0 ≤ Re(acos(z)) ≤ π
.
sourcepub fn atan(self) -> Complex<T>
pub fn atan(self) -> Complex<T>
Computes the principal value of the inverse tangent of self
.
This function has two branch cuts:
(-∞i, -i]
, continuous from the left.[i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Re(atan(z)) ≤ π/2
.
sourcepub fn asinh(self) -> Complex<T>
pub fn asinh(self) -> Complex<T>
Computes the principal value of inverse hyperbolic sine of self
.
This function has two branch cuts:
(-∞i, -i)
, continuous from the left.(i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Im(asinh(z)) ≤ π/2
.
sourcepub fn acosh(self) -> Complex<T>
pub fn acosh(self) -> Complex<T>
Computes the principal value of inverse hyperbolic cosine of self
.
This function has one branch cut:
(-∞, 1)
, continuous from above.
The branch satisfies -π ≤ Im(acosh(z)) ≤ π
and 0 ≤ Re(acosh(z)) < ∞
.
sourcepub fn atanh(self) -> Complex<T>
pub fn atanh(self) -> Complex<T>
Computes the principal value of inverse hyperbolic tangent of self
.
This function has two branch cuts:
(-∞, -1]
, continuous from above.[1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Im(atanh(z)) ≤ π/2
.
sourcepub fn finv(self) -> Complex<T>
pub fn finv(self) -> Complex<T>
Returns 1/self
using floating-point operations.
This may be more accurate than the generic self.inv()
in cases
where self.norm_sqr()
would overflow to ∞ or underflow to 0.
§Examples
use num_complex::Complex64;
let c = Complex64::new(1e300, 1e300);
// The generic `inv()` will overflow.
assert!(!c.inv().is_normal());
// But we can do better for `Float` types.
let inv = c.finv();
assert!(inv.is_normal());
println!("{:e}", inv);
let expected = Complex64::new(5e-301, -5e-301);
assert!((inv - expected).norm() < 1e-315);
sourcepub fn fdiv(self, other: Complex<T>) -> Complex<T>
pub fn fdiv(self, other: Complex<T>) -> Complex<T>
Returns self/other
using floating-point operations.
This may be more accurate than the generic Div
implementation in cases
where other.norm_sqr()
would overflow to ∞ or underflow to 0.
§Examples
use num_complex::Complex64;
let a = Complex64::new(2.0, 3.0);
let b = Complex64::new(1e300, 1e300);
// Generic division will overflow.
assert!(!(a / b).is_normal());
// But we can do better for `Float` types.
let quotient = a.fdiv(b);
assert!(quotient.is_normal());
println!("{:e}", quotient);
let expected = Complex64::new(2.5e-300, 5e-301);
assert!((quotient - expected).norm() < 1e-315);
source§impl<T> Complex<T>where
T: Float + FloatConst,
impl<T> Complex<T>where
T: Float + FloatConst,
source§impl<T> Complex<T>where
T: FloatCore,
impl<T> Complex<T>where
T: FloatCore,
sourcepub fn is_infinite(self) -> bool
pub fn is_infinite(self) -> bool
Checks if the given complex number is infinite
Trait Implementations§
source§impl<'a, T> AddAssign<&'a Complex<T>> for Complex<T>
impl<'a, T> AddAssign<&'a Complex<T>> for Complex<T>
source§fn add_assign(&mut self, other: &Complex<T>)
fn add_assign(&mut self, other: &Complex<T>)
+=
operation. Read moresource§impl<'a, T> AddAssign<&'a T> for Complex<T>
impl<'a, T> AddAssign<&'a T> for Complex<T>
source§fn add_assign(&mut self, other: &T)
fn add_assign(&mut self, other: &T)
+=
operation. Read moresource§impl<T> AddAssign<T> for Complex<T>
impl<T> AddAssign<T> for Complex<T>
source§fn add_assign(&mut self, other: T)
fn add_assign(&mut self, other: T)
+=
operation. Read moresource§impl<T> AddAssign for Complex<T>
impl<T> AddAssign for Complex<T>
source§fn add_assign(&mut self, other: Complex<T>)
fn add_assign(&mut self, other: Complex<T>)
+=
operation. Read moresource§impl<T, U> AsPrimitive<U> for Complex<T>where
T: AsPrimitive<U>,
U: 'static + Copy,
impl<T, U> AsPrimitive<U> for Complex<T>where
T: AsPrimitive<U>,
U: 'static + Copy,
source§impl<N> ComplexField for Complex<N>where
N: RealField + PartialOrd,
impl<N> ComplexField for Complex<N>where
N: RealField + PartialOrd,
source§fn ln(self) -> Complex<N>
fn ln(self) -> Complex<N>
Computes the principal value of natural logarithm of self
.
This function has one branch cut:
(-∞, 0]
, continuous from above.
The branch satisfies -π ≤ arg(ln(z)) ≤ π
.
source§fn sqrt(self) -> Complex<N>
fn sqrt(self) -> Complex<N>
Computes the principal value of the square root of self
.
This function has one branch cut:
(-∞, 0)
, continuous from above.
The branch satisfies -π/2 ≤ arg(sqrt(z)) ≤ π/2
.
source§fn powf(self, exp: <Complex<N> as ComplexField>::RealField) -> Complex<N>
fn powf(self, exp: <Complex<N> as ComplexField>::RealField) -> Complex<N>
Raises self
to a floating point power.
source§fn log(self, base: N) -> Complex<N>
fn log(self, base: N) -> Complex<N>
Returns the logarithm of self
with respect to an arbitrary base.
source§fn asin(self) -> Complex<N>
fn asin(self) -> Complex<N>
Computes the principal value of the inverse sine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Re(asin(z)) ≤ π/2
.
source§fn acos(self) -> Complex<N>
fn acos(self) -> Complex<N>
Computes the principal value of the inverse cosine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies 0 ≤ Re(acos(z)) ≤ π
.
source§fn atan(self) -> Complex<N>
fn atan(self) -> Complex<N>
Computes the principal value of the inverse tangent of self
.
This function has two branch cuts:
(-∞i, -i]
, continuous from the left.[i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Re(atan(z)) ≤ π/2
.
source§fn asinh(self) -> Complex<N>
fn asinh(self) -> Complex<N>
Computes the principal value of inverse hyperbolic sine of self
.
This function has two branch cuts:
(-∞i, -i)
, continuous from the left.(i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Im(asinh(z)) ≤ π/2
.
source§fn acosh(self) -> Complex<N>
fn acosh(self) -> Complex<N>
Computes the principal value of inverse hyperbolic cosine of self
.
This function has one branch cut:
(-∞, 1)
, continuous from above.
The branch satisfies -π ≤ Im(acosh(z)) ≤ π
and 0 ≤ Re(acosh(z)) < ∞
.
source§fn atanh(self) -> Complex<N>
fn atanh(self) -> Complex<N>
Computes the principal value of inverse hyperbolic tangent of self
.
This function has two branch cuts:
(-∞, -1]
, continuous from above.[1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Im(atanh(z)) ≤ π/2
.
type RealField = N
source§fn from_real(re: <Complex<N> as ComplexField>::RealField) -> Complex<N>
fn from_real(re: <Complex<N> as ComplexField>::RealField) -> Complex<N>
source§fn real(self) -> <Complex<N> as ComplexField>::RealField
fn real(self) -> <Complex<N> as ComplexField>::RealField
source§fn imaginary(self) -> <Complex<N> as ComplexField>::RealField
fn imaginary(self) -> <Complex<N> as ComplexField>::RealField
source§fn argument(self) -> <Complex<N> as ComplexField>::RealField
fn argument(self) -> <Complex<N> as ComplexField>::RealField
source§fn modulus(self) -> <Complex<N> as ComplexField>::RealField
fn modulus(self) -> <Complex<N> as ComplexField>::RealField
source§fn modulus_squared(self) -> <Complex<N> as ComplexField>::RealField
fn modulus_squared(self) -> <Complex<N> as ComplexField>::RealField
source§fn norm1(self) -> <Complex<N> as ComplexField>::RealField
fn norm1(self) -> <Complex<N> as ComplexField>::RealField
fn recip(self) -> Complex<N>
fn conjugate(self) -> Complex<N>
source§fn scale(self, factor: <Complex<N> as ComplexField>::RealField) -> Complex<N>
fn scale(self, factor: <Complex<N> as ComplexField>::RealField) -> Complex<N>
factor
.source§fn unscale(self, factor: <Complex<N> as ComplexField>::RealField) -> Complex<N>
fn unscale(self, factor: <Complex<N> as ComplexField>::RealField) -> Complex<N>
factor
.fn floor(self) -> Complex<N>
fn ceil(self) -> Complex<N>
fn round(self) -> Complex<N>
fn trunc(self) -> Complex<N>
fn fract(self) -> Complex<N>
fn mul_add(self, a: Complex<N>, b: Complex<N>) -> Complex<N>
source§fn abs(self) -> <Complex<N> as ComplexField>::RealField
fn abs(self) -> <Complex<N> as ComplexField>::RealField
self / self.signum()
. Read morefn exp2(self) -> Complex<N>
fn exp_m1(self) -> Complex<N>
fn ln_1p(self) -> Complex<N>
fn log2(self) -> Complex<N>
fn log10(self) -> Complex<N>
fn cbrt(self) -> Complex<N>
fn powi(self, n: i32) -> Complex<N>
fn is_finite(&self) -> bool
fn try_sqrt(self) -> Option<Complex<N>>
source§fn hypot(self, b: Complex<N>) -> <Complex<N> as ComplexField>::RealField
fn hypot(self, b: Complex<N>) -> <Complex<N> as ComplexField>::RealField
fn sin_cos(self) -> (Complex<N>, Complex<N>)
fn sinh_cosh(self) -> (Complex<N>, Complex<N>)
source§fn to_polar(self) -> (Self::RealField, Self::RealField)
fn to_polar(self) -> (Self::RealField, Self::RealField)
source§fn to_exp(self) -> (Self::RealField, Self)
fn to_exp(self) -> (Self::RealField, Self)
fn sinhc(self) -> Self
fn coshc(self) -> Self
source§impl<T> ComplexFloat for Complex<T>where
T: Float + FloatConst,
impl<T> ComplexFloat for Complex<T>where
T: Float + FloatConst,
source§fn abs(self) -> <Complex<T> as ComplexFloat>::Real
fn abs(self) -> <Complex<T> as ComplexFloat>::Real
source§fn recip(self) -> Complex<T>
fn recip(self) -> Complex<T>
1/x
. See also Complex::finv.source§fn l1_norm(&self) -> <Complex<T> as ComplexFloat>::Real
fn l1_norm(&self) -> <Complex<T> as ComplexFloat>::Real
|re| + |im|
– the Manhattan distance from the origin.source§fn is_infinite(self) -> bool
fn is_infinite(self) -> bool
true
if this value is positive infinity or negative infinity and
false otherwise.source§fn powc(
self,
exp: Complex<<Complex<T> as ComplexFloat>::Real>
) -> Complex<<Complex<T> as ComplexFloat>::Real>
fn powc( self, exp: Complex<<Complex<T> as ComplexFloat>::Real> ) -> Complex<<Complex<T> as ComplexFloat>::Real>
self
to a complex power.source§fn log(self, base: <Complex<T> as ComplexFloat>::Real) -> Complex<T>
fn log(self, base: <Complex<T> as ComplexFloat>::Real) -> Complex<T>
source§fn powf(self, f: <Complex<T> as ComplexFloat>::Real) -> Complex<T>
fn powf(self, f: <Complex<T> as ComplexFloat>::Real) -> Complex<T>
self
to a real power.source§fn asin(self) -> Complex<T>
fn asin(self) -> Complex<T>
source§fn acos(self) -> Complex<T>
fn acos(self) -> Complex<T>
source§impl<'a, T> DivAssign<&'a Complex<T>> for Complex<T>
impl<'a, T> DivAssign<&'a Complex<T>> for Complex<T>
source§fn div_assign(&mut self, other: &Complex<T>)
fn div_assign(&mut self, other: &Complex<T>)
/=
operation. Read moresource§impl<'a, T> DivAssign<&'a T> for Complex<T>
impl<'a, T> DivAssign<&'a T> for Complex<T>
source§fn div_assign(&mut self, other: &T)
fn div_assign(&mut self, other: &T)
/=
operation. Read moresource§impl<T> DivAssign<T> for Complex<T>
impl<T> DivAssign<T> for Complex<T>
source§fn div_assign(&mut self, other: T)
fn div_assign(&mut self, other: T)
/=
operation. Read moresource§impl<T> DivAssign for Complex<T>
impl<T> DivAssign for Complex<T>
source§fn div_assign(&mut self, other: Complex<T>)
fn div_assign(&mut self, other: Complex<T>)
/=
operation. Read moresource§impl<T> FromPrimitive for Complex<T>where
T: FromPrimitive + Num,
impl<T> FromPrimitive for Complex<T>where
T: FromPrimitive + Num,
source§fn from_usize(n: usize) -> Option<Complex<T>>
fn from_usize(n: usize) -> Option<Complex<T>>
usize
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned.source§fn from_isize(n: isize) -> Option<Complex<T>>
fn from_isize(n: isize) -> Option<Complex<T>>
isize
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned.source§fn from_u8(n: u8) -> Option<Complex<T>>
fn from_u8(n: u8) -> Option<Complex<T>>
u8
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned.source§fn from_u16(n: u16) -> Option<Complex<T>>
fn from_u16(n: u16) -> Option<Complex<T>>
u16
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned.source§fn from_u32(n: u32) -> Option<Complex<T>>
fn from_u32(n: u32) -> Option<Complex<T>>
u32
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned.source§fn from_u64(n: u64) -> Option<Complex<T>>
fn from_u64(n: u64) -> Option<Complex<T>>
u64
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned.source§fn from_i8(n: i8) -> Option<Complex<T>>
fn from_i8(n: i8) -> Option<Complex<T>>
i8
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned.source§fn from_i16(n: i16) -> Option<Complex<T>>
fn from_i16(n: i16) -> Option<Complex<T>>
i16
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned.source§fn from_i32(n: i32) -> Option<Complex<T>>
fn from_i32(n: i32) -> Option<Complex<T>>
i32
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned.source§fn from_i64(n: i64) -> Option<Complex<T>>
fn from_i64(n: i64) -> Option<Complex<T>>
i64
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned.source§fn from_u128(n: u128) -> Option<Complex<T>>
fn from_u128(n: u128) -> Option<Complex<T>>
u128
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read moresource§fn from_i128(n: i128) -> Option<Complex<T>>
fn from_i128(n: i128) -> Option<Complex<T>>
i128
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read moresource§impl<'a, 'b, T> MulAddAssign<&'a Complex<T>, &'b Complex<T>> for Complex<T>
impl<'a, 'b, T> MulAddAssign<&'a Complex<T>, &'b Complex<T>> for Complex<T>
source§fn mul_add_assign(&mut self, other: &Complex<T>, add: &Complex<T>)
fn mul_add_assign(&mut self, other: &Complex<T>, add: &Complex<T>)
*self = (*self * a) + b
source§impl<T> MulAddAssign for Complex<T>
impl<T> MulAddAssign for Complex<T>
source§fn mul_add_assign(&mut self, other: Complex<T>, add: Complex<T>)
fn mul_add_assign(&mut self, other: Complex<T>, add: Complex<T>)
*self = (*self * a) + b
source§impl<'a, T> MulAssign<&'a Complex<T>> for Complex<T>
impl<'a, T> MulAssign<&'a Complex<T>> for Complex<T>
source§fn mul_assign(&mut self, other: &Complex<T>)
fn mul_assign(&mut self, other: &Complex<T>)
*=
operation. Read moresource§impl<'a, T> MulAssign<&'a T> for Complex<T>
impl<'a, T> MulAssign<&'a T> for Complex<T>
source§fn mul_assign(&mut self, other: &T)
fn mul_assign(&mut self, other: &T)
*=
operation. Read moresource§impl<T> MulAssign<T> for Complex<T>
impl<T> MulAssign<T> for Complex<T>
source§fn mul_assign(&mut self, other: T)
fn mul_assign(&mut self, other: T)
*=
operation. Read moresource§impl<T> MulAssign for Complex<T>
impl<T> MulAssign for Complex<T>
source§fn mul_assign(&mut self, other: Complex<T>)
fn mul_assign(&mut self, other: Complex<T>)
*=
operation. Read moresource§impl<T: SimdRealField> Normed for Complex<T>
impl<T: SimdRealField> Normed for Complex<T>
§type Norm = <T as SimdComplexField>::SimdRealField
type Norm = <T as SimdComplexField>::SimdRealField
source§fn norm(&self) -> T::SimdRealField
fn norm(&self) -> T::SimdRealField
source§fn norm_squared(&self) -> T::SimdRealField
fn norm_squared(&self) -> T::SimdRealField
source§fn unscale_mut(&mut self, n: Self::Norm)
fn unscale_mut(&mut self, n: Self::Norm)
self
by n.source§impl<T> Num for Complex<T>
impl<T> Num for Complex<T>
source§fn from_str_radix(
s: &str,
radix: u32
) -> Result<Complex<T>, <Complex<T> as Num>::FromStrRadixErr>
fn from_str_radix( s: &str, radix: u32 ) -> Result<Complex<T>, <Complex<T> as Num>::FromStrRadixErr>
Parses a +/- bi
; ai +/- b
; a
; or bi
where a
and b
are of type T
radix
must be <= 18; larger radix would include i and j as digits,
which cannot be supported.
The conversion returns an error if 18 <= radix <= 36; it panics if radix > 36.
The elements of T
are parsed using Num::from_str_radix
too, and errors
(or panics) from that are reflected here as well.
type FromStrRadixErr = ParseComplexError<<T as Num>::FromStrRadixErr>
source§impl<T> PartialEq for Complex<T>where
T: PartialEq,
impl<T> PartialEq for Complex<T>where
T: PartialEq,
source§impl<'a, T> RemAssign<&'a Complex<T>> for Complex<T>
impl<'a, T> RemAssign<&'a Complex<T>> for Complex<T>
source§fn rem_assign(&mut self, other: &Complex<T>)
fn rem_assign(&mut self, other: &Complex<T>)
%=
operation. Read moresource§impl<'a, T> RemAssign<&'a T> for Complex<T>
impl<'a, T> RemAssign<&'a T> for Complex<T>
source§fn rem_assign(&mut self, other: &T)
fn rem_assign(&mut self, other: &T)
%=
operation. Read moresource§impl<T> RemAssign<T> for Complex<T>
impl<T> RemAssign<T> for Complex<T>
source§fn rem_assign(&mut self, other: T)
fn rem_assign(&mut self, other: T)
%=
operation. Read moresource§impl<T> RemAssign for Complex<T>
impl<T> RemAssign for Complex<T>
source§fn rem_assign(&mut self, modulus: Complex<T>)
fn rem_assign(&mut self, modulus: Complex<T>)
%=
operation. Read moresource§impl SimdComplexField for Complex<AutoSimd<[f32; 16]>>
impl SimdComplexField for Complex<AutoSimd<[f32; 16]>>
source§fn simd_exp(self) -> Complex<AutoSimd<[f32; 16]>>
fn simd_exp(self) -> Complex<AutoSimd<[f32; 16]>>
Computes e^(self)
, where e
is the base of the natural logarithm.
source§fn simd_ln(self) -> Complex<AutoSimd<[f32; 16]>>
fn simd_ln(self) -> Complex<AutoSimd<[f32; 16]>>
Computes the principal value of natural logarithm of self
.
This function has one branch cut:
(-∞, 0]
, continuous from above.
The branch satisfies -π ≤ arg(ln(z)) ≤ π
.
source§fn simd_sqrt(self) -> Complex<AutoSimd<[f32; 16]>>
fn simd_sqrt(self) -> Complex<AutoSimd<[f32; 16]>>
Computes the principal value of the square root of self
.
This function has one branch cut:
(-∞, 0)
, continuous from above.
The branch satisfies -π/2 ≤ arg(sqrt(z)) ≤ π/2
.
source§fn simd_powf(
self,
exp: <Complex<AutoSimd<[f32; 16]>> as SimdComplexField>::SimdRealField
) -> Complex<AutoSimd<[f32; 16]>>
fn simd_powf( self, exp: <Complex<AutoSimd<[f32; 16]>> as SimdComplexField>::SimdRealField ) -> Complex<AutoSimd<[f32; 16]>>
Raises self
to a floating point power.
source§fn simd_log(self, base: AutoSimd<[f32; 16]>) -> Complex<AutoSimd<[f32; 16]>>
fn simd_log(self, base: AutoSimd<[f32; 16]>) -> Complex<AutoSimd<[f32; 16]>>
Returns the logarithm of self
with respect to an arbitrary base.
source§fn simd_powc(
self,
exp: Complex<AutoSimd<[f32; 16]>>
) -> Complex<AutoSimd<[f32; 16]>>
fn simd_powc( self, exp: Complex<AutoSimd<[f32; 16]>> ) -> Complex<AutoSimd<[f32; 16]>>
Raises self
to a complex power.
source§fn simd_asin(self) -> Complex<AutoSimd<[f32; 16]>>
fn simd_asin(self) -> Complex<AutoSimd<[f32; 16]>>
Computes the principal value of the inverse sine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Re(asin(z)) ≤ π/2
.
source§fn simd_acos(self) -> Complex<AutoSimd<[f32; 16]>>
fn simd_acos(self) -> Complex<AutoSimd<[f32; 16]>>
Computes the principal value of the inverse cosine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies 0 ≤ Re(acos(z)) ≤ π
.
source§fn simd_atan(self) -> Complex<AutoSimd<[f32; 16]>>
fn simd_atan(self) -> Complex<AutoSimd<[f32; 16]>>
Computes the principal value of the inverse tangent of self
.
This function has two branch cuts:
(-∞i, -i]
, continuous from the left.[i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Re(atan(z)) ≤ π/2
.
source§fn simd_asinh(self) -> Complex<AutoSimd<[f32; 16]>>
fn simd_asinh(self) -> Complex<AutoSimd<[f32; 16]>>
Computes the principal value of inverse hyperbolic sine of self
.
This function has two branch cuts:
(-∞i, -i)
, continuous from the left.(i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Im(asinh(z)) ≤ π/2
.
source§fn simd_acosh(self) -> Complex<AutoSimd<[f32; 16]>>
fn simd_acosh(self) -> Complex<AutoSimd<[f32; 16]>>
Computes the principal value of inverse hyperbolic cosine of self
.
This function has one branch cut:
(-∞, 1)
, continuous from above.
The branch satisfies -π ≤ Im(acosh(z)) ≤ π
and 0 ≤ Re(acosh(z)) < ∞
.
source§fn simd_atanh(self) -> Complex<AutoSimd<[f32; 16]>>
fn simd_atanh(self) -> Complex<AutoSimd<[f32; 16]>>
Computes the principal value of inverse hyperbolic tangent of self
.
This function has two branch cuts:
(-∞, -1]
, continuous from above.[1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Im(atanh(z)) ≤ π/2
.
§type SimdRealField = AutoSimd<[f32; 16]>
type SimdRealField = AutoSimd<[f32; 16]>
source§fn simd_horizontal_sum(
self
) -> <Complex<AutoSimd<[f32; 16]>> as SimdValue>::Element
fn simd_horizontal_sum( self ) -> <Complex<AutoSimd<[f32; 16]>> as SimdValue>::Element
self
.source§fn simd_horizontal_product(
self
) -> <Complex<AutoSimd<[f32; 16]>> as SimdValue>::Element
fn simd_horizontal_product( self ) -> <Complex<AutoSimd<[f32; 16]>> as SimdValue>::Element
self
.source§fn from_simd_real(
re: <Complex<AutoSimd<[f32; 16]>> as SimdComplexField>::SimdRealField
) -> Complex<AutoSimd<[f32; 16]>>
fn from_simd_real( re: <Complex<AutoSimd<[f32; 16]>> as SimdComplexField>::SimdRealField ) -> Complex<AutoSimd<[f32; 16]>>
source§fn simd_real(
self
) -> <Complex<AutoSimd<[f32; 16]>> as SimdComplexField>::SimdRealField
fn simd_real( self ) -> <Complex<AutoSimd<[f32; 16]>> as SimdComplexField>::SimdRealField
source§fn simd_imaginary(
self
) -> <Complex<AutoSimd<[f32; 16]>> as SimdComplexField>::SimdRealField
fn simd_imaginary( self ) -> <Complex<AutoSimd<[f32; 16]>> as SimdComplexField>::SimdRealField
source§fn simd_argument(
self
) -> <Complex<AutoSimd<[f32; 16]>> as SimdComplexField>::SimdRealField
fn simd_argument( self ) -> <Complex<AutoSimd<[f32; 16]>> as SimdComplexField>::SimdRealField
source§fn simd_modulus(
self
) -> <Complex<AutoSimd<[f32; 16]>> as SimdComplexField>::SimdRealField
fn simd_modulus( self ) -> <Complex<AutoSimd<[f32; 16]>> as SimdComplexField>::SimdRealField
source§fn simd_modulus_squared(
self
) -> <Complex<AutoSimd<[f32; 16]>> as SimdComplexField>::SimdRealField
fn simd_modulus_squared( self ) -> <Complex<AutoSimd<[f32; 16]>> as SimdComplexField>::SimdRealField
source§fn simd_norm1(
self
) -> <Complex<AutoSimd<[f32; 16]>> as SimdComplexField>::SimdRealField
fn simd_norm1( self ) -> <Complex<AutoSimd<[f32; 16]>> as SimdComplexField>::SimdRealField
fn simd_recip(self) -> Complex<AutoSimd<[f32; 16]>>
fn simd_conjugate(self) -> Complex<AutoSimd<[f32; 16]>>
source§fn simd_scale(
self,
factor: <Complex<AutoSimd<[f32; 16]>> as SimdComplexField>::SimdRealField
) -> Complex<AutoSimd<[f32; 16]>>
fn simd_scale( self, factor: <Complex<AutoSimd<[f32; 16]>> as SimdComplexField>::SimdRealField ) -> Complex<AutoSimd<[f32; 16]>>
factor
.source§fn simd_unscale(
self,
factor: <Complex<AutoSimd<[f32; 16]>> as SimdComplexField>::SimdRealField
) -> Complex<AutoSimd<[f32; 16]>>
fn simd_unscale( self, factor: <Complex<AutoSimd<[f32; 16]>> as SimdComplexField>::SimdRealField ) -> Complex<AutoSimd<[f32; 16]>>
factor
.fn simd_floor(self) -> Complex<AutoSimd<[f32; 16]>>
fn simd_ceil(self) -> Complex<AutoSimd<[f32; 16]>>
fn simd_round(self) -> Complex<AutoSimd<[f32; 16]>>
fn simd_trunc(self) -> Complex<AutoSimd<[f32; 16]>>
fn simd_fract(self) -> Complex<AutoSimd<[f32; 16]>>
fn simd_mul_add( self, a: Complex<AutoSimd<[f32; 16]>>, b: Complex<AutoSimd<[f32; 16]>> ) -> Complex<AutoSimd<[f32; 16]>>
source§fn simd_abs(
self
) -> <Complex<AutoSimd<[f32; 16]>> as SimdComplexField>::SimdRealField
fn simd_abs( self ) -> <Complex<AutoSimd<[f32; 16]>> as SimdComplexField>::SimdRealField
self / self.signum()
. Read morefn simd_exp2(self) -> Complex<AutoSimd<[f32; 16]>>
fn simd_exp_m1(self) -> Complex<AutoSimd<[f32; 16]>>
fn simd_ln_1p(self) -> Complex<AutoSimd<[f32; 16]>>
fn simd_log2(self) -> Complex<AutoSimd<[f32; 16]>>
fn simd_log10(self) -> Complex<AutoSimd<[f32; 16]>>
fn simd_cbrt(self) -> Complex<AutoSimd<[f32; 16]>>
fn simd_powi(self, n: i32) -> Complex<AutoSimd<[f32; 16]>>
source§fn simd_hypot(
self,
b: Complex<AutoSimd<[f32; 16]>>
) -> <Complex<AutoSimd<[f32; 16]>> as SimdComplexField>::SimdRealField
fn simd_hypot( self, b: Complex<AutoSimd<[f32; 16]>> ) -> <Complex<AutoSimd<[f32; 16]>> as SimdComplexField>::SimdRealField
fn simd_sin_cos( self ) -> (Complex<AutoSimd<[f32; 16]>>, Complex<AutoSimd<[f32; 16]>>)
fn simd_sinh_cosh( self ) -> (Complex<AutoSimd<[f32; 16]>>, Complex<AutoSimd<[f32; 16]>>)
source§fn simd_to_polar(self) -> (Self::SimdRealField, Self::SimdRealField)
fn simd_to_polar(self) -> (Self::SimdRealField, Self::SimdRealField)
source§fn simd_to_exp(self) -> (Self::SimdRealField, Self)
fn simd_to_exp(self) -> (Self::SimdRealField, Self)
source§fn simd_signum(self) -> Self
fn simd_signum(self) -> Self
self / self.modulus()
fn simd_sinhc(self) -> Self
fn simd_coshc(self) -> Self
source§impl SimdComplexField for Complex<AutoSimd<[f32; 2]>>
impl SimdComplexField for Complex<AutoSimd<[f32; 2]>>
source§fn simd_exp(self) -> Complex<AutoSimd<[f32; 2]>>
fn simd_exp(self) -> Complex<AutoSimd<[f32; 2]>>
Computes e^(self)
, where e
is the base of the natural logarithm.
source§fn simd_ln(self) -> Complex<AutoSimd<[f32; 2]>>
fn simd_ln(self) -> Complex<AutoSimd<[f32; 2]>>
Computes the principal value of natural logarithm of self
.
This function has one branch cut:
(-∞, 0]
, continuous from above.
The branch satisfies -π ≤ arg(ln(z)) ≤ π
.
source§fn simd_sqrt(self) -> Complex<AutoSimd<[f32; 2]>>
fn simd_sqrt(self) -> Complex<AutoSimd<[f32; 2]>>
Computes the principal value of the square root of self
.
This function has one branch cut:
(-∞, 0)
, continuous from above.
The branch satisfies -π/2 ≤ arg(sqrt(z)) ≤ π/2
.
source§fn simd_powf(
self,
exp: <Complex<AutoSimd<[f32; 2]>> as SimdComplexField>::SimdRealField
) -> Complex<AutoSimd<[f32; 2]>>
fn simd_powf( self, exp: <Complex<AutoSimd<[f32; 2]>> as SimdComplexField>::SimdRealField ) -> Complex<AutoSimd<[f32; 2]>>
Raises self
to a floating point power.
source§fn simd_log(self, base: AutoSimd<[f32; 2]>) -> Complex<AutoSimd<[f32; 2]>>
fn simd_log(self, base: AutoSimd<[f32; 2]>) -> Complex<AutoSimd<[f32; 2]>>
Returns the logarithm of self
with respect to an arbitrary base.
source§fn simd_powc(
self,
exp: Complex<AutoSimd<[f32; 2]>>
) -> Complex<AutoSimd<[f32; 2]>>
fn simd_powc( self, exp: Complex<AutoSimd<[f32; 2]>> ) -> Complex<AutoSimd<[f32; 2]>>
Raises self
to a complex power.
source§fn simd_asin(self) -> Complex<AutoSimd<[f32; 2]>>
fn simd_asin(self) -> Complex<AutoSimd<[f32; 2]>>
Computes the principal value of the inverse sine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Re(asin(z)) ≤ π/2
.
source§fn simd_acos(self) -> Complex<AutoSimd<[f32; 2]>>
fn simd_acos(self) -> Complex<AutoSimd<[f32; 2]>>
Computes the principal value of the inverse cosine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies 0 ≤ Re(acos(z)) ≤ π
.
source§fn simd_atan(self) -> Complex<AutoSimd<[f32; 2]>>
fn simd_atan(self) -> Complex<AutoSimd<[f32; 2]>>
Computes the principal value of the inverse tangent of self
.
This function has two branch cuts:
(-∞i, -i]
, continuous from the left.[i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Re(atan(z)) ≤ π/2
.
source§fn simd_asinh(self) -> Complex<AutoSimd<[f32; 2]>>
fn simd_asinh(self) -> Complex<AutoSimd<[f32; 2]>>
Computes the principal value of inverse hyperbolic sine of self
.
This function has two branch cuts:
(-∞i, -i)
, continuous from the left.(i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Im(asinh(z)) ≤ π/2
.
source§fn simd_acosh(self) -> Complex<AutoSimd<[f32; 2]>>
fn simd_acosh(self) -> Complex<AutoSimd<[f32; 2]>>
Computes the principal value of inverse hyperbolic cosine of self
.
This function has one branch cut:
(-∞, 1)
, continuous from above.
The branch satisfies -π ≤ Im(acosh(z)) ≤ π
and 0 ≤ Re(acosh(z)) < ∞
.
source§fn simd_atanh(self) -> Complex<AutoSimd<[f32; 2]>>
fn simd_atanh(self) -> Complex<AutoSimd<[f32; 2]>>
Computes the principal value of inverse hyperbolic tangent of self
.
This function has two branch cuts:
(-∞, -1]
, continuous from above.[1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Im(atanh(z)) ≤ π/2
.
§type SimdRealField = AutoSimd<[f32; 2]>
type SimdRealField = AutoSimd<[f32; 2]>
source§fn simd_horizontal_sum(
self
) -> <Complex<AutoSimd<[f32; 2]>> as SimdValue>::Element
fn simd_horizontal_sum( self ) -> <Complex<AutoSimd<[f32; 2]>> as SimdValue>::Element
self
.source§fn simd_horizontal_product(
self
) -> <Complex<AutoSimd<[f32; 2]>> as SimdValue>::Element
fn simd_horizontal_product( self ) -> <Complex<AutoSimd<[f32; 2]>> as SimdValue>::Element
self
.source§fn from_simd_real(
re: <Complex<AutoSimd<[f32; 2]>> as SimdComplexField>::SimdRealField
) -> Complex<AutoSimd<[f32; 2]>>
fn from_simd_real( re: <Complex<AutoSimd<[f32; 2]>> as SimdComplexField>::SimdRealField ) -> Complex<AutoSimd<[f32; 2]>>
source§fn simd_real(
self
) -> <Complex<AutoSimd<[f32; 2]>> as SimdComplexField>::SimdRealField
fn simd_real( self ) -> <Complex<AutoSimd<[f32; 2]>> as SimdComplexField>::SimdRealField
source§fn simd_imaginary(
self
) -> <Complex<AutoSimd<[f32; 2]>> as SimdComplexField>::SimdRealField
fn simd_imaginary( self ) -> <Complex<AutoSimd<[f32; 2]>> as SimdComplexField>::SimdRealField
source§fn simd_argument(
self
) -> <Complex<AutoSimd<[f32; 2]>> as SimdComplexField>::SimdRealField
fn simd_argument( self ) -> <Complex<AutoSimd<[f32; 2]>> as SimdComplexField>::SimdRealField
source§fn simd_modulus(
self
) -> <Complex<AutoSimd<[f32; 2]>> as SimdComplexField>::SimdRealField
fn simd_modulus( self ) -> <Complex<AutoSimd<[f32; 2]>> as SimdComplexField>::SimdRealField
source§fn simd_modulus_squared(
self
) -> <Complex<AutoSimd<[f32; 2]>> as SimdComplexField>::SimdRealField
fn simd_modulus_squared( self ) -> <Complex<AutoSimd<[f32; 2]>> as SimdComplexField>::SimdRealField
source§fn simd_norm1(
self
) -> <Complex<AutoSimd<[f32; 2]>> as SimdComplexField>::SimdRealField
fn simd_norm1( self ) -> <Complex<AutoSimd<[f32; 2]>> as SimdComplexField>::SimdRealField
fn simd_recip(self) -> Complex<AutoSimd<[f32; 2]>>
fn simd_conjugate(self) -> Complex<AutoSimd<[f32; 2]>>
source§fn simd_scale(
self,
factor: <Complex<AutoSimd<[f32; 2]>> as SimdComplexField>::SimdRealField
) -> Complex<AutoSimd<[f32; 2]>>
fn simd_scale( self, factor: <Complex<AutoSimd<[f32; 2]>> as SimdComplexField>::SimdRealField ) -> Complex<AutoSimd<[f32; 2]>>
factor
.source§fn simd_unscale(
self,
factor: <Complex<AutoSimd<[f32; 2]>> as SimdComplexField>::SimdRealField
) -> Complex<AutoSimd<[f32; 2]>>
fn simd_unscale( self, factor: <Complex<AutoSimd<[f32; 2]>> as SimdComplexField>::SimdRealField ) -> Complex<AutoSimd<[f32; 2]>>
factor
.fn simd_floor(self) -> Complex<AutoSimd<[f32; 2]>>
fn simd_ceil(self) -> Complex<AutoSimd<[f32; 2]>>
fn simd_round(self) -> Complex<AutoSimd<[f32; 2]>>
fn simd_trunc(self) -> Complex<AutoSimd<[f32; 2]>>
fn simd_fract(self) -> Complex<AutoSimd<[f32; 2]>>
fn simd_mul_add( self, a: Complex<AutoSimd<[f32; 2]>>, b: Complex<AutoSimd<[f32; 2]>> ) -> Complex<AutoSimd<[f32; 2]>>
source§fn simd_abs(
self
) -> <Complex<AutoSimd<[f32; 2]>> as SimdComplexField>::SimdRealField
fn simd_abs( self ) -> <Complex<AutoSimd<[f32; 2]>> as SimdComplexField>::SimdRealField
self / self.signum()
. Read morefn simd_exp2(self) -> Complex<AutoSimd<[f32; 2]>>
fn simd_exp_m1(self) -> Complex<AutoSimd<[f32; 2]>>
fn simd_ln_1p(self) -> Complex<AutoSimd<[f32; 2]>>
fn simd_log2(self) -> Complex<AutoSimd<[f32; 2]>>
fn simd_log10(self) -> Complex<AutoSimd<[f32; 2]>>
fn simd_cbrt(self) -> Complex<AutoSimd<[f32; 2]>>
fn simd_powi(self, n: i32) -> Complex<AutoSimd<[f32; 2]>>
source§fn simd_hypot(
self,
b: Complex<AutoSimd<[f32; 2]>>
) -> <Complex<AutoSimd<[f32; 2]>> as SimdComplexField>::SimdRealField
fn simd_hypot( self, b: Complex<AutoSimd<[f32; 2]>> ) -> <Complex<AutoSimd<[f32; 2]>> as SimdComplexField>::SimdRealField
fn simd_sin_cos( self ) -> (Complex<AutoSimd<[f32; 2]>>, Complex<AutoSimd<[f32; 2]>>)
fn simd_sinh_cosh( self ) -> (Complex<AutoSimd<[f32; 2]>>, Complex<AutoSimd<[f32; 2]>>)
source§fn simd_to_polar(self) -> (Self::SimdRealField, Self::SimdRealField)
fn simd_to_polar(self) -> (Self::SimdRealField, Self::SimdRealField)
source§fn simd_to_exp(self) -> (Self::SimdRealField, Self)
fn simd_to_exp(self) -> (Self::SimdRealField, Self)
source§fn simd_signum(self) -> Self
fn simd_signum(self) -> Self
self / self.modulus()
fn simd_sinhc(self) -> Self
fn simd_coshc(self) -> Self
source§impl SimdComplexField for Complex<AutoSimd<[f32; 4]>>
impl SimdComplexField for Complex<AutoSimd<[f32; 4]>>
source§fn simd_exp(self) -> Complex<AutoSimd<[f32; 4]>>
fn simd_exp(self) -> Complex<AutoSimd<[f32; 4]>>
Computes e^(self)
, where e
is the base of the natural logarithm.
source§fn simd_ln(self) -> Complex<AutoSimd<[f32; 4]>>
fn simd_ln(self) -> Complex<AutoSimd<[f32; 4]>>
Computes the principal value of natural logarithm of self
.
This function has one branch cut:
(-∞, 0]
, continuous from above.
The branch satisfies -π ≤ arg(ln(z)) ≤ π
.
source§fn simd_sqrt(self) -> Complex<AutoSimd<[f32; 4]>>
fn simd_sqrt(self) -> Complex<AutoSimd<[f32; 4]>>
Computes the principal value of the square root of self
.
This function has one branch cut:
(-∞, 0)
, continuous from above.
The branch satisfies -π/2 ≤ arg(sqrt(z)) ≤ π/2
.
source§fn simd_powf(
self,
exp: <Complex<AutoSimd<[f32; 4]>> as SimdComplexField>::SimdRealField
) -> Complex<AutoSimd<[f32; 4]>>
fn simd_powf( self, exp: <Complex<AutoSimd<[f32; 4]>> as SimdComplexField>::SimdRealField ) -> Complex<AutoSimd<[f32; 4]>>
Raises self
to a floating point power.
source§fn simd_log(self, base: AutoSimd<[f32; 4]>) -> Complex<AutoSimd<[f32; 4]>>
fn simd_log(self, base: AutoSimd<[f32; 4]>) -> Complex<AutoSimd<[f32; 4]>>
Returns the logarithm of self
with respect to an arbitrary base.
source§fn simd_powc(
self,
exp: Complex<AutoSimd<[f32; 4]>>
) -> Complex<AutoSimd<[f32; 4]>>
fn simd_powc( self, exp: Complex<AutoSimd<[f32; 4]>> ) -> Complex<AutoSimd<[f32; 4]>>
Raises self
to a complex power.
source§fn simd_asin(self) -> Complex<AutoSimd<[f32; 4]>>
fn simd_asin(self) -> Complex<AutoSimd<[f32; 4]>>
Computes the principal value of the inverse sine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Re(asin(z)) ≤ π/2
.
source§fn simd_acos(self) -> Complex<AutoSimd<[f32; 4]>>
fn simd_acos(self) -> Complex<AutoSimd<[f32; 4]>>
Computes the principal value of the inverse cosine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies 0 ≤ Re(acos(z)) ≤ π
.
source§fn simd_atan(self) -> Complex<AutoSimd<[f32; 4]>>
fn simd_atan(self) -> Complex<AutoSimd<[f32; 4]>>
Computes the principal value of the inverse tangent of self
.
This function has two branch cuts:
(-∞i, -i]
, continuous from the left.[i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Re(atan(z)) ≤ π/2
.
source§fn simd_asinh(self) -> Complex<AutoSimd<[f32; 4]>>
fn simd_asinh(self) -> Complex<AutoSimd<[f32; 4]>>
Computes the principal value of inverse hyperbolic sine of self
.
This function has two branch cuts:
(-∞i, -i)
, continuous from the left.(i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Im(asinh(z)) ≤ π/2
.
source§fn simd_acosh(self) -> Complex<AutoSimd<[f32; 4]>>
fn simd_acosh(self) -> Complex<AutoSimd<[f32; 4]>>
Computes the principal value of inverse hyperbolic cosine of self
.
This function has one branch cut:
(-∞, 1)
, continuous from above.
The branch satisfies -π ≤ Im(acosh(z)) ≤ π
and 0 ≤ Re(acosh(z)) < ∞
.
source§fn simd_atanh(self) -> Complex<AutoSimd<[f32; 4]>>
fn simd_atanh(self) -> Complex<AutoSimd<[f32; 4]>>
Computes the principal value of inverse hyperbolic tangent of self
.
This function has two branch cuts:
(-∞, -1]
, continuous from above.[1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Im(atanh(z)) ≤ π/2
.
§type SimdRealField = AutoSimd<[f32; 4]>
type SimdRealField = AutoSimd<[f32; 4]>
source§fn simd_horizontal_sum(
self
) -> <Complex<AutoSimd<[f32; 4]>> as SimdValue>::Element
fn simd_horizontal_sum( self ) -> <Complex<AutoSimd<[f32; 4]>> as SimdValue>::Element
self
.source§fn simd_horizontal_product(
self
) -> <Complex<AutoSimd<[f32; 4]>> as SimdValue>::Element
fn simd_horizontal_product( self ) -> <Complex<AutoSimd<[f32; 4]>> as SimdValue>::Element
self
.source§fn from_simd_real(
re: <Complex<AutoSimd<[f32; 4]>> as SimdComplexField>::SimdRealField
) -> Complex<AutoSimd<[f32; 4]>>
fn from_simd_real( re: <Complex<AutoSimd<[f32; 4]>> as SimdComplexField>::SimdRealField ) -> Complex<AutoSimd<[f32; 4]>>
source§fn simd_real(
self
) -> <Complex<AutoSimd<[f32; 4]>> as SimdComplexField>::SimdRealField
fn simd_real( self ) -> <Complex<AutoSimd<[f32; 4]>> as SimdComplexField>::SimdRealField
source§fn simd_imaginary(
self
) -> <Complex<AutoSimd<[f32; 4]>> as SimdComplexField>::SimdRealField
fn simd_imaginary( self ) -> <Complex<AutoSimd<[f32; 4]>> as SimdComplexField>::SimdRealField
source§fn simd_argument(
self
) -> <Complex<AutoSimd<[f32; 4]>> as SimdComplexField>::SimdRealField
fn simd_argument( self ) -> <Complex<AutoSimd<[f32; 4]>> as SimdComplexField>::SimdRealField
source§fn simd_modulus(
self
) -> <Complex<AutoSimd<[f32; 4]>> as SimdComplexField>::SimdRealField
fn simd_modulus( self ) -> <Complex<AutoSimd<[f32; 4]>> as SimdComplexField>::SimdRealField
source§fn simd_modulus_squared(
self
) -> <Complex<AutoSimd<[f32; 4]>> as SimdComplexField>::SimdRealField
fn simd_modulus_squared( self ) -> <Complex<AutoSimd<[f32; 4]>> as SimdComplexField>::SimdRealField
source§fn simd_norm1(
self
) -> <Complex<AutoSimd<[f32; 4]>> as SimdComplexField>::SimdRealField
fn simd_norm1( self ) -> <Complex<AutoSimd<[f32; 4]>> as SimdComplexField>::SimdRealField
fn simd_recip(self) -> Complex<AutoSimd<[f32; 4]>>
fn simd_conjugate(self) -> Complex<AutoSimd<[f32; 4]>>
source§fn simd_scale(
self,
factor: <Complex<AutoSimd<[f32; 4]>> as SimdComplexField>::SimdRealField
) -> Complex<AutoSimd<[f32; 4]>>
fn simd_scale( self, factor: <Complex<AutoSimd<[f32; 4]>> as SimdComplexField>::SimdRealField ) -> Complex<AutoSimd<[f32; 4]>>
factor
.source§fn simd_unscale(
self,
factor: <Complex<AutoSimd<[f32; 4]>> as SimdComplexField>::SimdRealField
) -> Complex<AutoSimd<[f32; 4]>>
fn simd_unscale( self, factor: <Complex<AutoSimd<[f32; 4]>> as SimdComplexField>::SimdRealField ) -> Complex<AutoSimd<[f32; 4]>>
factor
.fn simd_floor(self) -> Complex<AutoSimd<[f32; 4]>>
fn simd_ceil(self) -> Complex<AutoSimd<[f32; 4]>>
fn simd_round(self) -> Complex<AutoSimd<[f32; 4]>>
fn simd_trunc(self) -> Complex<AutoSimd<[f32; 4]>>
fn simd_fract(self) -> Complex<AutoSimd<[f32; 4]>>
fn simd_mul_add( self, a: Complex<AutoSimd<[f32; 4]>>, b: Complex<AutoSimd<[f32; 4]>> ) -> Complex<AutoSimd<[f32; 4]>>
source§fn simd_abs(
self
) -> <Complex<AutoSimd<[f32; 4]>> as SimdComplexField>::SimdRealField
fn simd_abs( self ) -> <Complex<AutoSimd<[f32; 4]>> as SimdComplexField>::SimdRealField
self / self.signum()
. Read morefn simd_exp2(self) -> Complex<AutoSimd<[f32; 4]>>
fn simd_exp_m1(self) -> Complex<AutoSimd<[f32; 4]>>
fn simd_ln_1p(self) -> Complex<AutoSimd<[f32; 4]>>
fn simd_log2(self) -> Complex<AutoSimd<[f32; 4]>>
fn simd_log10(self) -> Complex<AutoSimd<[f32; 4]>>
fn simd_cbrt(self) -> Complex<AutoSimd<[f32; 4]>>
fn simd_powi(self, n: i32) -> Complex<AutoSimd<[f32; 4]>>
source§fn simd_hypot(
self,
b: Complex<AutoSimd<[f32; 4]>>
) -> <Complex<AutoSimd<[f32; 4]>> as SimdComplexField>::SimdRealField
fn simd_hypot( self, b: Complex<AutoSimd<[f32; 4]>> ) -> <Complex<AutoSimd<[f32; 4]>> as SimdComplexField>::SimdRealField
fn simd_sin_cos( self ) -> (Complex<AutoSimd<[f32; 4]>>, Complex<AutoSimd<[f32; 4]>>)
fn simd_sinh_cosh( self ) -> (Complex<AutoSimd<[f32; 4]>>, Complex<AutoSimd<[f32; 4]>>)
source§fn simd_to_polar(self) -> (Self::SimdRealField, Self::SimdRealField)
fn simd_to_polar(self) -> (Self::SimdRealField, Self::SimdRealField)
source§fn simd_to_exp(self) -> (Self::SimdRealField, Self)
fn simd_to_exp(self) -> (Self::SimdRealField, Self)
source§fn simd_signum(self) -> Self
fn simd_signum(self) -> Self
self / self.modulus()
fn simd_sinhc(self) -> Self
fn simd_coshc(self) -> Self
source§impl SimdComplexField for Complex<AutoSimd<[f32; 8]>>
impl SimdComplexField for Complex<AutoSimd<[f32; 8]>>
source§fn simd_exp(self) -> Complex<AutoSimd<[f32; 8]>>
fn simd_exp(self) -> Complex<AutoSimd<[f32; 8]>>
Computes e^(self)
, where e
is the base of the natural logarithm.
source§fn simd_ln(self) -> Complex<AutoSimd<[f32; 8]>>
fn simd_ln(self) -> Complex<AutoSimd<[f32; 8]>>
Computes the principal value of natural logarithm of self
.
This function has one branch cut:
(-∞, 0]
, continuous from above.
The branch satisfies -π ≤ arg(ln(z)) ≤ π
.
source§fn simd_sqrt(self) -> Complex<AutoSimd<[f32; 8]>>
fn simd_sqrt(self) -> Complex<AutoSimd<[f32; 8]>>
Computes the principal value of the square root of self
.
This function has one branch cut:
(-∞, 0)
, continuous from above.
The branch satisfies -π/2 ≤ arg(sqrt(z)) ≤ π/2
.
source§fn simd_powf(
self,
exp: <Complex<AutoSimd<[f32; 8]>> as SimdComplexField>::SimdRealField
) -> Complex<AutoSimd<[f32; 8]>>
fn simd_powf( self, exp: <Complex<AutoSimd<[f32; 8]>> as SimdComplexField>::SimdRealField ) -> Complex<AutoSimd<[f32; 8]>>
Raises self
to a floating point power.
source§fn simd_log(self, base: AutoSimd<[f32; 8]>) -> Complex<AutoSimd<[f32; 8]>>
fn simd_log(self, base: AutoSimd<[f32; 8]>) -> Complex<AutoSimd<[f32; 8]>>
Returns the logarithm of self
with respect to an arbitrary base.
source§fn simd_powc(
self,
exp: Complex<AutoSimd<[f32; 8]>>
) -> Complex<AutoSimd<[f32; 8]>>
fn simd_powc( self, exp: Complex<AutoSimd<[f32; 8]>> ) -> Complex<AutoSimd<[f32; 8]>>
Raises self
to a complex power.
source§fn simd_asin(self) -> Complex<AutoSimd<[f32; 8]>>
fn simd_asin(self) -> Complex<AutoSimd<[f32; 8]>>
Computes the principal value of the inverse sine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Re(asin(z)) ≤ π/2
.
source§fn simd_acos(self) -> Complex<AutoSimd<[f32; 8]>>
fn simd_acos(self) -> Complex<AutoSimd<[f32; 8]>>
Computes the principal value of the inverse cosine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies 0 ≤ Re(acos(z)) ≤ π
.
source§fn simd_atan(self) -> Complex<AutoSimd<[f32; 8]>>
fn simd_atan(self) -> Complex<AutoSimd<[f32; 8]>>
Computes the principal value of the inverse tangent of self
.
This function has two branch cuts:
(-∞i, -i]
, continuous from the left.[i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Re(atan(z)) ≤ π/2
.
source§fn simd_asinh(self) -> Complex<AutoSimd<[f32; 8]>>
fn simd_asinh(self) -> Complex<AutoSimd<[f32; 8]>>
Computes the principal value of inverse hyperbolic sine of self
.
This function has two branch cuts:
(-∞i, -i)
, continuous from the left.(i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Im(asinh(z)) ≤ π/2
.
source§fn simd_acosh(self) -> Complex<AutoSimd<[f32; 8]>>
fn simd_acosh(self) -> Complex<AutoSimd<[f32; 8]>>
Computes the principal value of inverse hyperbolic cosine of self
.
This function has one branch cut:
(-∞, 1)
, continuous from above.
The branch satisfies -π ≤ Im(acosh(z)) ≤ π
and 0 ≤ Re(acosh(z)) < ∞
.
source§fn simd_atanh(self) -> Complex<AutoSimd<[f32; 8]>>
fn simd_atanh(self) -> Complex<AutoSimd<[f32; 8]>>
Computes the principal value of inverse hyperbolic tangent of self
.
This function has two branch cuts:
(-∞, -1]
, continuous from above.[1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Im(atanh(z)) ≤ π/2
.
§type SimdRealField = AutoSimd<[f32; 8]>
type SimdRealField = AutoSimd<[f32; 8]>
source§fn simd_horizontal_sum(
self
) -> <Complex<AutoSimd<[f32; 8]>> as SimdValue>::Element
fn simd_horizontal_sum( self ) -> <Complex<AutoSimd<[f32; 8]>> as SimdValue>::Element
self
.source§fn simd_horizontal_product(
self
) -> <Complex<AutoSimd<[f32; 8]>> as SimdValue>::Element
fn simd_horizontal_product( self ) -> <Complex<AutoSimd<[f32; 8]>> as SimdValue>::Element
self
.source§fn from_simd_real(
re: <Complex<AutoSimd<[f32; 8]>> as SimdComplexField>::SimdRealField
) -> Complex<AutoSimd<[f32; 8]>>
fn from_simd_real( re: <Complex<AutoSimd<[f32; 8]>> as SimdComplexField>::SimdRealField ) -> Complex<AutoSimd<[f32; 8]>>
source§fn simd_real(
self
) -> <Complex<AutoSimd<[f32; 8]>> as SimdComplexField>::SimdRealField
fn simd_real( self ) -> <Complex<AutoSimd<[f32; 8]>> as SimdComplexField>::SimdRealField
source§fn simd_imaginary(
self
) -> <Complex<AutoSimd<[f32; 8]>> as SimdComplexField>::SimdRealField
fn simd_imaginary( self ) -> <Complex<AutoSimd<[f32; 8]>> as SimdComplexField>::SimdRealField
source§fn simd_argument(
self
) -> <Complex<AutoSimd<[f32; 8]>> as SimdComplexField>::SimdRealField
fn simd_argument( self ) -> <Complex<AutoSimd<[f32; 8]>> as SimdComplexField>::SimdRealField
source§fn simd_modulus(
self
) -> <Complex<AutoSimd<[f32; 8]>> as SimdComplexField>::SimdRealField
fn simd_modulus( self ) -> <Complex<AutoSimd<[f32; 8]>> as SimdComplexField>::SimdRealField
source§fn simd_modulus_squared(
self
) -> <Complex<AutoSimd<[f32; 8]>> as SimdComplexField>::SimdRealField
fn simd_modulus_squared( self ) -> <Complex<AutoSimd<[f32; 8]>> as SimdComplexField>::SimdRealField
source§fn simd_norm1(
self
) -> <Complex<AutoSimd<[f32; 8]>> as SimdComplexField>::SimdRealField
fn simd_norm1( self ) -> <Complex<AutoSimd<[f32; 8]>> as SimdComplexField>::SimdRealField
fn simd_recip(self) -> Complex<AutoSimd<[f32; 8]>>
fn simd_conjugate(self) -> Complex<AutoSimd<[f32; 8]>>
source§fn simd_scale(
self,
factor: <Complex<AutoSimd<[f32; 8]>> as SimdComplexField>::SimdRealField
) -> Complex<AutoSimd<[f32; 8]>>
fn simd_scale( self, factor: <Complex<AutoSimd<[f32; 8]>> as SimdComplexField>::SimdRealField ) -> Complex<AutoSimd<[f32; 8]>>
factor
.source§fn simd_unscale(
self,
factor: <Complex<AutoSimd<[f32; 8]>> as SimdComplexField>::SimdRealField
) -> Complex<AutoSimd<[f32; 8]>>
fn simd_unscale( self, factor: <Complex<AutoSimd<[f32; 8]>> as SimdComplexField>::SimdRealField ) -> Complex<AutoSimd<[f32; 8]>>
factor
.fn simd_floor(self) -> Complex<AutoSimd<[f32; 8]>>
fn simd_ceil(self) -> Complex<AutoSimd<[f32; 8]>>
fn simd_round(self) -> Complex<AutoSimd<[f32; 8]>>
fn simd_trunc(self) -> Complex<AutoSimd<[f32; 8]>>
fn simd_fract(self) -> Complex<AutoSimd<[f32; 8]>>
fn simd_mul_add( self, a: Complex<AutoSimd<[f32; 8]>>, b: Complex<AutoSimd<[f32; 8]>> ) -> Complex<AutoSimd<[f32; 8]>>
source§fn simd_abs(
self
) -> <Complex<AutoSimd<[f32; 8]>> as SimdComplexField>::SimdRealField
fn simd_abs( self ) -> <Complex<AutoSimd<[f32; 8]>> as SimdComplexField>::SimdRealField
self / self.signum()
. Read morefn simd_exp2(self) -> Complex<AutoSimd<[f32; 8]>>
fn simd_exp_m1(self) -> Complex<AutoSimd<[f32; 8]>>
fn simd_ln_1p(self) -> Complex<AutoSimd<[f32; 8]>>
fn simd_log2(self) -> Complex<AutoSimd<[f32; 8]>>
fn simd_log10(self) -> Complex<AutoSimd<[f32; 8]>>
fn simd_cbrt(self) -> Complex<AutoSimd<[f32; 8]>>
fn simd_powi(self, n: i32) -> Complex<AutoSimd<[f32; 8]>>
source§fn simd_hypot(
self,
b: Complex<AutoSimd<[f32; 8]>>
) -> <Complex<AutoSimd<[f32; 8]>> as SimdComplexField>::SimdRealField
fn simd_hypot( self, b: Complex<AutoSimd<[f32; 8]>> ) -> <Complex<AutoSimd<[f32; 8]>> as SimdComplexField>::SimdRealField
fn simd_sin_cos( self ) -> (Complex<AutoSimd<[f32; 8]>>, Complex<AutoSimd<[f32; 8]>>)
fn simd_sinh_cosh( self ) -> (Complex<AutoSimd<[f32; 8]>>, Complex<AutoSimd<[f32; 8]>>)
source§fn simd_to_polar(self) -> (Self::SimdRealField, Self::SimdRealField)
fn simd_to_polar(self) -> (Self::SimdRealField, Self::SimdRealField)
source§fn simd_to_exp(self) -> (Self::SimdRealField, Self)
fn simd_to_exp(self) -> (Self::SimdRealField, Self)
source§fn simd_signum(self) -> Self
fn simd_signum(self) -> Self
self / self.modulus()
fn simd_sinhc(self) -> Self
fn simd_coshc(self) -> Self
source§impl SimdComplexField for Complex<AutoSimd<[f64; 2]>>
impl SimdComplexField for Complex<AutoSimd<[f64; 2]>>
source§fn simd_exp(self) -> Complex<AutoSimd<[f64; 2]>>
fn simd_exp(self) -> Complex<AutoSimd<[f64; 2]>>
Computes e^(self)
, where e
is the base of the natural logarithm.
source§fn simd_ln(self) -> Complex<AutoSimd<[f64; 2]>>
fn simd_ln(self) -> Complex<AutoSimd<[f64; 2]>>
Computes the principal value of natural logarithm of self
.
This function has one branch cut:
(-∞, 0]
, continuous from above.
The branch satisfies -π ≤ arg(ln(z)) ≤ π
.
source§fn simd_sqrt(self) -> Complex<AutoSimd<[f64; 2]>>
fn simd_sqrt(self) -> Complex<AutoSimd<[f64; 2]>>
Computes the principal value of the square root of self
.
This function has one branch cut:
(-∞, 0)
, continuous from above.
The branch satisfies -π/2 ≤ arg(sqrt(z)) ≤ π/2
.
source§fn simd_powf(
self,
exp: <Complex<AutoSimd<[f64; 2]>> as SimdComplexField>::SimdRealField
) -> Complex<AutoSimd<[f64; 2]>>
fn simd_powf( self, exp: <Complex<AutoSimd<[f64; 2]>> as SimdComplexField>::SimdRealField ) -> Complex<AutoSimd<[f64; 2]>>
Raises self
to a floating point power.
source§fn simd_log(self, base: AutoSimd<[f64; 2]>) -> Complex<AutoSimd<[f64; 2]>>
fn simd_log(self, base: AutoSimd<[f64; 2]>) -> Complex<AutoSimd<[f64; 2]>>
Returns the logarithm of self
with respect to an arbitrary base.
source§fn simd_powc(
self,
exp: Complex<AutoSimd<[f64; 2]>>
) -> Complex<AutoSimd<[f64; 2]>>
fn simd_powc( self, exp: Complex<AutoSimd<[f64; 2]>> ) -> Complex<AutoSimd<[f64; 2]>>
Raises self
to a complex power.
source§fn simd_asin(self) -> Complex<AutoSimd<[f64; 2]>>
fn simd_asin(self) -> Complex<AutoSimd<[f64; 2]>>
Computes the principal value of the inverse sine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Re(asin(z)) ≤ π/2
.
source§fn simd_acos(self) -> Complex<AutoSimd<[f64; 2]>>
fn simd_acos(self) -> Complex<AutoSimd<[f64; 2]>>
Computes the principal value of the inverse cosine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies 0 ≤ Re(acos(z)) ≤ π
.
source§fn simd_atan(self) -> Complex<AutoSimd<[f64; 2]>>
fn simd_atan(self) -> Complex<AutoSimd<[f64; 2]>>
Computes the principal value of the inverse tangent of self
.
This function has two branch cuts:
(-∞i, -i]
, continuous from the left.[i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Re(atan(z)) ≤ π/2
.
source§fn simd_asinh(self) -> Complex<AutoSimd<[f64; 2]>>
fn simd_asinh(self) -> Complex<AutoSimd<[f64; 2]>>
Computes the principal value of inverse hyperbolic sine of self
.
This function has two branch cuts:
(-∞i, -i)
, continuous from the left.(i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Im(asinh(z)) ≤ π/2
.
source§fn simd_acosh(self) -> Complex<AutoSimd<[f64; 2]>>
fn simd_acosh(self) -> Complex<AutoSimd<[f64; 2]>>
Computes the principal value of inverse hyperbolic cosine of self
.
This function has one branch cut:
(-∞, 1)
, continuous from above.
The branch satisfies -π ≤ Im(acosh(z)) ≤ π
and 0 ≤ Re(acosh(z)) < ∞
.
source§fn simd_atanh(self) -> Complex<AutoSimd<[f64; 2]>>
fn simd_atanh(self) -> Complex<AutoSimd<[f64; 2]>>
Computes the principal value of inverse hyperbolic tangent of self
.
This function has two branch cuts:
(-∞, -1]
, continuous from above.[1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Im(atanh(z)) ≤ π/2
.
§type SimdRealField = AutoSimd<[f64; 2]>
type SimdRealField = AutoSimd<[f64; 2]>
source§fn simd_horizontal_sum(
self
) -> <Complex<AutoSimd<[f64; 2]>> as SimdValue>::Element
fn simd_horizontal_sum( self ) -> <Complex<AutoSimd<[f64; 2]>> as SimdValue>::Element
self
.source§fn simd_horizontal_product(
self
) -> <Complex<AutoSimd<[f64; 2]>> as SimdValue>::Element
fn simd_horizontal_product( self ) -> <Complex<AutoSimd<[f64; 2]>> as SimdValue>::Element
self
.source§fn from_simd_real(
re: <Complex<AutoSimd<[f64; 2]>> as SimdComplexField>::SimdRealField
) -> Complex<AutoSimd<[f64; 2]>>
fn from_simd_real( re: <Complex<AutoSimd<[f64; 2]>> as SimdComplexField>::SimdRealField ) -> Complex<AutoSimd<[f64; 2]>>
source§fn simd_real(
self
) -> <Complex<AutoSimd<[f64; 2]>> as SimdComplexField>::SimdRealField
fn simd_real( self ) -> <Complex<AutoSimd<[f64; 2]>> as SimdComplexField>::SimdRealField
source§fn simd_imaginary(
self
) -> <Complex<AutoSimd<[f64; 2]>> as SimdComplexField>::SimdRealField
fn simd_imaginary( self ) -> <Complex<AutoSimd<[f64; 2]>> as SimdComplexField>::SimdRealField
source§fn simd_argument(
self
) -> <Complex<AutoSimd<[f64; 2]>> as SimdComplexField>::SimdRealField
fn simd_argument( self ) -> <Complex<AutoSimd<[f64; 2]>> as SimdComplexField>::SimdRealField
source§fn simd_modulus(
self
) -> <Complex<AutoSimd<[f64; 2]>> as SimdComplexField>::SimdRealField
fn simd_modulus( self ) -> <Complex<AutoSimd<[f64; 2]>> as SimdComplexField>::SimdRealField
source§fn simd_modulus_squared(
self
) -> <Complex<AutoSimd<[f64; 2]>> as SimdComplexField>::SimdRealField
fn simd_modulus_squared( self ) -> <Complex<AutoSimd<[f64; 2]>> as SimdComplexField>::SimdRealField
source§fn simd_norm1(
self
) -> <Complex<AutoSimd<[f64; 2]>> as SimdComplexField>::SimdRealField
fn simd_norm1( self ) -> <Complex<AutoSimd<[f64; 2]>> as SimdComplexField>::SimdRealField
fn simd_recip(self) -> Complex<AutoSimd<[f64; 2]>>
fn simd_conjugate(self) -> Complex<AutoSimd<[f64; 2]>>
source§fn simd_scale(
self,
factor: <Complex<AutoSimd<[f64; 2]>> as SimdComplexField>::SimdRealField
) -> Complex<AutoSimd<[f64; 2]>>
fn simd_scale( self, factor: <Complex<AutoSimd<[f64; 2]>> as SimdComplexField>::SimdRealField ) -> Complex<AutoSimd<[f64; 2]>>
factor
.source§fn simd_unscale(
self,
factor: <Complex<AutoSimd<[f64; 2]>> as SimdComplexField>::SimdRealField
) -> Complex<AutoSimd<[f64; 2]>>
fn simd_unscale( self, factor: <Complex<AutoSimd<[f64; 2]>> as SimdComplexField>::SimdRealField ) -> Complex<AutoSimd<[f64; 2]>>
factor
.fn simd_floor(self) -> Complex<AutoSimd<[f64; 2]>>
fn simd_ceil(self) -> Complex<AutoSimd<[f64; 2]>>
fn simd_round(self) -> Complex<AutoSimd<[f64; 2]>>
fn simd_trunc(self) -> Complex<AutoSimd<[f64; 2]>>
fn simd_fract(self) -> Complex<AutoSimd<[f64; 2]>>
fn simd_mul_add( self, a: Complex<AutoSimd<[f64; 2]>>, b: Complex<AutoSimd<[f64; 2]>> ) -> Complex<AutoSimd<[f64; 2]>>
source§fn simd_abs(
self
) -> <Complex<AutoSimd<[f64; 2]>> as SimdComplexField>::SimdRealField
fn simd_abs( self ) -> <Complex<AutoSimd<[f64; 2]>> as SimdComplexField>::SimdRealField
self / self.signum()
. Read morefn simd_exp2(self) -> Complex<AutoSimd<[f64; 2]>>
fn simd_exp_m1(self) -> Complex<AutoSimd<[f64; 2]>>
fn simd_ln_1p(self) -> Complex<AutoSimd<[f64; 2]>>
fn simd_log2(self) -> Complex<AutoSimd<[f64; 2]>>
fn simd_log10(self) -> Complex<AutoSimd<[f64; 2]>>
fn simd_cbrt(self) -> Complex<AutoSimd<[f64; 2]>>
fn simd_powi(self, n: i32) -> Complex<AutoSimd<[f64; 2]>>
source§fn simd_hypot(
self,
b: Complex<AutoSimd<[f64; 2]>>
) -> <Complex<AutoSimd<[f64; 2]>> as SimdComplexField>::SimdRealField
fn simd_hypot( self, b: Complex<AutoSimd<[f64; 2]>> ) -> <Complex<AutoSimd<[f64; 2]>> as SimdComplexField>::SimdRealField
fn simd_sin_cos( self ) -> (Complex<AutoSimd<[f64; 2]>>, Complex<AutoSimd<[f64; 2]>>)
fn simd_sinh_cosh( self ) -> (Complex<AutoSimd<[f64; 2]>>, Complex<AutoSimd<[f64; 2]>>)
source§fn simd_to_polar(self) -> (Self::SimdRealField, Self::SimdRealField)
fn simd_to_polar(self) -> (Self::SimdRealField, Self::SimdRealField)
source§fn simd_to_exp(self) -> (Self::SimdRealField, Self)
fn simd_to_exp(self) -> (Self::SimdRealField, Self)
source§fn simd_signum(self) -> Self
fn simd_signum(self) -> Self
self / self.modulus()
fn simd_sinhc(self) -> Self
fn simd_coshc(self) -> Self
source§impl SimdComplexField for Complex<AutoSimd<[f64; 4]>>
impl SimdComplexField for Complex<AutoSimd<[f64; 4]>>
source§fn simd_exp(self) -> Complex<AutoSimd<[f64; 4]>>
fn simd_exp(self) -> Complex<AutoSimd<[f64; 4]>>
Computes e^(self)
, where e
is the base of the natural logarithm.
source§fn simd_ln(self) -> Complex<AutoSimd<[f64; 4]>>
fn simd_ln(self) -> Complex<AutoSimd<[f64; 4]>>
Computes the principal value of natural logarithm of self
.
This function has one branch cut:
(-∞, 0]
, continuous from above.
The branch satisfies -π ≤ arg(ln(z)) ≤ π
.
source§fn simd_sqrt(self) -> Complex<AutoSimd<[f64; 4]>>
fn simd_sqrt(self) -> Complex<AutoSimd<[f64; 4]>>
Computes the principal value of the square root of self
.
This function has one branch cut:
(-∞, 0)
, continuous from above.
The branch satisfies -π/2 ≤ arg(sqrt(z)) ≤ π/2
.
source§fn simd_powf(
self,
exp: <Complex<AutoSimd<[f64; 4]>> as SimdComplexField>::SimdRealField
) -> Complex<AutoSimd<[f64; 4]>>
fn simd_powf( self, exp: <Complex<AutoSimd<[f64; 4]>> as SimdComplexField>::SimdRealField ) -> Complex<AutoSimd<[f64; 4]>>
Raises self
to a floating point power.
source§fn simd_log(self, base: AutoSimd<[f64; 4]>) -> Complex<AutoSimd<[f64; 4]>>
fn simd_log(self, base: AutoSimd<[f64; 4]>) -> Complex<AutoSimd<[f64; 4]>>
Returns the logarithm of self
with respect to an arbitrary base.
source§fn simd_powc(
self,
exp: Complex<AutoSimd<[f64; 4]>>
) -> Complex<AutoSimd<[f64; 4]>>
fn simd_powc( self, exp: Complex<AutoSimd<[f64; 4]>> ) -> Complex<AutoSimd<[f64; 4]>>
Raises self
to a complex power.
source§fn simd_asin(self) -> Complex<AutoSimd<[f64; 4]>>
fn simd_asin(self) -> Complex<AutoSimd<[f64; 4]>>
Computes the principal value of the inverse sine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Re(asin(z)) ≤ π/2
.
source§fn simd_acos(self) -> Complex<AutoSimd<[f64; 4]>>
fn simd_acos(self) -> Complex<AutoSimd<[f64; 4]>>
Computes the principal value of the inverse cosine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies 0 ≤ Re(acos(z)) ≤ π
.
source§fn simd_atan(self) -> Complex<AutoSimd<[f64; 4]>>
fn simd_atan(self) -> Complex<AutoSimd<[f64; 4]>>
Computes the principal value of the inverse tangent of self
.
This function has two branch cuts:
(-∞i, -i]
, continuous from the left.[i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Re(atan(z)) ≤ π/2
.
source§fn simd_asinh(self) -> Complex<AutoSimd<[f64; 4]>>
fn simd_asinh(self) -> Complex<AutoSimd<[f64; 4]>>
Computes the principal value of inverse hyperbolic sine of self
.
This function has two branch cuts:
(-∞i, -i)
, continuous from the left.(i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Im(asinh(z)) ≤ π/2
.
source§fn simd_acosh(self) -> Complex<AutoSimd<[f64; 4]>>
fn simd_acosh(self) -> Complex<AutoSimd<[f64; 4]>>
Computes the principal value of inverse hyperbolic cosine of self
.
This function has one branch cut:
(-∞, 1)
, continuous from above.
The branch satisfies -π ≤ Im(acosh(z)) ≤ π
and 0 ≤ Re(acosh(z)) < ∞
.
source§fn simd_atanh(self) -> Complex<AutoSimd<[f64; 4]>>
fn simd_atanh(self) -> Complex<AutoSimd<[f64; 4]>>
Computes the principal value of inverse hyperbolic tangent of self
.
This function has two branch cuts:
(-∞, -1]
, continuous from above.[1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Im(atanh(z)) ≤ π/2
.
§type SimdRealField = AutoSimd<[f64; 4]>
type SimdRealField = AutoSimd<[f64; 4]>
source§fn simd_horizontal_sum(
self
) -> <Complex<AutoSimd<[f64; 4]>> as SimdValue>::Element
fn simd_horizontal_sum( self ) -> <Complex<AutoSimd<[f64; 4]>> as SimdValue>::Element
self
.source§fn simd_horizontal_product(
self
) -> <Complex<AutoSimd<[f64; 4]>> as SimdValue>::Element
fn simd_horizontal_product( self ) -> <Complex<AutoSimd<[f64; 4]>> as SimdValue>::Element
self
.source§fn from_simd_real(
re: <Complex<AutoSimd<[f64; 4]>> as SimdComplexField>::SimdRealField
) -> Complex<AutoSimd<[f64; 4]>>
fn from_simd_real( re: <Complex<AutoSimd<[f64; 4]>> as SimdComplexField>::SimdRealField ) -> Complex<AutoSimd<[f64; 4]>>
source§fn simd_real(
self
) -> <Complex<AutoSimd<[f64; 4]>> as SimdComplexField>::SimdRealField
fn simd_real( self ) -> <Complex<AutoSimd<[f64; 4]>> as SimdComplexField>::SimdRealField
source§fn simd_imaginary(
self
) -> <Complex<AutoSimd<[f64; 4]>> as SimdComplexField>::SimdRealField
fn simd_imaginary( self ) -> <Complex<AutoSimd<[f64; 4]>> as SimdComplexField>::SimdRealField
source§fn simd_argument(
self
) -> <Complex<AutoSimd<[f64; 4]>> as SimdComplexField>::SimdRealField
fn simd_argument( self ) -> <Complex<AutoSimd<[f64; 4]>> as SimdComplexField>::SimdRealField
source§fn simd_modulus(
self
) -> <Complex<AutoSimd<[f64; 4]>> as SimdComplexField>::SimdRealField
fn simd_modulus( self ) -> <Complex<AutoSimd<[f64; 4]>> as SimdComplexField>::SimdRealField
source§fn simd_modulus_squared(
self
) -> <Complex<AutoSimd<[f64; 4]>> as SimdComplexField>::SimdRealField
fn simd_modulus_squared( self ) -> <Complex<AutoSimd<[f64; 4]>> as SimdComplexField>::SimdRealField
source§fn simd_norm1(
self
) -> <Complex<AutoSimd<[f64; 4]>> as SimdComplexField>::SimdRealField
fn simd_norm1( self ) -> <Complex<AutoSimd<[f64; 4]>> as SimdComplexField>::SimdRealField
fn simd_recip(self) -> Complex<AutoSimd<[f64; 4]>>
fn simd_conjugate(self) -> Complex<AutoSimd<[f64; 4]>>
source§fn simd_scale(
self,
factor: <Complex<AutoSimd<[f64; 4]>> as SimdComplexField>::SimdRealField
) -> Complex<AutoSimd<[f64; 4]>>
fn simd_scale( self, factor: <Complex<AutoSimd<[f64; 4]>> as SimdComplexField>::SimdRealField ) -> Complex<AutoSimd<[f64; 4]>>
factor
.source§fn simd_unscale(
self,
factor: <Complex<AutoSimd<[f64; 4]>> as SimdComplexField>::SimdRealField
) -> Complex<AutoSimd<[f64; 4]>>
fn simd_unscale( self, factor: <Complex<AutoSimd<[f64; 4]>> as SimdComplexField>::SimdRealField ) -> Complex<AutoSimd<[f64; 4]>>
factor
.fn simd_floor(self) -> Complex<AutoSimd<[f64; 4]>>
fn simd_ceil(self) -> Complex<AutoSimd<[f64; 4]>>
fn simd_round(self) -> Complex<AutoSimd<[f64; 4]>>
fn simd_trunc(self) -> Complex<AutoSimd<[f64; 4]>>
fn simd_fract(self) -> Complex<AutoSimd<[f64; 4]>>
fn simd_mul_add( self, a: Complex<AutoSimd<[f64; 4]>>, b: Complex<AutoSimd<[f64; 4]>> ) -> Complex<AutoSimd<[f64; 4]>>
source§fn simd_abs(
self
) -> <Complex<AutoSimd<[f64; 4]>> as SimdComplexField>::SimdRealField
fn simd_abs( self ) -> <Complex<AutoSimd<[f64; 4]>> as SimdComplexField>::SimdRealField
self / self.signum()
. Read morefn simd_exp2(self) -> Complex<AutoSimd<[f64; 4]>>
fn simd_exp_m1(self) -> Complex<AutoSimd<[f64; 4]>>
fn simd_ln_1p(self) -> Complex<AutoSimd<[f64; 4]>>
fn simd_log2(self) -> Complex<AutoSimd<[f64; 4]>>
fn simd_log10(self) -> Complex<AutoSimd<[f64; 4]>>
fn simd_cbrt(self) -> Complex<AutoSimd<[f64; 4]>>
fn simd_powi(self, n: i32) -> Complex<AutoSimd<[f64; 4]>>
source§fn simd_hypot(
self,
b: Complex<AutoSimd<[f64; 4]>>
) -> <Complex<AutoSimd<[f64; 4]>> as SimdComplexField>::SimdRealField
fn simd_hypot( self, b: Complex<AutoSimd<[f64; 4]>> ) -> <Complex<AutoSimd<[f64; 4]>> as SimdComplexField>::SimdRealField
fn simd_sin_cos( self ) -> (Complex<AutoSimd<[f64; 4]>>, Complex<AutoSimd<[f64; 4]>>)
fn simd_sinh_cosh( self ) -> (Complex<AutoSimd<[f64; 4]>>, Complex<AutoSimd<[f64; 4]>>)
source§fn simd_to_polar(self) -> (Self::SimdRealField, Self::SimdRealField)
fn simd_to_polar(self) -> (Self::SimdRealField, Self::SimdRealField)
source§fn simd_to_exp(self) -> (Self::SimdRealField, Self)
fn simd_to_exp(self) -> (Self::SimdRealField, Self)
source§fn simd_signum(self) -> Self
fn simd_signum(self) -> Self
self / self.modulus()
fn simd_sinhc(self) -> Self
fn simd_coshc(self) -> Self
source§impl SimdComplexField for Complex<AutoSimd<[f64; 8]>>
impl SimdComplexField for Complex<AutoSimd<[f64; 8]>>
source§fn simd_exp(self) -> Complex<AutoSimd<[f64; 8]>>
fn simd_exp(self) -> Complex<AutoSimd<[f64; 8]>>
Computes e^(self)
, where e
is the base of the natural logarithm.
source§fn simd_ln(self) -> Complex<AutoSimd<[f64; 8]>>
fn simd_ln(self) -> Complex<AutoSimd<[f64; 8]>>
Computes the principal value of natural logarithm of self
.
This function has one branch cut:
(-∞, 0]
, continuous from above.
The branch satisfies -π ≤ arg(ln(z)) ≤ π
.
source§fn simd_sqrt(self) -> Complex<AutoSimd<[f64; 8]>>
fn simd_sqrt(self) -> Complex<AutoSimd<[f64; 8]>>
Computes the principal value of the square root of self
.
This function has one branch cut:
(-∞, 0)
, continuous from above.
The branch satisfies -π/2 ≤ arg(sqrt(z)) ≤ π/2
.
source§fn simd_powf(
self,
exp: <Complex<AutoSimd<[f64; 8]>> as SimdComplexField>::SimdRealField
) -> Complex<AutoSimd<[f64; 8]>>
fn simd_powf( self, exp: <Complex<AutoSimd<[f64; 8]>> as SimdComplexField>::SimdRealField ) -> Complex<AutoSimd<[f64; 8]>>
Raises self
to a floating point power.
source§fn simd_log(self, base: AutoSimd<[f64; 8]>) -> Complex<AutoSimd<[f64; 8]>>
fn simd_log(self, base: AutoSimd<[f64; 8]>) -> Complex<AutoSimd<[f64; 8]>>
Returns the logarithm of self
with respect to an arbitrary base.
source§fn simd_powc(
self,
exp: Complex<AutoSimd<[f64; 8]>>
) -> Complex<AutoSimd<[f64; 8]>>
fn simd_powc( self, exp: Complex<AutoSimd<[f64; 8]>> ) -> Complex<AutoSimd<[f64; 8]>>
Raises self
to a complex power.
source§fn simd_asin(self) -> Complex<AutoSimd<[f64; 8]>>
fn simd_asin(self) -> Complex<AutoSimd<[f64; 8]>>
Computes the principal value of the inverse sine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Re(asin(z)) ≤ π/2
.
source§fn simd_acos(self) -> Complex<AutoSimd<[f64; 8]>>
fn simd_acos(self) -> Complex<AutoSimd<[f64; 8]>>
Computes the principal value of the inverse cosine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies 0 ≤ Re(acos(z)) ≤ π
.
source§fn simd_atan(self) -> Complex<AutoSimd<[f64; 8]>>
fn simd_atan(self) -> Complex<AutoSimd<[f64; 8]>>
Computes the principal value of the inverse tangent of self
.
This function has two branch cuts:
(-∞i, -i]
, continuous from the left.[i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Re(atan(z)) ≤ π/2
.
source§fn simd_asinh(self) -> Complex<AutoSimd<[f64; 8]>>
fn simd_asinh(self) -> Complex<AutoSimd<[f64; 8]>>
Computes the principal value of inverse hyperbolic sine of self
.
This function has two branch cuts:
(-∞i, -i)
, continuous from the left.(i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Im(asinh(z)) ≤ π/2
.
source§fn simd_acosh(self) -> Complex<AutoSimd<[f64; 8]>>
fn simd_acosh(self) -> Complex<AutoSimd<[f64; 8]>>
Computes the principal value of inverse hyperbolic cosine of self
.
This function has one branch cut:
(-∞, 1)
, continuous from above.
The branch satisfies -π ≤ Im(acosh(z)) ≤ π
and 0 ≤ Re(acosh(z)) < ∞
.
source§fn simd_atanh(self) -> Complex<AutoSimd<[f64; 8]>>
fn simd_atanh(self) -> Complex<AutoSimd<[f64; 8]>>
Computes the principal value of inverse hyperbolic tangent of self
.
This function has two branch cuts:
(-∞, -1]
, continuous from above.[1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Im(atanh(z)) ≤ π/2
.
§type SimdRealField = AutoSimd<[f64; 8]>
type SimdRealField = AutoSimd<[f64; 8]>
source§fn simd_horizontal_sum(
self
) -> <Complex<AutoSimd<[f64; 8]>> as SimdValue>::Element
fn simd_horizontal_sum( self ) -> <Complex<AutoSimd<[f64; 8]>> as SimdValue>::Element
self
.source§fn simd_horizontal_product(
self
) -> <Complex<AutoSimd<[f64; 8]>> as SimdValue>::Element
fn simd_horizontal_product( self ) -> <Complex<AutoSimd<[f64; 8]>> as SimdValue>::Element
self
.source§fn from_simd_real(
re: <Complex<AutoSimd<[f64; 8]>> as SimdComplexField>::SimdRealField
) -> Complex<AutoSimd<[f64; 8]>>
fn from_simd_real( re: <Complex<AutoSimd<[f64; 8]>> as SimdComplexField>::SimdRealField ) -> Complex<AutoSimd<[f64; 8]>>
source§fn simd_real(
self
) -> <Complex<AutoSimd<[f64; 8]>> as SimdComplexField>::SimdRealField
fn simd_real( self ) -> <Complex<AutoSimd<[f64; 8]>> as SimdComplexField>::SimdRealField
source§fn simd_imaginary(
self
) -> <Complex<AutoSimd<[f64; 8]>> as SimdComplexField>::SimdRealField
fn simd_imaginary( self ) -> <Complex<AutoSimd<[f64; 8]>> as SimdComplexField>::SimdRealField
source§fn simd_argument(
self
) -> <Complex<AutoSimd<[f64; 8]>> as SimdComplexField>::SimdRealField
fn simd_argument( self ) -> <Complex<AutoSimd<[f64; 8]>> as SimdComplexField>::SimdRealField
source§fn simd_modulus(
self
) -> <Complex<AutoSimd<[f64; 8]>> as SimdComplexField>::SimdRealField
fn simd_modulus( self ) -> <Complex<AutoSimd<[f64; 8]>> as SimdComplexField>::SimdRealField
source§fn simd_modulus_squared(
self
) -> <Complex<AutoSimd<[f64; 8]>> as SimdComplexField>::SimdRealField
fn simd_modulus_squared( self ) -> <Complex<AutoSimd<[f64; 8]>> as SimdComplexField>::SimdRealField
source§fn simd_norm1(
self
) -> <Complex<AutoSimd<[f64; 8]>> as SimdComplexField>::SimdRealField
fn simd_norm1( self ) -> <Complex<AutoSimd<[f64; 8]>> as SimdComplexField>::SimdRealField
fn simd_recip(self) -> Complex<AutoSimd<[f64; 8]>>
fn simd_conjugate(self) -> Complex<AutoSimd<[f64; 8]>>
source§fn simd_scale(
self,
factor: <Complex<AutoSimd<[f64; 8]>> as SimdComplexField>::SimdRealField
) -> Complex<AutoSimd<[f64; 8]>>
fn simd_scale( self, factor: <Complex<AutoSimd<[f64; 8]>> as SimdComplexField>::SimdRealField ) -> Complex<AutoSimd<[f64; 8]>>
factor
.source§fn simd_unscale(
self,
factor: <Complex<AutoSimd<[f64; 8]>> as SimdComplexField>::SimdRealField
) -> Complex<AutoSimd<[f64; 8]>>
fn simd_unscale( self, factor: <Complex<AutoSimd<[f64; 8]>> as SimdComplexField>::SimdRealField ) -> Complex<AutoSimd<[f64; 8]>>
factor
.fn simd_floor(self) -> Complex<AutoSimd<[f64; 8]>>
fn simd_ceil(self) -> Complex<AutoSimd<[f64; 8]>>
fn simd_round(self) -> Complex<AutoSimd<[f64; 8]>>
fn simd_trunc(self) -> Complex<AutoSimd<[f64; 8]>>
fn simd_fract(self) -> Complex<AutoSimd<[f64; 8]>>
fn simd_mul_add( self, a: Complex<AutoSimd<[f64; 8]>>, b: Complex<AutoSimd<[f64; 8]>> ) -> Complex<AutoSimd<[f64; 8]>>
source§fn simd_abs(
self
) -> <Complex<AutoSimd<[f64; 8]>> as SimdComplexField>::SimdRealField
fn simd_abs( self ) -> <Complex<AutoSimd<[f64; 8]>> as SimdComplexField>::SimdRealField
self / self.signum()
. Read morefn simd_exp2(self) -> Complex<AutoSimd<[f64; 8]>>
fn simd_exp_m1(self) -> Complex<AutoSimd<[f64; 8]>>
fn simd_ln_1p(self) -> Complex<AutoSimd<[f64; 8]>>
fn simd_log2(self) -> Complex<AutoSimd<[f64; 8]>>
fn simd_log10(self) -> Complex<AutoSimd<[f64; 8]>>
fn simd_cbrt(self) -> Complex<AutoSimd<[f64; 8]>>
fn simd_powi(self, n: i32) -> Complex<AutoSimd<[f64; 8]>>
source§fn simd_hypot(
self,
b: Complex<AutoSimd<[f64; 8]>>
) -> <Complex<AutoSimd<[f64; 8]>> as SimdComplexField>::SimdRealField
fn simd_hypot( self, b: Complex<AutoSimd<[f64; 8]>> ) -> <Complex<AutoSimd<[f64; 8]>> as SimdComplexField>::SimdRealField
fn simd_sin_cos( self ) -> (Complex<AutoSimd<[f64; 8]>>, Complex<AutoSimd<[f64; 8]>>)
fn simd_sinh_cosh( self ) -> (Complex<AutoSimd<[f64; 8]>>, Complex<AutoSimd<[f64; 8]>>)
source§fn simd_to_polar(self) -> (Self::SimdRealField, Self::SimdRealField)
fn simd_to_polar(self) -> (Self::SimdRealField, Self::SimdRealField)
source§fn simd_to_exp(self) -> (Self::SimdRealField, Self)
fn simd_to_exp(self) -> (Self::SimdRealField, Self)
source§fn simd_signum(self) -> Self
fn simd_signum(self) -> Self
self / self.modulus()
fn simd_sinhc(self) -> Self
fn simd_coshc(self) -> Self
source§impl SimdComplexField for Complex<WideF32x4>
impl SimdComplexField for Complex<WideF32x4>
source§fn simd_exp(self) -> Complex<WideF32x4>
fn simd_exp(self) -> Complex<WideF32x4>
Computes e^(self)
, where e
is the base of the natural logarithm.
source§fn simd_ln(self) -> Complex<WideF32x4>
fn simd_ln(self) -> Complex<WideF32x4>
Computes the principal value of natural logarithm of self
.
This function has one branch cut:
(-∞, 0]
, continuous from above.
The branch satisfies -π ≤ arg(ln(z)) ≤ π
.
source§fn simd_sqrt(self) -> Complex<WideF32x4>
fn simd_sqrt(self) -> Complex<WideF32x4>
Computes the principal value of the square root of self
.
This function has one branch cut:
(-∞, 0)
, continuous from above.
The branch satisfies -π/2 ≤ arg(sqrt(z)) ≤ π/2
.
source§fn simd_powf(
self,
exp: <Complex<WideF32x4> as SimdComplexField>::SimdRealField
) -> Complex<WideF32x4>
fn simd_powf( self, exp: <Complex<WideF32x4> as SimdComplexField>::SimdRealField ) -> Complex<WideF32x4>
Raises self
to a floating point power.
source§fn simd_log(self, base: WideF32x4) -> Complex<WideF32x4>
fn simd_log(self, base: WideF32x4) -> Complex<WideF32x4>
Returns the logarithm of self
with respect to an arbitrary base.
source§fn simd_powc(self, exp: Complex<WideF32x4>) -> Complex<WideF32x4>
fn simd_powc(self, exp: Complex<WideF32x4>) -> Complex<WideF32x4>
Raises self
to a complex power.
source§fn simd_asin(self) -> Complex<WideF32x4>
fn simd_asin(self) -> Complex<WideF32x4>
Computes the principal value of the inverse sine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Re(asin(z)) ≤ π/2
.
source§fn simd_acos(self) -> Complex<WideF32x4>
fn simd_acos(self) -> Complex<WideF32x4>
Computes the principal value of the inverse cosine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies 0 ≤ Re(acos(z)) ≤ π
.
source§fn simd_atan(self) -> Complex<WideF32x4>
fn simd_atan(self) -> Complex<WideF32x4>
Computes the principal value of the inverse tangent of self
.
This function has two branch cuts:
(-∞i, -i]
, continuous from the left.[i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Re(atan(z)) ≤ π/2
.
source§fn simd_asinh(self) -> Complex<WideF32x4>
fn simd_asinh(self) -> Complex<WideF32x4>
Computes the principal value of inverse hyperbolic sine of self
.
This function has two branch cuts:
(-∞i, -i)
, continuous from the left.(i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Im(asinh(z)) ≤ π/2
.
source§fn simd_acosh(self) -> Complex<WideF32x4>
fn simd_acosh(self) -> Complex<WideF32x4>
Computes the principal value of inverse hyperbolic cosine of self
.
This function has one branch cut:
(-∞, 1)
, continuous from above.
The branch satisfies -π ≤ Im(acosh(z)) ≤ π
and 0 ≤ Re(acosh(z)) < ∞
.
source§fn simd_atanh(self) -> Complex<WideF32x4>
fn simd_atanh(self) -> Complex<WideF32x4>
Computes the principal value of inverse hyperbolic tangent of self
.
This function has two branch cuts:
(-∞, -1]
, continuous from above.[1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Im(atanh(z)) ≤ π/2
.
§type SimdRealField = WideF32x4
type SimdRealField = WideF32x4
source§fn simd_horizontal_sum(self) -> <Complex<WideF32x4> as SimdValue>::Element
fn simd_horizontal_sum(self) -> <Complex<WideF32x4> as SimdValue>::Element
self
.source§fn simd_horizontal_product(self) -> <Complex<WideF32x4> as SimdValue>::Element
fn simd_horizontal_product(self) -> <Complex<WideF32x4> as SimdValue>::Element
self
.source§fn from_simd_real(
re: <Complex<WideF32x4> as SimdComplexField>::SimdRealField
) -> Complex<WideF32x4>
fn from_simd_real( re: <Complex<WideF32x4> as SimdComplexField>::SimdRealField ) -> Complex<WideF32x4>
source§fn simd_real(self) -> <Complex<WideF32x4> as SimdComplexField>::SimdRealField
fn simd_real(self) -> <Complex<WideF32x4> as SimdComplexField>::SimdRealField
source§fn simd_imaginary(
self
) -> <Complex<WideF32x4> as SimdComplexField>::SimdRealField
fn simd_imaginary( self ) -> <Complex<WideF32x4> as SimdComplexField>::SimdRealField
source§fn simd_argument(
self
) -> <Complex<WideF32x4> as SimdComplexField>::SimdRealField
fn simd_argument( self ) -> <Complex<WideF32x4> as SimdComplexField>::SimdRealField
source§fn simd_modulus(self) -> <Complex<WideF32x4> as SimdComplexField>::SimdRealField
fn simd_modulus(self) -> <Complex<WideF32x4> as SimdComplexField>::SimdRealField
source§fn simd_modulus_squared(
self
) -> <Complex<WideF32x4> as SimdComplexField>::SimdRealField
fn simd_modulus_squared( self ) -> <Complex<WideF32x4> as SimdComplexField>::SimdRealField
source§fn simd_norm1(self) -> <Complex<WideF32x4> as SimdComplexField>::SimdRealField
fn simd_norm1(self) -> <Complex<WideF32x4> as SimdComplexField>::SimdRealField
fn simd_recip(self) -> Complex<WideF32x4>
fn simd_conjugate(self) -> Complex<WideF32x4>
source§fn simd_scale(
self,
factor: <Complex<WideF32x4> as SimdComplexField>::SimdRealField
) -> Complex<WideF32x4>
fn simd_scale( self, factor: <Complex<WideF32x4> as SimdComplexField>::SimdRealField ) -> Complex<WideF32x4>
factor
.source§fn simd_unscale(
self,
factor: <Complex<WideF32x4> as SimdComplexField>::SimdRealField
) -> Complex<WideF32x4>
fn simd_unscale( self, factor: <Complex<WideF32x4> as SimdComplexField>::SimdRealField ) -> Complex<WideF32x4>
factor
.fn simd_floor(self) -> Complex<WideF32x4>
fn simd_ceil(self) -> Complex<WideF32x4>
fn simd_round(self) -> Complex<WideF32x4>
fn simd_trunc(self) -> Complex<WideF32x4>
fn simd_fract(self) -> Complex<WideF32x4>
fn simd_mul_add( self, a: Complex<WideF32x4>, b: Complex<WideF32x4> ) -> Complex<WideF32x4>
source§fn simd_abs(self) -> <Complex<WideF32x4> as SimdComplexField>::SimdRealField
fn simd_abs(self) -> <Complex<WideF32x4> as SimdComplexField>::SimdRealField
self / self.signum()
. Read morefn simd_exp2(self) -> Complex<WideF32x4>
fn simd_exp_m1(self) -> Complex<WideF32x4>
fn simd_ln_1p(self) -> Complex<WideF32x4>
fn simd_log2(self) -> Complex<WideF32x4>
fn simd_log10(self) -> Complex<WideF32x4>
fn simd_cbrt(self) -> Complex<WideF32x4>
fn simd_powi(self, n: i32) -> Complex<WideF32x4>
source§fn simd_hypot(
self,
b: Complex<WideF32x4>
) -> <Complex<WideF32x4> as SimdComplexField>::SimdRealField
fn simd_hypot( self, b: Complex<WideF32x4> ) -> <Complex<WideF32x4> as SimdComplexField>::SimdRealField
fn simd_sin_cos(self) -> (Complex<WideF32x4>, Complex<WideF32x4>)
fn simd_sinh_cosh(self) -> (Complex<WideF32x4>, Complex<WideF32x4>)
source§fn simd_to_polar(self) -> (Self::SimdRealField, Self::SimdRealField)
fn simd_to_polar(self) -> (Self::SimdRealField, Self::SimdRealField)
source§fn simd_to_exp(self) -> (Self::SimdRealField, Self)
fn simd_to_exp(self) -> (Self::SimdRealField, Self)
source§fn simd_signum(self) -> Self
fn simd_signum(self) -> Self
self / self.modulus()
fn simd_sinhc(self) -> Self
fn simd_coshc(self) -> Self
source§impl SimdComplexField for Complex<WideF32x8>
impl SimdComplexField for Complex<WideF32x8>
source§fn simd_exp(self) -> Complex<WideF32x8>
fn simd_exp(self) -> Complex<WideF32x8>
Computes e^(self)
, where e
is the base of the natural logarithm.
source§fn simd_ln(self) -> Complex<WideF32x8>
fn simd_ln(self) -> Complex<WideF32x8>
Computes the principal value of natural logarithm of self
.
This function has one branch cut:
(-∞, 0]
, continuous from above.
The branch satisfies -π ≤ arg(ln(z)) ≤ π
.
source§fn simd_sqrt(self) -> Complex<WideF32x8>
fn simd_sqrt(self) -> Complex<WideF32x8>
Computes the principal value of the square root of self
.
This function has one branch cut:
(-∞, 0)
, continuous from above.
The branch satisfies -π/2 ≤ arg(sqrt(z)) ≤ π/2
.
source§fn simd_powf(
self,
exp: <Complex<WideF32x8> as SimdComplexField>::SimdRealField
) -> Complex<WideF32x8>
fn simd_powf( self, exp: <Complex<WideF32x8> as SimdComplexField>::SimdRealField ) -> Complex<WideF32x8>
Raises self
to a floating point power.
source§fn simd_log(self, base: WideF32x8) -> Complex<WideF32x8>
fn simd_log(self, base: WideF32x8) -> Complex<WideF32x8>
Returns the logarithm of self
with respect to an arbitrary base.
source§fn simd_powc(self, exp: Complex<WideF32x8>) -> Complex<WideF32x8>
fn simd_powc(self, exp: Complex<WideF32x8>) -> Complex<WideF32x8>
Raises self
to a complex power.
source§fn simd_asin(self) -> Complex<WideF32x8>
fn simd_asin(self) -> Complex<WideF32x8>
Computes the principal value of the inverse sine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Re(asin(z)) ≤ π/2
.
source§fn simd_acos(self) -> Complex<WideF32x8>
fn simd_acos(self) -> Complex<WideF32x8>
Computes the principal value of the inverse cosine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies 0 ≤ Re(acos(z)) ≤ π
.
source§fn simd_atan(self) -> Complex<WideF32x8>
fn simd_atan(self) -> Complex<WideF32x8>
Computes the principal value of the inverse tangent of self
.
This function has two branch cuts:
(-∞i, -i]
, continuous from the left.[i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Re(atan(z)) ≤ π/2
.
source§fn simd_asinh(self) -> Complex<WideF32x8>
fn simd_asinh(self) -> Complex<WideF32x8>
Computes the principal value of inverse hyperbolic sine of self
.
This function has two branch cuts:
(-∞i, -i)
, continuous from the left.(i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Im(asinh(z)) ≤ π/2
.
source§fn simd_acosh(self) -> Complex<WideF32x8>
fn simd_acosh(self) -> Complex<WideF32x8>
Computes the principal value of inverse hyperbolic cosine of self
.
This function has one branch cut:
(-∞, 1)
, continuous from above.
The branch satisfies -π ≤ Im(acosh(z)) ≤ π
and 0 ≤ Re(acosh(z)) < ∞
.
source§fn simd_atanh(self) -> Complex<WideF32x8>
fn simd_atanh(self) -> Complex<WideF32x8>
Computes the principal value of inverse hyperbolic tangent of self
.
This function has two branch cuts:
(-∞, -1]
, continuous from above.[1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Im(atanh(z)) ≤ π/2
.
§type SimdRealField = WideF32x8
type SimdRealField = WideF32x8
source§fn simd_horizontal_sum(self) -> <Complex<WideF32x8> as SimdValue>::Element
fn simd_horizontal_sum(self) -> <Complex<WideF32x8> as SimdValue>::Element
self
.source§fn simd_horizontal_product(self) -> <Complex<WideF32x8> as SimdValue>::Element
fn simd_horizontal_product(self) -> <Complex<WideF32x8> as SimdValue>::Element
self
.source§fn from_simd_real(
re: <Complex<WideF32x8> as SimdComplexField>::SimdRealField
) -> Complex<WideF32x8>
fn from_simd_real( re: <Complex<WideF32x8> as SimdComplexField>::SimdRealField ) -> Complex<WideF32x8>
source§fn simd_real(self) -> <Complex<WideF32x8> as SimdComplexField>::SimdRealField
fn simd_real(self) -> <Complex<WideF32x8> as SimdComplexField>::SimdRealField
source§fn simd_imaginary(
self
) -> <Complex<WideF32x8> as SimdComplexField>::SimdRealField
fn simd_imaginary( self ) -> <Complex<WideF32x8> as SimdComplexField>::SimdRealField
source§fn simd_argument(
self
) -> <Complex<WideF32x8> as SimdComplexField>::SimdRealField
fn simd_argument( self ) -> <Complex<WideF32x8> as SimdComplexField>::SimdRealField
source§fn simd_modulus(self) -> <Complex<WideF32x8> as SimdComplexField>::SimdRealField
fn simd_modulus(self) -> <Complex<WideF32x8> as SimdComplexField>::SimdRealField
source§fn simd_modulus_squared(
self
) -> <Complex<WideF32x8> as SimdComplexField>::SimdRealField
fn simd_modulus_squared( self ) -> <Complex<WideF32x8> as SimdComplexField>::SimdRealField
source§fn simd_norm1(self) -> <Complex<WideF32x8> as SimdComplexField>::SimdRealField
fn simd_norm1(self) -> <Complex<WideF32x8> as SimdComplexField>::SimdRealField
fn simd_recip(self) -> Complex<WideF32x8>
fn simd_conjugate(self) -> Complex<WideF32x8>
source§fn simd_scale(
self,
factor: <Complex<WideF32x8> as SimdComplexField>::SimdRealField
) -> Complex<WideF32x8>
fn simd_scale( self, factor: <Complex<WideF32x8> as SimdComplexField>::SimdRealField ) -> Complex<WideF32x8>
factor
.source§fn simd_unscale(
self,
factor: <Complex<WideF32x8> as SimdComplexField>::SimdRealField
) -> Complex<WideF32x8>
fn simd_unscale( self, factor: <Complex<WideF32x8> as SimdComplexField>::SimdRealField ) -> Complex<WideF32x8>
factor
.fn simd_floor(self) -> Complex<WideF32x8>
fn simd_ceil(self) -> Complex<WideF32x8>
fn simd_round(self) -> Complex<WideF32x8>
fn simd_trunc(self) -> Complex<WideF32x8>
fn simd_fract(self) -> Complex<WideF32x8>
fn simd_mul_add( self, a: Complex<WideF32x8>, b: Complex<WideF32x8> ) -> Complex<WideF32x8>
source§fn simd_abs(self) -> <Complex<WideF32x8> as SimdComplexField>::SimdRealField
fn simd_abs(self) -> <Complex<WideF32x8> as SimdComplexField>::SimdRealField
self / self.signum()
. Read morefn simd_exp2(self) -> Complex<WideF32x8>
fn simd_exp_m1(self) -> Complex<WideF32x8>
fn simd_ln_1p(self) -> Complex<WideF32x8>
fn simd_log2(self) -> Complex<WideF32x8>
fn simd_log10(self) -> Complex<WideF32x8>
fn simd_cbrt(self) -> Complex<WideF32x8>
fn simd_powi(self, n: i32) -> Complex<WideF32x8>
source§fn simd_hypot(
self,
b: Complex<WideF32x8>
) -> <Complex<WideF32x8> as SimdComplexField>::SimdRealField
fn simd_hypot( self, b: Complex<WideF32x8> ) -> <Complex<WideF32x8> as SimdComplexField>::SimdRealField
fn simd_sin_cos(self) -> (Complex<WideF32x8>, Complex<WideF32x8>)
fn simd_sinh_cosh(self) -> (Complex<WideF32x8>, Complex<WideF32x8>)
source§fn simd_to_polar(self) -> (Self::SimdRealField, Self::SimdRealField)
fn simd_to_polar(self) -> (Self::SimdRealField, Self::SimdRealField)
source§fn simd_to_exp(self) -> (Self::SimdRealField, Self)
fn simd_to_exp(self) -> (Self::SimdRealField, Self)
source§fn simd_signum(self) -> Self
fn simd_signum(self) -> Self
self / self.modulus()
fn simd_sinhc(self) -> Self
fn simd_coshc(self) -> Self
source§impl SimdComplexField for Complex<WideF64x4>
impl SimdComplexField for Complex<WideF64x4>
source§fn simd_exp(self) -> Complex<WideF64x4>
fn simd_exp(self) -> Complex<WideF64x4>
Computes e^(self)
, where e
is the base of the natural logarithm.
source§fn simd_ln(self) -> Complex<WideF64x4>
fn simd_ln(self) -> Complex<WideF64x4>
Computes the principal value of natural logarithm of self
.
This function has one branch cut:
(-∞, 0]
, continuous from above.
The branch satisfies -π ≤ arg(ln(z)) ≤ π
.
source§fn simd_sqrt(self) -> Complex<WideF64x4>
fn simd_sqrt(self) -> Complex<WideF64x4>
Computes the principal value of the square root of self
.
This function has one branch cut:
(-∞, 0)
, continuous from above.
The branch satisfies -π/2 ≤ arg(sqrt(z)) ≤ π/2
.
source§fn simd_powf(
self,
exp: <Complex<WideF64x4> as SimdComplexField>::SimdRealField
) -> Complex<WideF64x4>
fn simd_powf( self, exp: <Complex<WideF64x4> as SimdComplexField>::SimdRealField ) -> Complex<WideF64x4>
Raises self
to a floating point power.
source§fn simd_log(self, base: WideF64x4) -> Complex<WideF64x4>
fn simd_log(self, base: WideF64x4) -> Complex<WideF64x4>
Returns the logarithm of self
with respect to an arbitrary base.
source§fn simd_powc(self, exp: Complex<WideF64x4>) -> Complex<WideF64x4>
fn simd_powc(self, exp: Complex<WideF64x4>) -> Complex<WideF64x4>
Raises self
to a complex power.
source§fn simd_asin(self) -> Complex<WideF64x4>
fn simd_asin(self) -> Complex<WideF64x4>
Computes the principal value of the inverse sine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Re(asin(z)) ≤ π/2
.
source§fn simd_acos(self) -> Complex<WideF64x4>
fn simd_acos(self) -> Complex<WideF64x4>
Computes the principal value of the inverse cosine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies 0 ≤ Re(acos(z)) ≤ π
.
source§fn simd_atan(self) -> Complex<WideF64x4>
fn simd_atan(self) -> Complex<WideF64x4>
Computes the principal value of the inverse tangent of self
.
This function has two branch cuts:
(-∞i, -i]
, continuous from the left.[i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Re(atan(z)) ≤ π/2
.
source§fn simd_asinh(self) -> Complex<WideF64x4>
fn simd_asinh(self) -> Complex<WideF64x4>
Computes the principal value of inverse hyperbolic sine of self
.
This function has two branch cuts:
(-∞i, -i)
, continuous from the left.(i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Im(asinh(z)) ≤ π/2
.
source§fn simd_acosh(self) -> Complex<WideF64x4>
fn simd_acosh(self) -> Complex<WideF64x4>
Computes the principal value of inverse hyperbolic cosine of self
.
This function has one branch cut:
(-∞, 1)
, continuous from above.
The branch satisfies -π ≤ Im(acosh(z)) ≤ π
and 0 ≤ Re(acosh(z)) < ∞
.
source§fn simd_atanh(self) -> Complex<WideF64x4>
fn simd_atanh(self) -> Complex<WideF64x4>
Computes the principal value of inverse hyperbolic tangent of self
.
This function has two branch cuts:
(-∞, -1]
, continuous from above.[1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Im(atanh(z)) ≤ π/2
.
§type SimdRealField = WideF64x4
type SimdRealField = WideF64x4
source§fn simd_horizontal_sum(self) -> <Complex<WideF64x4> as SimdValue>::Element
fn simd_horizontal_sum(self) -> <Complex<WideF64x4> as SimdValue>::Element
self
.source§fn simd_horizontal_product(self) -> <Complex<WideF64x4> as SimdValue>::Element
fn simd_horizontal_product(self) -> <Complex<WideF64x4> as SimdValue>::Element
self
.source§fn from_simd_real(
re: <Complex<WideF64x4> as SimdComplexField>::SimdRealField
) -> Complex<WideF64x4>
fn from_simd_real( re: <Complex<WideF64x4> as SimdComplexField>::SimdRealField ) -> Complex<WideF64x4>
source§fn simd_real(self) -> <Complex<WideF64x4> as SimdComplexField>::SimdRealField
fn simd_real(self) -> <Complex<WideF64x4> as SimdComplexField>::SimdRealField
source§fn simd_imaginary(
self
) -> <Complex<WideF64x4> as SimdComplexField>::SimdRealField
fn simd_imaginary( self ) -> <Complex<WideF64x4> as SimdComplexField>::SimdRealField
source§fn simd_argument(
self
) -> <Complex<WideF64x4> as SimdComplexField>::SimdRealField
fn simd_argument( self ) -> <Complex<WideF64x4> as SimdComplexField>::SimdRealField
source§fn simd_modulus(self) -> <Complex<WideF64x4> as SimdComplexField>::SimdRealField
fn simd_modulus(self) -> <Complex<WideF64x4> as SimdComplexField>::SimdRealField
source§fn simd_modulus_squared(
self
) -> <Complex<WideF64x4> as SimdComplexField>::SimdRealField
fn simd_modulus_squared( self ) -> <Complex<WideF64x4> as SimdComplexField>::SimdRealField
source§fn simd_norm1(self) -> <Complex<WideF64x4> as SimdComplexField>::SimdRealField
fn simd_norm1(self) -> <Complex<WideF64x4> as SimdComplexField>::SimdRealField
fn simd_recip(self) -> Complex<WideF64x4>
fn simd_conjugate(self) -> Complex<WideF64x4>
source§fn simd_scale(
self,
factor: <Complex<WideF64x4> as SimdComplexField>::SimdRealField
) -> Complex<WideF64x4>
fn simd_scale( self, factor: <Complex<WideF64x4> as SimdComplexField>::SimdRealField ) -> Complex<WideF64x4>
factor
.source§fn simd_unscale(
self,
factor: <Complex<WideF64x4> as SimdComplexField>::SimdRealField
) -> Complex<WideF64x4>
fn simd_unscale( self, factor: <Complex<WideF64x4> as SimdComplexField>::SimdRealField ) -> Complex<WideF64x4>
factor
.fn simd_floor(self) -> Complex<WideF64x4>
fn simd_ceil(self) -> Complex<WideF64x4>
fn simd_round(self) -> Complex<WideF64x4>
fn simd_trunc(self) -> Complex<WideF64x4>
fn simd_fract(self) -> Complex<WideF64x4>
fn simd_mul_add( self, a: Complex<WideF64x4>, b: Complex<WideF64x4> ) -> Complex<WideF64x4>
source§fn simd_abs(self) -> <Complex<WideF64x4> as SimdComplexField>::SimdRealField
fn simd_abs(self) -> <Complex<WideF64x4> as SimdComplexField>::SimdRealField
self / self.signum()
. Read morefn simd_exp2(self) -> Complex<WideF64x4>
fn simd_exp_m1(self) -> Complex<WideF64x4>
fn simd_ln_1p(self) -> Complex<WideF64x4>
fn simd_log2(self) -> Complex<WideF64x4>
fn simd_log10(self) -> Complex<WideF64x4>
fn simd_cbrt(self) -> Complex<WideF64x4>
fn simd_powi(self, n: i32) -> Complex<WideF64x4>
source§fn simd_hypot(
self,
b: Complex<WideF64x4>
) -> <Complex<WideF64x4> as SimdComplexField>::SimdRealField
fn simd_hypot( self, b: Complex<WideF64x4> ) -> <Complex<WideF64x4> as SimdComplexField>::SimdRealField
fn simd_sin_cos(self) -> (Complex<WideF64x4>, Complex<WideF64x4>)
fn simd_sinh_cosh(self) -> (Complex<WideF64x4>, Complex<WideF64x4>)
source§fn simd_to_polar(self) -> (Self::SimdRealField, Self::SimdRealField)
fn simd_to_polar(self) -> (Self::SimdRealField, Self::SimdRealField)
source§fn simd_to_exp(self) -> (Self::SimdRealField, Self)
fn simd_to_exp(self) -> (Self::SimdRealField, Self)
source§fn simd_signum(self) -> Self
fn simd_signum(self) -> Self
self / self.modulus()
fn simd_sinhc(self) -> Self
fn simd_coshc(self) -> Self
source§impl<N> SimdValue for Complex<N>where
N: SimdValue,
impl<N> SimdValue for Complex<N>where
N: SimdValue,
§type Element = Complex<<N as SimdValue>::Element>
type Element = Complex<<N as SimdValue>::Element>
§type SimdBool = <N as SimdValue>::SimdBool
type SimdBool = <N as SimdValue>::SimdBool
self
.source§fn splat(val: <Complex<N> as SimdValue>::Element) -> Complex<N>
fn splat(val: <Complex<N> as SimdValue>::Element) -> Complex<N>
val
.source§fn extract(&self, i: usize) -> <Complex<N> as SimdValue>::Element
fn extract(&self, i: usize) -> <Complex<N> as SimdValue>::Element
self
. Read moresource§unsafe fn extract_unchecked(
&self,
i: usize
) -> <Complex<N> as SimdValue>::Element
unsafe fn extract_unchecked( &self, i: usize ) -> <Complex<N> as SimdValue>::Element
self
without bound-checking. Read moresource§impl<'a, T> SubAssign<&'a Complex<T>> for Complex<T>
impl<'a, T> SubAssign<&'a Complex<T>> for Complex<T>
source§fn sub_assign(&mut self, other: &Complex<T>)
fn sub_assign(&mut self, other: &Complex<T>)
-=
operation. Read moresource§impl<'a, T> SubAssign<&'a T> for Complex<T>
impl<'a, T> SubAssign<&'a T> for Complex<T>
source§fn sub_assign(&mut self, other: &T)
fn sub_assign(&mut self, other: &T)
-=
operation. Read moresource§impl<T> SubAssign<T> for Complex<T>
impl<T> SubAssign<T> for Complex<T>
source§fn sub_assign(&mut self, other: T)
fn sub_assign(&mut self, other: T)
-=
operation. Read moresource§impl<T> SubAssign for Complex<T>
impl<T> SubAssign for Complex<T>
source§fn sub_assign(&mut self, other: Complex<T>)
fn sub_assign(&mut self, other: Complex<T>)
-=
operation. Read moresource§impl<N1, N2> SubsetOf<Complex<N2>> for Complex<N1>where
N2: SupersetOf<N1>,
impl<N1, N2> SubsetOf<Complex<N2>> for Complex<N1>where
N2: SupersetOf<N1>,
source§fn to_superset(&self) -> Complex<N2>
fn to_superset(&self) -> Complex<N2>
self
to the equivalent element of its superset.source§fn from_superset_unchecked(element: &Complex<N2>) -> Complex<N1>
fn from_superset_unchecked(element: &Complex<N2>) -> Complex<N1>
self.to_superset
but without any property checks. Always succeeds.source§fn is_in_subset(c: &Complex<N2>) -> bool
fn is_in_subset(c: &Complex<N2>) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§impl<T> ToPrimitive for Complex<T>where
T: ToPrimitive + Num,
impl<T> ToPrimitive for Complex<T>where
T: ToPrimitive + Num,
source§fn to_usize(&self) -> Option<usize>
fn to_usize(&self) -> Option<usize>
self
to a usize
. If the value cannot be
represented by a usize
, then None
is returned.source§fn to_isize(&self) -> Option<isize>
fn to_isize(&self) -> Option<isize>
self
to an isize
. If the value cannot be
represented by an isize
, then None
is returned.source§fn to_u8(&self) -> Option<u8>
fn to_u8(&self) -> Option<u8>
self
to a u8
. If the value cannot be
represented by a u8
, then None
is returned.source§fn to_u16(&self) -> Option<u16>
fn to_u16(&self) -> Option<u16>
self
to a u16
. If the value cannot be
represented by a u16
, then None
is returned.source§fn to_u32(&self) -> Option<u32>
fn to_u32(&self) -> Option<u32>
self
to a u32
. If the value cannot be
represented by a u32
, then None
is returned.source§fn to_u64(&self) -> Option<u64>
fn to_u64(&self) -> Option<u64>
self
to a u64
. If the value cannot be
represented by a u64
, then None
is returned.source§fn to_i8(&self) -> Option<i8>
fn to_i8(&self) -> Option<i8>
self
to an i8
. If the value cannot be
represented by an i8
, then None
is returned.source§fn to_i16(&self) -> Option<i16>
fn to_i16(&self) -> Option<i16>
self
to an i16
. If the value cannot be
represented by an i16
, then None
is returned.source§fn to_i32(&self) -> Option<i32>
fn to_i32(&self) -> Option<i32>
self
to an i32
. If the value cannot be
represented by an i32
, then None
is returned.source§fn to_i64(&self) -> Option<i64>
fn to_i64(&self) -> Option<i64>
self
to an i64
. If the value cannot be
represented by an i64
, then None
is returned.source§fn to_u128(&self) -> Option<u128>
fn to_u128(&self) -> Option<u128>
self
to a u128
. If the value cannot be
represented by a u128
(u64
under the default implementation), then
None
is returned. Read moresource§fn to_i128(&self) -> Option<i128>
fn to_i128(&self) -> Option<i128>
self
to an i128
. If the value cannot be
represented by an i128
(i64
under the default implementation), then
None
is returned. Read moreimpl<T> Copy for Complex<T>where
T: Copy,
impl<T> Eq for Complex<T>where
T: Eq,
impl<N> Field for Complex<N>
impl<N> PrimitiveSimdValue for Complex<N>where
N: PrimitiveSimdValue,
impl<T> StructuralPartialEq for Complex<T>
Auto Trait Implementations§
impl<T> Freeze for Complex<T>where
T: Freeze,
impl<T> RefUnwindSafe for Complex<T>where
T: RefUnwindSafe,
impl<T> Send for Complex<T>where
T: Send,
impl<T> Sync for Complex<T>where
T: Sync,
impl<T> Unpin for Complex<T>where
T: Unpin,
impl<T> UnwindSafe for Complex<T>where
T: UnwindSafe,
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> SimdComplexField for Twhere
T: ComplexField,
impl<T> SimdComplexField for Twhere
T: ComplexField,
§type SimdRealField = <T as ComplexField>::RealField
type SimdRealField = <T as ComplexField>::RealField
source§fn from_simd_real(re: <T as SimdComplexField>::SimdRealField) -> T
fn from_simd_real(re: <T as SimdComplexField>::SimdRealField) -> T
source§fn simd_real(self) -> <T as SimdComplexField>::SimdRealField
fn simd_real(self) -> <T as SimdComplexField>::SimdRealField
source§fn simd_imaginary(self) -> <T as SimdComplexField>::SimdRealField
fn simd_imaginary(self) -> <T as SimdComplexField>::SimdRealField
source§fn simd_modulus(self) -> <T as SimdComplexField>::SimdRealField
fn simd_modulus(self) -> <T as SimdComplexField>::SimdRealField
source§fn simd_modulus_squared(self) -> <T as SimdComplexField>::SimdRealField
fn simd_modulus_squared(self) -> <T as SimdComplexField>::SimdRealField
source§fn simd_argument(self) -> <T as SimdComplexField>::SimdRealField
fn simd_argument(self) -> <T as SimdComplexField>::SimdRealField
source§fn simd_norm1(self) -> <T as SimdComplexField>::SimdRealField
fn simd_norm1(self) -> <T as SimdComplexField>::SimdRealField
source§fn simd_scale(self, factor: <T as SimdComplexField>::SimdRealField) -> T
fn simd_scale(self, factor: <T as SimdComplexField>::SimdRealField) -> T
factor
.source§fn simd_unscale(self, factor: <T as SimdComplexField>::SimdRealField) -> T
fn simd_unscale(self, factor: <T as SimdComplexField>::SimdRealField) -> T
factor
.source§fn simd_to_polar(
self
) -> (<T as SimdComplexField>::SimdRealField, <T as SimdComplexField>::SimdRealField)
fn simd_to_polar( self ) -> (<T as SimdComplexField>::SimdRealField, <T as SimdComplexField>::SimdRealField)
source§fn simd_to_exp(self) -> (<T as SimdComplexField>::SimdRealField, T)
fn simd_to_exp(self) -> (<T as SimdComplexField>::SimdRealField, T)
source§fn simd_signum(self) -> T
fn simd_signum(self) -> T
self / self.modulus()
fn simd_floor(self) -> T
fn simd_ceil(self) -> T
fn simd_round(self) -> T
fn simd_trunc(self) -> T
fn simd_fract(self) -> T
fn simd_mul_add(self, a: T, b: T) -> T
source§fn simd_abs(self) -> <T as SimdComplexField>::SimdRealField
fn simd_abs(self) -> <T as SimdComplexField>::SimdRealField
self / self.signum()
. Read moresource§fn simd_hypot(self, other: T) -> <T as SimdComplexField>::SimdRealField
fn simd_hypot(self, other: T) -> <T as SimdComplexField>::SimdRealField
fn simd_recip(self) -> T
fn simd_conjugate(self) -> T
fn simd_sin(self) -> T
fn simd_cos(self) -> T
fn simd_sin_cos(self) -> (T, T)
fn simd_sinh_cosh(self) -> (T, T)
fn simd_tan(self) -> T
fn simd_asin(self) -> T
fn simd_acos(self) -> T
fn simd_atan(self) -> T
fn simd_sinh(self) -> T
fn simd_cosh(self) -> T
fn simd_tanh(self) -> T
fn simd_asinh(self) -> T
fn simd_acosh(self) -> T
fn simd_atanh(self) -> T
fn simd_sinhc(self) -> T
fn simd_coshc(self) -> T
fn simd_log(self, base: <T as SimdComplexField>::SimdRealField) -> T
fn simd_log2(self) -> T
fn simd_log10(self) -> T
fn simd_ln(self) -> T
fn simd_ln_1p(self) -> T
fn simd_sqrt(self) -> T
fn simd_exp(self) -> T
fn simd_exp2(self) -> T
fn simd_exp_m1(self) -> T
fn simd_powi(self, n: i32) -> T
fn simd_powf(self, n: <T as SimdComplexField>::SimdRealField) -> T
fn simd_powc(self, n: T) -> T
fn simd_cbrt(self) -> T
source§fn simd_horizontal_sum(self) -> <T as SimdValue>::Element
fn simd_horizontal_sum(self) -> <T as SimdValue>::Element
self
.source§fn simd_horizontal_product(self) -> <T as SimdValue>::Element
fn simd_horizontal_product(self) -> <T as SimdValue>::Element
self
.source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.