pub struct Interned<T>(pub &'static T)
where
T: 'static + ?Sized;
Expand description
An interned value. Will stay valid until the end of the program and will not drop.
For details on interning, see the module level docs.
§Comparisons
Interned values use reference equality, meaning they implement Eq
and Hash
regardless of whether T
implements these traits.
Two interned values are only guaranteed to compare equal if they were interned using
the same Interner
instance.
#[derive(PartialEq, Eq, Hash, Debug)]
struct Value(i32);
impl Internable for Value {
// ...
}
let interner_1 = Interner::new();
let interner_2 = Interner::new();
// Even though both values are identical, their interned forms do not
// compare equal as they use different interner instances.
assert_ne!(interner_1.intern(&Value(42)), interner_2.intern(&Value(42)));
Tuple Fields§
§0: &'static T
Trait Implementations§
source§impl AppLabel for Interned<dyn AppLabel>
impl AppLabel for Interned<dyn AppLabel>
source§impl ScheduleLabel for Interned<dyn ScheduleLabel>
impl ScheduleLabel for Interned<dyn ScheduleLabel>
source§impl SystemSet for Interned<dyn SystemSet>
impl SystemSet for Interned<dyn SystemSet>
source§fn as_dyn_eq(&self) -> &(dyn DynEq + 'static)
fn as_dyn_eq(&self) -> &(dyn DynEq + 'static)
Casts this value to a form where it can be compared with other type-erased values.
source§fn system_type(&self) -> Option<TypeId>
fn system_type(&self) -> Option<TypeId>
Returns
Some
if this system set is a SystemTypeSet
.source§fn is_anonymous(&self) -> bool
fn is_anonymous(&self) -> bool
Returns
true
if this system set is an AnonymousSet
.impl<T> Copy for Interned<T>where
T: ?Sized,
impl<T> Eq for Interned<T>where
T: Internable + ?Sized,
Auto Trait Implementations§
impl<T> Freeze for Interned<T>where
T: ?Sized,
impl<T> RefUnwindSafe for Interned<T>where
T: RefUnwindSafe + ?Sized,
impl<T> Send for Interned<T>
impl<T> Sync for Interned<T>
impl<T> Unpin for Interned<T>where
T: ?Sized,
impl<T> UnwindSafe for Interned<T>where
T: RefUnwindSafe + ?Sized,
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
🔬This is a nightly-only experimental API. (
clone_to_uninit
)source§impl<T, C, D> Curve<T> for D
impl<T, C, D> Curve<T> for D
source§fn sample_unchecked(&self, t: f32) -> T
fn sample_unchecked(&self, t: f32) -> T
Sample a point on this curve at the parameter value
t
, extracting the associated value.
This is the unchecked version of sampling, which should only be used if the sample time t
is already known to lie within the curve’s domain. Read moresource§fn sample(&self, t: f32) -> Option<T>
fn sample(&self, t: f32) -> Option<T>
Sample a point on this curve at the parameter value
t
, returning None
if the point is
outside of the curve’s domain.source§fn sample_clamped(&self, t: f32) -> T
fn sample_clamped(&self, t: f32) -> T
Sample a point on this curve at the parameter value
t
, clamping t
to lie inside the
domain of the curve.source§fn sample_iter(
&self,
iter: impl IntoIterator<Item = f32>,
) -> impl Iterator<Item = Option<T>>where
Self: Sized,
fn sample_iter(
&self,
iter: impl IntoIterator<Item = f32>,
) -> impl Iterator<Item = Option<T>>where
Self: Sized,
Sample a collection of
n >= 0
points on this curve at the parameter values t_n
,
returning None
if the point is outside of the curve’s domain. Read moresource§fn sample_iter_unchecked(
&self,
iter: impl IntoIterator<Item = f32>,
) -> impl Iterator<Item = T>where
Self: Sized,
fn sample_iter_unchecked(
&self,
iter: impl IntoIterator<Item = f32>,
) -> impl Iterator<Item = T>where
Self: Sized,
Sample a collection of
n >= 0
points on this curve at the parameter values t_n
,
extracting the associated values. This is the unchecked version of sampling, which should
only be used if the sample times t_n
are already known to lie within the curve’s domain. Read moresource§fn sample_iter_clamped(
&self,
iter: impl IntoIterator<Item = f32>,
) -> impl Iterator<Item = T>where
Self: Sized,
fn sample_iter_clamped(
&self,
iter: impl IntoIterator<Item = f32>,
) -> impl Iterator<Item = T>where
Self: Sized,
Sample a collection of
n >= 0
points on this curve at the parameter values t_n
,
clamping t_n
to lie inside the domain of the curve. Read moresource§fn map<S, F>(self, f: F) -> MapCurve<T, S, Self, F>
fn map<S, F>(self, f: F) -> MapCurve<T, S, Self, F>
Create a new curve by mapping the values of this curve via a function
f
; i.e., if the
sample at time t
for this curve is x
, the value at time t
on the new curve will be
f(x)
.source§fn reparametrize<F>(self, domain: Interval, f: F) -> ReparamCurve<T, Self, F>
fn reparametrize<F>(self, domain: Interval, f: F) -> ReparamCurve<T, Self, F>
Create a new
Curve
whose parameter space is related to the parameter space of this curve
by f
. For each time t
, the sample from the new curve at time t
is the sample from
this curve at time f(t)
. The given domain
will be the domain of the new curve. The
function f
is expected to take domain
into self.domain()
. Read moresource§fn reparametrize_linear(
self,
domain: Interval,
) -> Result<LinearReparamCurve<T, Self>, LinearReparamError>where
Self: Sized,
fn reparametrize_linear(
self,
domain: Interval,
) -> Result<LinearReparamCurve<T, Self>, LinearReparamError>where
Self: Sized,
Linearly reparametrize this
Curve
, producing a new curve whose domain is the given
domain
instead of the current one. This operation is only valid for curves with bounded
domains; if either this curve’s domain or the given domain
is unbounded, an error is
returned.source§fn reparametrize_by_curve<C>(self, other: C) -> CurveReparamCurve<T, Self, C>
fn reparametrize_by_curve<C>(self, other: C) -> CurveReparamCurve<T, Self, C>
source§fn graph(self) -> GraphCurve<T, Self>where
Self: Sized,
fn graph(self) -> GraphCurve<T, Self>where
Self: Sized,
source§fn chain<C>(self, other: C) -> Result<ChainCurve<T, Self, C>, ChainError>
fn chain<C>(self, other: C) -> Result<ChainCurve<T, Self, C>, ChainError>
source§fn reverse(self) -> Result<ReverseCurve<T, Self>, ReverseError>where
Self: Sized,
fn reverse(self) -> Result<ReverseCurve<T, Self>, ReverseError>where
Self: Sized,
source§fn repeat(self, count: usize) -> Result<RepeatCurve<T, Self>, RepeatError>where
Self: Sized,
fn repeat(self, count: usize) -> Result<RepeatCurve<T, Self>, RepeatError>where
Self: Sized,
source§fn forever(self) -> Result<ForeverCurve<T, Self>, RepeatError>where
Self: Sized,
fn forever(self) -> Result<ForeverCurve<T, Self>, RepeatError>where
Self: Sized,
source§fn ping_pong(self) -> Result<PingPongCurve<T, Self>, PingPongError>where
Self: Sized,
fn ping_pong(self) -> Result<PingPongCurve<T, Self>, PingPongError>where
Self: Sized,
source§fn chain_continue<C>(
self,
other: C,
) -> Result<ContinuationCurve<T, Self, C>, ChainError>
fn chain_continue<C>( self, other: C, ) -> Result<ContinuationCurve<T, Self, C>, ChainError>
source§fn resample<I>(
&self,
segments: usize,
interpolation: I,
) -> Result<SampleCurve<T, I>, ResamplingError>
fn resample<I>( &self, segments: usize, interpolation: I, ) -> Result<SampleCurve<T, I>, ResamplingError>
Resample this
Curve
to produce a new one that is defined by interpolation over equally
spaced sample values, using the provided interpolation
to interpolate between adjacent samples.
The curve is interpolated on segments
segments between samples. For example, if segments
is 1,
only the start and end points of the curve are used as samples; if segments
is 2, a sample at
the midpoint is taken as well, and so on. If segments
is zero, or if this curve has an unbounded
domain, then a ResamplingError
is returned. Read moresource§fn resample_auto(
&self,
segments: usize,
) -> Result<SampleAutoCurve<T>, ResamplingError>where
Self: Sized,
T: StableInterpolate,
fn resample_auto(
&self,
segments: usize,
) -> Result<SampleAutoCurve<T>, ResamplingError>where
Self: Sized,
T: StableInterpolate,
Resample this
Curve
to produce a new one that is defined by interpolation over equally
spaced sample values, using automatic interpolation to interpolate between adjacent samples.
The curve is interpolated on segments
segments between samples. For example, if segments
is 1,
only the start and end points of the curve are used as samples; if segments
is 2, a sample at
the midpoint is taken as well, and so on. If segments
is zero, or if this curve has an unbounded
domain, then a ResamplingError
is returned.source§fn samples(
&self,
samples: usize,
) -> Result<impl Iterator<Item = T>, ResamplingError>where
Self: Sized,
fn samples(
&self,
samples: usize,
) -> Result<impl Iterator<Item = T>, ResamplingError>where
Self: Sized,
Extract an iterator over evenly-spaced samples from this curve. If
samples
is less than 2
or if this curve has unbounded domain, then an error is returned instead.source§fn resample_uneven<I>(
&self,
sample_times: impl IntoIterator<Item = f32>,
interpolation: I,
) -> Result<UnevenSampleCurve<T, I>, ResamplingError>
fn resample_uneven<I>( &self, sample_times: impl IntoIterator<Item = f32>, interpolation: I, ) -> Result<UnevenSampleCurve<T, I>, ResamplingError>
source§fn resample_uneven_auto(
&self,
sample_times: impl IntoIterator<Item = f32>,
) -> Result<UnevenSampleAutoCurve<T>, ResamplingError>where
Self: Sized,
T: StableInterpolate,
fn resample_uneven_auto(
&self,
sample_times: impl IntoIterator<Item = f32>,
) -> Result<UnevenSampleAutoCurve<T>, ResamplingError>where
Self: Sized,
T: StableInterpolate,
Resample this
Curve
to produce a new one that is defined by automatic interpolation over
samples taken at the given set of times. The given sample_times
are expected to contain at least
two valid times within the curve’s domain interval. Read moresource§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Convert
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
.source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Convert
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Convert
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Convert
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.source§impl<T> DowncastSync for T
impl<T> DowncastSync for T
source§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
source§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
source§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
source§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
Compare self to
key
and return true
if they are equal.source§impl<T> Instrument for T
impl<T> Instrument for T
source§fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
source§fn in_current_span(self) -> Instrumented<Self> ⓘ
fn in_current_span(self) -> Instrumented<Self> ⓘ
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§impl<S> IntoSystemSet<()> for Swhere
S: SystemSet,
impl<S> IntoSystemSet<()> for Swhere
S: SystemSet,
source§impl<S> IntoSystemSetConfigs for Swhere
S: SystemSet,
impl<S> IntoSystemSetConfigs for Swhere
S: SystemSet,
fn into_configs(self) -> NodeConfigs<Interned<dyn SystemSet>>
source§fn in_set(self, set: impl SystemSet) -> NodeConfigs<Interned<dyn SystemSet>>
fn in_set(self, set: impl SystemSet) -> NodeConfigs<Interned<dyn SystemSet>>
Add these system sets to the provided
set
.source§fn before<M>(
self,
set: impl IntoSystemSet<M>,
) -> NodeConfigs<Interned<dyn SystemSet>>
fn before<M>( self, set: impl IntoSystemSet<M>, ) -> NodeConfigs<Interned<dyn SystemSet>>
source§fn after<M>(
self,
set: impl IntoSystemSet<M>,
) -> NodeConfigs<Interned<dyn SystemSet>>
fn after<M>( self, set: impl IntoSystemSet<M>, ) -> NodeConfigs<Interned<dyn SystemSet>>
source§fn before_ignore_deferred<M>(
self,
set: impl IntoSystemSet<M>,
) -> NodeConfigs<Interned<dyn SystemSet>>
fn before_ignore_deferred<M>( self, set: impl IntoSystemSet<M>, ) -> NodeConfigs<Interned<dyn SystemSet>>
Run before all systems in
set
. Read moresource§fn after_ignore_deferred<M>(
self,
set: impl IntoSystemSet<M>,
) -> NodeConfigs<Interned<dyn SystemSet>>
fn after_ignore_deferred<M>( self, set: impl IntoSystemSet<M>, ) -> NodeConfigs<Interned<dyn SystemSet>>
Run after all systems in
set
. Read moresource§fn ambiguous_with<M>(
self,
set: impl IntoSystemSet<M>,
) -> NodeConfigs<Interned<dyn SystemSet>>
fn ambiguous_with<M>( self, set: impl IntoSystemSet<M>, ) -> NodeConfigs<Interned<dyn SystemSet>>
Suppress warnings and errors that would result from systems in these sets having ambiguities
(conflicting access but indeterminate order) with systems in
set
.source§fn ambiguous_with_all(self) -> NodeConfigs<Interned<dyn SystemSet>>
fn ambiguous_with_all(self) -> NodeConfigs<Interned<dyn SystemSet>>
Suppress warnings and errors that would result from systems in these sets having ambiguities
(conflicting access but indeterminate order) with any other system.
source§fn chain(self) -> NodeConfigs<Interned<dyn SystemSet>>
fn chain(self) -> NodeConfigs<Interned<dyn SystemSet>>
Treat this collection as a sequence of system sets. Read more
source§fn chain_ignore_deferred(self) -> NodeConfigs<Interned<dyn SystemSet>>
fn chain_ignore_deferred(self) -> NodeConfigs<Interned<dyn SystemSet>>
Treat this collection as a sequence of systems. Read more