#[repr(C, align(1))]pub struct AtomicBool { /* private fields */ }Expand description
A boolean type which can be safely shared between threads.
This type has the same size, alignment, and bit validity as a bool.
Note: This type is only available on platforms that support atomic
loads and stores of u8.
Implementations§
Source§impl AtomicBool
impl AtomicBool
1.0.0 (const: 1.24.0) · Sourcepub const fn new(v: bool) -> AtomicBool
pub const fn new(v: bool) -> AtomicBool
Creates a new AtomicBool.
§Examples
use std::sync::atomic::AtomicBool;
let atomic_true = AtomicBool::new(true);
let atomic_false = AtomicBool::new(false);1.75.0 (const: 1.84.0) · Sourcepub const unsafe fn from_ptr<'a>(ptr: *mut bool) -> &'a AtomicBool
pub const unsafe fn from_ptr<'a>(ptr: *mut bool) -> &'a AtomicBool
Creates a new AtomicBool from a pointer.
§Examples
use std::sync::atomic::{self, AtomicBool};
// Get a pointer to an allocated value
let ptr: *mut bool = Box::into_raw(Box::new(false));
assert!(ptr.cast::<AtomicBool>().is_aligned());
{
// Create an atomic view of the allocated value
let atomic = unsafe { AtomicBool::from_ptr(ptr) };
// Use `atomic` for atomic operations, possibly share it with other threads
atomic.store(true, atomic::Ordering::Relaxed);
}
// It's ok to non-atomically access the value behind `ptr`,
// since the reference to the atomic ended its lifetime in the block above
assert_eq!(unsafe { *ptr }, true);
// Deallocate the value
unsafe { drop(Box::from_raw(ptr)) }§Safety
ptrmust be aligned toalign_of::<AtomicBool>()(note that this is always true, sincealign_of::<AtomicBool>() == 1).ptrmust be valid for both reads and writes for the whole lifetime'a.- You must adhere to the Memory model for atomic accesses. In particular, it is not allowed to mix conflicting atomic and non-atomic accesses, or atomic accesses of different sizes, without synchronization.
1.15.0 · Sourcepub fn get_mut(&mut self) -> &mut bool
pub fn get_mut(&mut self) -> &mut bool
Returns a mutable reference to the underlying bool.
This is safe because the mutable reference guarantees that no other threads are concurrently accessing the atomic data.
§Examples
use std::sync::atomic::{AtomicBool, Ordering};
let mut some_bool = AtomicBool::new(true);
assert_eq!(*some_bool.get_mut(), true);
*some_bool.get_mut() = false;
assert_eq!(some_bool.load(Ordering::SeqCst), false);Sourcepub fn from_mut(v: &mut bool) -> &mut AtomicBool
🔬This is a nightly-only experimental API. (atomic_from_mut)
pub fn from_mut(v: &mut bool) -> &mut AtomicBool
atomic_from_mut)Gets atomic access to a &mut bool.
§Examples
#![feature(atomic_from_mut)]
use std::sync::atomic::{AtomicBool, Ordering};
let mut some_bool = true;
let a = AtomicBool::from_mut(&mut some_bool);
a.store(false, Ordering::Relaxed);
assert_eq!(some_bool, false);Sourcepub fn get_mut_slice(this: &mut [AtomicBool]) -> &mut [bool]
🔬This is a nightly-only experimental API. (atomic_from_mut)
pub fn get_mut_slice(this: &mut [AtomicBool]) -> &mut [bool]
atomic_from_mut)Gets non-atomic access to a &mut [AtomicBool] slice.
This is safe because the mutable reference guarantees that no other threads are concurrently accessing the atomic data.
§Examples
#![feature(atomic_from_mut)]
use std::sync::atomic::{AtomicBool, Ordering};
let mut some_bools = [const { AtomicBool::new(false) }; 10];
let view: &mut [bool] = AtomicBool::get_mut_slice(&mut some_bools);
assert_eq!(view, [false; 10]);
view[..5].copy_from_slice(&[true; 5]);
std::thread::scope(|s| {
for t in &some_bools[..5] {
s.spawn(move || assert_eq!(t.load(Ordering::Relaxed), true));
}
for f in &some_bools[5..] {
s.spawn(move || assert_eq!(f.load(Ordering::Relaxed), false));
}
});Sourcepub fn from_mut_slice(v: &mut [bool]) -> &mut [AtomicBool]
🔬This is a nightly-only experimental API. (atomic_from_mut)
pub fn from_mut_slice(v: &mut [bool]) -> &mut [AtomicBool]
atomic_from_mut)Gets atomic access to a &mut [bool] slice.
§Examples
#![feature(atomic_from_mut)]
use std::sync::atomic::{AtomicBool, Ordering};
let mut some_bools = [false; 10];
let a = &*AtomicBool::from_mut_slice(&mut some_bools);
std::thread::scope(|s| {
for i in 0..a.len() {
s.spawn(move || a[i].store(true, Ordering::Relaxed));
}
});
assert_eq!(some_bools, [true; 10]);1.15.0 (const: 1.79.0) · Sourcepub const fn into_inner(self) -> bool
pub const fn into_inner(self) -> bool
Consumes the atomic and returns the contained value.
This is safe because passing self by value guarantees that no other threads are
concurrently accessing the atomic data.
§Examples
use std::sync::atomic::AtomicBool;
let some_bool = AtomicBool::new(true);
assert_eq!(some_bool.into_inner(), true);1.0.0 · Sourcepub fn load(&self, order: Ordering) -> bool
pub fn load(&self, order: Ordering) -> bool
Loads a value from the bool.
load takes an Ordering argument which describes the memory ordering
of this operation. Possible values are SeqCst, Acquire and Relaxed.
§Panics
Panics if order is Release or AcqRel.
§Examples
use std::sync::atomic::{AtomicBool, Ordering};
let some_bool = AtomicBool::new(true);
assert_eq!(some_bool.load(Ordering::Relaxed), true);1.0.0 · Sourcepub fn store(&self, val: bool, order: Ordering)
pub fn store(&self, val: bool, order: Ordering)
Stores a value into the bool.
store takes an Ordering argument which describes the memory ordering
of this operation. Possible values are SeqCst, Release and Relaxed.
§Panics
Panics if order is Acquire or AcqRel.
§Examples
use std::sync::atomic::{AtomicBool, Ordering};
let some_bool = AtomicBool::new(true);
some_bool.store(false, Ordering::Relaxed);
assert_eq!(some_bool.load(Ordering::Relaxed), false);1.0.0 · Sourcepub fn swap(&self, val: bool, order: Ordering) -> bool
pub fn swap(&self, val: bool, order: Ordering) -> bool
Stores a value into the bool, returning the previous value.
swap takes an Ordering argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire makes the store part of this operation Relaxed, and
using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic
operations on u8.
§Examples
use std::sync::atomic::{AtomicBool, Ordering};
let some_bool = AtomicBool::new(true);
assert_eq!(some_bool.swap(false, Ordering::Relaxed), true);
assert_eq!(some_bool.load(Ordering::Relaxed), false);1.0.0 · Sourcepub fn compare_and_swap(
&self,
current: bool,
new: bool,
order: Ordering,
) -> bool
👎Deprecated since 1.50.0: Use compare_exchange or compare_exchange_weak instead
pub fn compare_and_swap( &self, current: bool, new: bool, order: Ordering, ) -> bool
compare_exchange or compare_exchange_weak insteadStores a value into the bool if the current value is the same as the current value.
The return value is always the previous value. If it is equal to current, then the value
was updated.
compare_and_swap also takes an Ordering argument which describes the memory
ordering of this operation. Notice that even when using AcqRel, the operation
might fail and hence just perform an Acquire load, but not have Release semantics.
Using Acquire makes the store part of this operation Relaxed if it
happens, and using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic
operations on u8.
§Migrating to compare_exchange and compare_exchange_weak
compare_and_swap is equivalent to compare_exchange with the following mapping for
memory orderings:
| Original | Success | Failure |
|---|---|---|
| Relaxed | Relaxed | Relaxed |
| Acquire | Acquire | Acquire |
| Release | Release | Relaxed |
| AcqRel | AcqRel | Acquire |
| SeqCst | SeqCst | SeqCst |
compare_and_swap and compare_exchange also differ in their return type. You can use
compare_exchange(...).unwrap_or_else(|x| x) to recover the behavior of compare_and_swap,
but in most cases it is more idiomatic to check whether the return value is Ok or Err
rather than to infer success vs failure based on the value that was read.
During migration, consider whether it makes sense to use compare_exchange_weak instead.
compare_exchange_weak is allowed to fail spuriously even when the comparison succeeds,
which allows the compiler to generate better assembly code when the compare and swap
is used in a loop.
§Examples
use std::sync::atomic::{AtomicBool, Ordering};
let some_bool = AtomicBool::new(true);
assert_eq!(some_bool.compare_and_swap(true, false, Ordering::Relaxed), true);
assert_eq!(some_bool.load(Ordering::Relaxed), false);
assert_eq!(some_bool.compare_and_swap(true, true, Ordering::Relaxed), false);
assert_eq!(some_bool.load(Ordering::Relaxed), false);1.10.0 · Sourcepub fn compare_exchange(
&self,
current: bool,
new: bool,
success: Ordering,
failure: Ordering,
) -> Result<bool, bool>
pub fn compare_exchange( &self, current: bool, new: bool, success: Ordering, failure: Ordering, ) -> Result<bool, bool>
Stores a value into the bool if the current value is the same as the current value.
The return value is a result indicating whether the new value was written and containing
the previous value. On success this value is guaranteed to be equal to current.
compare_exchange takes two Ordering arguments to describe the memory
ordering of this operation. success describes the required ordering for the
read-modify-write operation that takes place if the comparison with current succeeds.
failure describes the required ordering for the load operation that takes place when
the comparison fails. Using Acquire as success ordering makes the store part
of this operation Relaxed, and using Release makes the successful load
Relaxed. The failure ordering can only be SeqCst, Acquire or Relaxed.
Note: This method is only available on platforms that support atomic
operations on u8.
§Examples
use std::sync::atomic::{AtomicBool, Ordering};
let some_bool = AtomicBool::new(true);
assert_eq!(some_bool.compare_exchange(true,
false,
Ordering::Acquire,
Ordering::Relaxed),
Ok(true));
assert_eq!(some_bool.load(Ordering::Relaxed), false);
assert_eq!(some_bool.compare_exchange(true, true,
Ordering::SeqCst,
Ordering::Acquire),
Err(false));
assert_eq!(some_bool.load(Ordering::Relaxed), false);§Considerations
compare_exchange is a compare-and-swap operation and thus exhibits the usual downsides
of CAS operations. In particular, a load of the value followed by a successful
compare_exchange with the previous load does not ensure that other threads have not
changed the value in the interim. This is usually important when the equality check in
the compare_exchange is being used to check the identity of a value, but equality
does not necessarily imply identity. In this case, compare_exchange can lead to the
ABA problem.
1.10.0 · Sourcepub fn compare_exchange_weak(
&self,
current: bool,
new: bool,
success: Ordering,
failure: Ordering,
) -> Result<bool, bool>
pub fn compare_exchange_weak( &self, current: bool, new: bool, success: Ordering, failure: Ordering, ) -> Result<bool, bool>
Stores a value into the bool if the current value is the same as the current value.
Unlike AtomicBool::compare_exchange, this function is allowed to spuriously fail even when the
comparison succeeds, which can result in more efficient code on some platforms. The
return value is a result indicating whether the new value was written and containing the
previous value.
compare_exchange_weak takes two Ordering arguments to describe the memory
ordering of this operation. success describes the required ordering for the
read-modify-write operation that takes place if the comparison with current succeeds.
failure describes the required ordering for the load operation that takes place when
the comparison fails. Using Acquire as success ordering makes the store part
of this operation Relaxed, and using Release makes the successful load
Relaxed. The failure ordering can only be SeqCst, Acquire or Relaxed.
Note: This method is only available on platforms that support atomic
operations on u8.
§Examples
use std::sync::atomic::{AtomicBool, Ordering};
let val = AtomicBool::new(false);
let new = true;
let mut old = val.load(Ordering::Relaxed);
loop {
match val.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
Ok(_) => break,
Err(x) => old = x,
}
}§Considerations
compare_exchange is a compare-and-swap operation and thus exhibits the usual downsides
of CAS operations. In particular, a load of the value followed by a successful
compare_exchange with the previous load does not ensure that other threads have not
changed the value in the interim. This is usually important when the equality check in
the compare_exchange is being used to check the identity of a value, but equality
does not necessarily imply identity. In this case, compare_exchange can lead to the
ABA problem.
1.0.0 · Sourcepub fn fetch_and(&self, val: bool, order: Ordering) -> bool
pub fn fetch_and(&self, val: bool, order: Ordering) -> bool
Logical “and” with a boolean value.
Performs a logical “and” operation on the current value and the argument val, and sets
the new value to the result.
Returns the previous value.
fetch_and takes an Ordering argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire makes the store part of this operation Relaxed, and
using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic
operations on u8.
§Examples
use std::sync::atomic::{AtomicBool, Ordering};
let foo = AtomicBool::new(true);
assert_eq!(foo.fetch_and(false, Ordering::SeqCst), true);
assert_eq!(foo.load(Ordering::SeqCst), false);
let foo = AtomicBool::new(true);
assert_eq!(foo.fetch_and(true, Ordering::SeqCst), true);
assert_eq!(foo.load(Ordering::SeqCst), true);
let foo = AtomicBool::new(false);
assert_eq!(foo.fetch_and(false, Ordering::SeqCst), false);
assert_eq!(foo.load(Ordering::SeqCst), false);1.0.0 · Sourcepub fn fetch_nand(&self, val: bool, order: Ordering) -> bool
pub fn fetch_nand(&self, val: bool, order: Ordering) -> bool
Logical “nand” with a boolean value.
Performs a logical “nand” operation on the current value and the argument val, and sets
the new value to the result.
Returns the previous value.
fetch_nand takes an Ordering argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire makes the store part of this operation Relaxed, and
using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic
operations on u8.
§Examples
use std::sync::atomic::{AtomicBool, Ordering};
let foo = AtomicBool::new(true);
assert_eq!(foo.fetch_nand(false, Ordering::SeqCst), true);
assert_eq!(foo.load(Ordering::SeqCst), true);
let foo = AtomicBool::new(true);
assert_eq!(foo.fetch_nand(true, Ordering::SeqCst), true);
assert_eq!(foo.load(Ordering::SeqCst) as usize, 0);
assert_eq!(foo.load(Ordering::SeqCst), false);
let foo = AtomicBool::new(false);
assert_eq!(foo.fetch_nand(false, Ordering::SeqCst), false);
assert_eq!(foo.load(Ordering::SeqCst), true);1.0.0 · Sourcepub fn fetch_or(&self, val: bool, order: Ordering) -> bool
pub fn fetch_or(&self, val: bool, order: Ordering) -> bool
Logical “or” with a boolean value.
Performs a logical “or” operation on the current value and the argument val, and sets the
new value to the result.
Returns the previous value.
fetch_or takes an Ordering argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire makes the store part of this operation Relaxed, and
using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic
operations on u8.
§Examples
use std::sync::atomic::{AtomicBool, Ordering};
let foo = AtomicBool::new(true);
assert_eq!(foo.fetch_or(false, Ordering::SeqCst), true);
assert_eq!(foo.load(Ordering::SeqCst), true);
let foo = AtomicBool::new(true);
assert_eq!(foo.fetch_or(true, Ordering::SeqCst), true);
assert_eq!(foo.load(Ordering::SeqCst), true);
let foo = AtomicBool::new(false);
assert_eq!(foo.fetch_or(false, Ordering::SeqCst), false);
assert_eq!(foo.load(Ordering::SeqCst), false);1.0.0 · Sourcepub fn fetch_xor(&self, val: bool, order: Ordering) -> bool
pub fn fetch_xor(&self, val: bool, order: Ordering) -> bool
Logical “xor” with a boolean value.
Performs a logical “xor” operation on the current value and the argument val, and sets
the new value to the result.
Returns the previous value.
fetch_xor takes an Ordering argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire makes the store part of this operation Relaxed, and
using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic
operations on u8.
§Examples
use std::sync::atomic::{AtomicBool, Ordering};
let foo = AtomicBool::new(true);
assert_eq!(foo.fetch_xor(false, Ordering::SeqCst), true);
assert_eq!(foo.load(Ordering::SeqCst), true);
let foo = AtomicBool::new(true);
assert_eq!(foo.fetch_xor(true, Ordering::SeqCst), true);
assert_eq!(foo.load(Ordering::SeqCst), false);
let foo = AtomicBool::new(false);
assert_eq!(foo.fetch_xor(false, Ordering::SeqCst), false);
assert_eq!(foo.load(Ordering::SeqCst), false);1.81.0 · Sourcepub fn fetch_not(&self, order: Ordering) -> bool
pub fn fetch_not(&self, order: Ordering) -> bool
Logical “not” with a boolean value.
Performs a logical “not” operation on the current value, and sets the new value to the result.
Returns the previous value.
fetch_not takes an Ordering argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire makes the store part of this operation Relaxed, and
using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic
operations on u8.
§Examples
use std::sync::atomic::{AtomicBool, Ordering};
let foo = AtomicBool::new(true);
assert_eq!(foo.fetch_not(Ordering::SeqCst), true);
assert_eq!(foo.load(Ordering::SeqCst), false);
let foo = AtomicBool::new(false);
assert_eq!(foo.fetch_not(Ordering::SeqCst), false);
assert_eq!(foo.load(Ordering::SeqCst), true);1.70.0 (const: 1.70.0) · Sourcepub const fn as_ptr(&self) -> *mut bool
pub const fn as_ptr(&self) -> *mut bool
Returns a mutable pointer to the underlying bool.
Doing non-atomic reads and writes on the resulting boolean can be a data race.
This method is mostly useful for FFI, where the function signature may use
*mut bool instead of &AtomicBool.
Returning an *mut pointer from a shared reference to this atomic is safe because the
atomic types work with interior mutability. All modifications of an atomic change the value
through a shared reference, and can do so safely as long as they use atomic operations. Any
use of the returned raw pointer requires an unsafe block and still has to uphold the
requirements of the memory model.
§Examples
use std::sync::atomic::AtomicBool;
extern "C" {
fn my_atomic_op(arg: *mut bool);
}
let mut atomic = AtomicBool::new(true);
unsafe {
my_atomic_op(atomic.as_ptr());
}1.53.0 · Sourcepub fn fetch_update<F>(
&self,
set_order: Ordering,
fetch_order: Ordering,
f: F,
) -> Result<bool, bool>
pub fn fetch_update<F>( &self, set_order: Ordering, fetch_order: Ordering, f: F, ) -> Result<bool, bool>
Fetches the value, and applies a function to it that returns an optional
new value. Returns a Result of Ok(previous_value) if the function
returned Some(_), else Err(previous_value).
Note: This may call the function multiple times if the value has been
changed from other threads in the meantime, as long as the function
returns Some(_), but the function will have been applied only once to
the stored value.
fetch_update takes two Ordering arguments to describe the memory
ordering of this operation. The first describes the required ordering for
when the operation finally succeeds while the second describes the
required ordering for loads. These correspond to the success and failure
orderings of AtomicBool::compare_exchange respectively.
Using Acquire as success ordering makes the store part of this
operation Relaxed, and using Release makes the final successful
load Relaxed. The (failed) load ordering can only be SeqCst,
Acquire or Relaxed.
Note: This method is only available on platforms that support atomic
operations on u8.
§Considerations
This method is not magic; it is not provided by the hardware, and does not act like a critical section or mutex.
It is implemented on top of an atomic compare-and-swap operation, and thus is subject to the usual drawbacks of CAS operations. In particular, be careful of the ABA problem.
§Examples
use std::sync::atomic::{AtomicBool, Ordering};
let x = AtomicBool::new(false);
assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(false));
assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(false));
assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(true));
assert_eq!(x.load(Ordering::SeqCst), false);Sourcepub fn try_update(
&self,
set_order: Ordering,
fetch_order: Ordering,
f: impl FnMut(bool) -> Option<bool>,
) -> Result<bool, bool>
🔬This is a nightly-only experimental API. (atomic_try_update)
pub fn try_update( &self, set_order: Ordering, fetch_order: Ordering, f: impl FnMut(bool) -> Option<bool>, ) -> Result<bool, bool>
atomic_try_update)Fetches the value, and applies a function to it that returns an optional
new value. Returns a Result of Ok(previous_value) if the function
returned Some(_), else Err(previous_value).
See also: update.
Note: This may call the function multiple times if the value has been
changed from other threads in the meantime, as long as the function
returns Some(_), but the function will have been applied only once to
the stored value.
try_update takes two Ordering arguments to describe the memory
ordering of this operation. The first describes the required ordering for
when the operation finally succeeds while the second describes the
required ordering for loads. These correspond to the success and failure
orderings of AtomicBool::compare_exchange respectively.
Using Acquire as success ordering makes the store part of this
operation Relaxed, and using Release makes the final successful
load Relaxed. The (failed) load ordering can only be SeqCst,
Acquire or Relaxed.
Note: This method is only available on platforms that support atomic
operations on u8.
§Considerations
This method is not magic; it is not provided by the hardware, and does not act like a critical section or mutex.
It is implemented on top of an atomic compare-and-swap operation, and thus is subject to the usual drawbacks of CAS operations. In particular, be careful of the ABA problem.
§Examples
#![feature(atomic_try_update)]
use std::sync::atomic::{AtomicBool, Ordering};
let x = AtomicBool::new(false);
assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(false));
assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(false));
assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(true));
assert_eq!(x.load(Ordering::SeqCst), false);Sourcepub fn update(
&self,
set_order: Ordering,
fetch_order: Ordering,
f: impl FnMut(bool) -> bool,
) -> bool
🔬This is a nightly-only experimental API. (atomic_try_update)
pub fn update( &self, set_order: Ordering, fetch_order: Ordering, f: impl FnMut(bool) -> bool, ) -> bool
atomic_try_update)Fetches the value, applies a function to it that it return a new value. The new value is stored and the old value is returned.
See also: try_update.
Note: This may call the function multiple times if the value has been changed from other threads in the meantime, but the function will have been applied only once to the stored value.
update takes two Ordering arguments to describe the memory
ordering of this operation. The first describes the required ordering for
when the operation finally succeeds while the second describes the
required ordering for loads. These correspond to the success and failure
orderings of AtomicBool::compare_exchange respectively.
Using Acquire as success ordering makes the store part
of this operation Relaxed, and using Release makes the final successful load
Relaxed. The (failed) load ordering can only be SeqCst, Acquire or Relaxed.
Note: This method is only available on platforms that support atomic operations on u8.
§Considerations
This method is not magic; it is not provided by the hardware, and does not act like a critical section or mutex.
It is implemented on top of an atomic compare-and-swap operation, and thus is subject to the usual drawbacks of CAS operations. In particular, be careful of the ABA problem.
§Examples
#![feature(atomic_try_update)]
use std::sync::atomic::{AtomicBool, Ordering};
let x = AtomicBool::new(false);
assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| !x), false);
assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| !x), true);
assert_eq!(x.load(Ordering::SeqCst), false);Trait Implementations§
Source§impl AtomicConsume for AtomicBool
impl AtomicConsume for AtomicBool
Source§fn load_consume(&self) -> <AtomicBool as AtomicConsume>::Val
fn load_consume(&self) -> <AtomicBool as AtomicConsume>::Val
1.3.0 · Source§impl Debug for AtomicBool
impl Debug for AtomicBool
1.0.0 · Source§impl Default for AtomicBool
impl Default for AtomicBool
Source§fn default() -> AtomicBool
fn default() -> AtomicBool
Creates an AtomicBool initialized to false.
Source§impl<'de> Deserialize<'de> for AtomicBool
impl<'de> Deserialize<'de> for AtomicBool
Source§fn deserialize<D>(
deserializer: D,
) -> Result<AtomicBool, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
fn deserialize<D>(
deserializer: D,
) -> Result<AtomicBool, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
Source§impl FromReflect for AtomicBool
impl FromReflect for AtomicBool
Source§fn from_reflect(reflect: &(dyn PartialReflect + 'static)) -> Option<AtomicBool>
fn from_reflect(reflect: &(dyn PartialReflect + 'static)) -> Option<AtomicBool>
Self from a reflected value.Source§fn take_from_reflect(
reflect: Box<dyn PartialReflect>,
) -> Result<Self, Box<dyn PartialReflect>>
fn take_from_reflect( reflect: Box<dyn PartialReflect>, ) -> Result<Self, Box<dyn PartialReflect>>
Self using,
constructing the value using from_reflect if that fails. Read moreSource§impl GetTypeRegistration for AtomicBool
impl GetTypeRegistration for AtomicBool
Source§fn get_type_registration() -> TypeRegistration
fn get_type_registration() -> TypeRegistration
TypeRegistration for this type.Source§fn register_type_dependencies(_registry: &mut TypeRegistry)
fn register_type_dependencies(_registry: &mut TypeRegistry)
Source§impl PartialReflect for AtomicBool
impl PartialReflect for AtomicBool
Source§fn get_represented_type_info(&self) -> Option<&'static TypeInfo>
fn get_represented_type_info(&self) -> Option<&'static TypeInfo>
Source§fn into_partial_reflect(self: Box<AtomicBool>) -> Box<dyn PartialReflect>
fn into_partial_reflect(self: Box<AtomicBool>) -> Box<dyn PartialReflect>
Source§fn as_partial_reflect(&self) -> &(dyn PartialReflect + 'static)
fn as_partial_reflect(&self) -> &(dyn PartialReflect + 'static)
Source§fn as_partial_reflect_mut(&mut self) -> &mut (dyn PartialReflect + 'static)
fn as_partial_reflect_mut(&mut self) -> &mut (dyn PartialReflect + 'static)
Source§fn try_into_reflect(
self: Box<AtomicBool>,
) -> Result<Box<dyn Reflect>, Box<dyn PartialReflect>>
fn try_into_reflect( self: Box<AtomicBool>, ) -> Result<Box<dyn Reflect>, Box<dyn PartialReflect>>
Source§fn try_as_reflect(&self) -> Option<&(dyn Reflect + 'static)>
fn try_as_reflect(&self) -> Option<&(dyn Reflect + 'static)>
Source§fn try_as_reflect_mut(&mut self) -> Option<&mut (dyn Reflect + 'static)>
fn try_as_reflect_mut(&mut self) -> Option<&mut (dyn Reflect + 'static)>
Source§fn reflect_clone(&self) -> Result<Box<dyn Reflect>, ReflectCloneError>
fn reflect_clone(&self) -> Result<Box<dyn Reflect>, ReflectCloneError>
Self using reflection. Read moreSource§fn try_apply(
&mut self,
value: &(dyn PartialReflect + 'static),
) -> Result<(), ApplyError>
fn try_apply( &mut self, value: &(dyn PartialReflect + 'static), ) -> Result<(), ApplyError>
Source§fn reflect_kind(&self) -> ReflectKind
fn reflect_kind(&self) -> ReflectKind
Source§fn reflect_ref(&self) -> ReflectRef<'_>
fn reflect_ref(&self) -> ReflectRef<'_>
Source§fn reflect_mut(&mut self) -> ReflectMut<'_>
fn reflect_mut(&mut self) -> ReflectMut<'_>
Source§fn reflect_owned(self: Box<AtomicBool>) -> ReflectOwned
fn reflect_owned(self: Box<AtomicBool>) -> ReflectOwned
Source§fn debug(&self, f: &mut Formatter<'_>) -> Result<(), Error>
fn debug(&self, f: &mut Formatter<'_>) -> Result<(), Error>
Source§fn apply(&mut self, value: &(dyn PartialReflect + 'static))
fn apply(&mut self, value: &(dyn PartialReflect + 'static))
Source§fn to_dynamic(&self) -> Box<dyn PartialReflect>
fn to_dynamic(&self) -> Box<dyn PartialReflect>
Source§fn reflect_clone_and_take<T>(&self) -> Result<T, ReflectCloneError>
fn reflect_clone_and_take<T>(&self) -> Result<T, ReflectCloneError>
PartialReflect, combines reflect_clone and
take in a useful fashion, automatically constructing an appropriate
ReflectCloneError if the downcast fails. Read moreSource§fn reflect_hash(&self) -> Option<u64>
fn reflect_hash(&self) -> Option<u64>
Source§fn reflect_partial_eq(
&self,
_value: &(dyn PartialReflect + 'static),
) -> Option<bool>
fn reflect_partial_eq( &self, _value: &(dyn PartialReflect + 'static), ) -> Option<bool>
Source§fn is_dynamic(&self) -> bool
fn is_dynamic(&self) -> bool
Source§impl Reflect for AtomicBool
impl Reflect for AtomicBool
Source§fn into_any(self: Box<AtomicBool>) -> Box<dyn Any>
fn into_any(self: Box<AtomicBool>) -> Box<dyn Any>
Box<dyn Any>. Read moreSource§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut dyn Any. Read moreSource§fn into_reflect(self: Box<AtomicBool>) -> Box<dyn Reflect>
fn into_reflect(self: Box<AtomicBool>) -> Box<dyn Reflect>
Source§fn as_reflect(&self) -> &(dyn Reflect + 'static)
fn as_reflect(&self) -> &(dyn Reflect + 'static)
Source§fn as_reflect_mut(&mut self) -> &mut (dyn Reflect + 'static)
fn as_reflect_mut(&mut self) -> &mut (dyn Reflect + 'static)
Source§impl Serialize for AtomicBool
impl Serialize for AtomicBool
Source§fn serialize<S>(
&self,
serializer: S,
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
fn serialize<S>(
&self,
serializer: S,
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
Source§impl TypePath for AtomicBool
impl TypePath for AtomicBool
Source§fn type_path() -> &'static str
fn type_path() -> &'static str
Source§fn short_type_path() -> &'static str
fn short_type_path() -> &'static str
Source§fn type_ident() -> Option<&'static str>
fn type_ident() -> Option<&'static str>
Source§fn crate_name() -> Option<&'static str>
fn crate_name() -> Option<&'static str>
Source§impl Typed for AtomicBool
impl Typed for AtomicBool
impl RefUnwindSafe for AtomicBool
impl Sync for AtomicBool
Auto Trait Implementations§
impl !Freeze for AtomicBool
impl Send for AtomicBool
impl Unpin for AtomicBool
impl UnwindSafe for AtomicBool
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
Source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>, which can then be
downcast into Box<dyn ConcreteType> where ConcreteType implements Trait.Source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait> (where Trait: Downcast) to Rc<Any>, which can then be further
downcast into Rc<ConcreteType> where ConcreteType implements Trait.Source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s.Source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s.Source§impl<T> DowncastSend for T
impl<T> DowncastSend for T
Source§impl<T> DynamicTypePath for Twhere
T: TypePath,
impl<T> DynamicTypePath for Twhere
T: TypePath,
Source§fn reflect_type_path(&self) -> &str
fn reflect_type_path(&self) -> &str
TypePath::type_path.Source§fn reflect_short_type_path(&self) -> &str
fn reflect_short_type_path(&self) -> &str
Source§fn reflect_type_ident(&self) -> Option<&str>
fn reflect_type_ident(&self) -> Option<&str>
TypePath::type_ident.Source§fn reflect_crate_name(&self) -> Option<&str>
fn reflect_crate_name(&self) -> Option<&str>
TypePath::crate_name.Source§fn reflect_module_path(&self) -> Option<&str>
fn reflect_module_path(&self) -> Option<&str>
Source§impl<T> DynamicTyped for Twhere
T: Typed,
impl<T> DynamicTyped for Twhere
T: Typed,
Source§fn reflect_type_info(&self) -> &'static TypeInfo
fn reflect_type_info(&self) -> &'static TypeInfo
Typed::type_info.Source§impl<T> FromWorld for Twhere
T: Default,
impl<T> FromWorld for Twhere
T: Default,
Source§fn from_world(_world: &mut World) -> T
fn from_world(_world: &mut World) -> T
Creates Self using default().
Source§impl<T> GetPath for T
impl<T> GetPath for T
Source§fn reflect_path<'p>(
&self,
path: impl ReflectPath<'p>,
) -> Result<&(dyn PartialReflect + 'static), ReflectPathError<'p>>
fn reflect_path<'p>( &self, path: impl ReflectPath<'p>, ) -> Result<&(dyn PartialReflect + 'static), ReflectPathError<'p>>
path. Read moreSource§fn reflect_path_mut<'p>(
&mut self,
path: impl ReflectPath<'p>,
) -> Result<&mut (dyn PartialReflect + 'static), ReflectPathError<'p>>
fn reflect_path_mut<'p>( &mut self, path: impl ReflectPath<'p>, ) -> Result<&mut (dyn PartialReflect + 'static), ReflectPathError<'p>>
path. Read moreSource§fn path<'p, T>(
&self,
path: impl ReflectPath<'p>,
) -> Result<&T, ReflectPathError<'p>>where
T: Reflect,
fn path<'p, T>(
&self,
path: impl ReflectPath<'p>,
) -> Result<&T, ReflectPathError<'p>>where
T: Reflect,
path. Read moreSource§fn path_mut<'p, T>(
&mut self,
path: impl ReflectPath<'p>,
) -> Result<&mut T, ReflectPathError<'p>>where
T: Reflect,
fn path_mut<'p, T>(
&mut self,
path: impl ReflectPath<'p>,
) -> Result<&mut T, ReflectPathError<'p>>where
T: Reflect,
path. Read moreSource§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
Source§fn in_current_span(self) -> Instrumented<Self> ⓘ
fn in_current_span(self) -> Instrumented<Self> ⓘ
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more