bevy_gizmos::gizmos

Struct Gizmos

source
pub struct Gizmos<'w, 's, Config = DefaultGizmoConfigGroup, Clear = ()>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,
{ pub config: &'w GizmoConfig, pub config_ext: &'w Config, /* private fields */ }
Expand description

A SystemParam for drawing gizmos.

They are drawn in immediate mode, which means they will be rendered only for the frames, or ticks when in FixedMain, in which they are spawned.

A system in Main will be cleared each rendering frame, while a system in FixedMain will be cleared each time the RunFixedMainLoop schedule is run.

Gizmos should be spawned before the Last schedule to ensure they are drawn.

To set up your own clearing context (useful for custom scheduling similar to FixedMain):

use bevy_gizmos::{prelude::*, *, gizmos::GizmoStorage};
struct ClearContextSetup;
impl Plugin for ClearContextSetup {
    fn build(&self, app: &mut App) {
        app.init_resource::<GizmoStorage<DefaultGizmoConfigGroup, MyContext>>()
           // Make sure this context starts/ends cleanly if inside another context. E.g. it
           // should start after the parent context starts and end after the parent context ends.
           .add_systems(StartOfMyContext, start_gizmo_context::<DefaultGizmoConfigGroup, MyContext>)
           // If not running multiple times, put this with [`start_gizmo_context`].
           .add_systems(StartOfRun, clear_gizmo_context::<DefaultGizmoConfigGroup, MyContext>)
           // If not running multiple times, put this with [`end_gizmo_context`].
           .add_systems(EndOfRun, collect_requested_gizmos::<DefaultGizmoConfigGroup, MyContext>)
           .add_systems(EndOfMyContext, end_gizmo_context::<DefaultGizmoConfigGroup, MyContext>)
           .add_systems(
               Last,
               propagate_gizmos::<DefaultGizmoConfigGroup, MyContext>.before(UpdateGizmoMeshes),
           );
    }
}

Fields§

§config: &'w GizmoConfig

The currently used GizmoConfig

§config_ext: &'w Config

The currently used GizmoConfigGroup

Implementations§

source§

impl<'w, 's, Config, Clear> Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source

pub fn arc_2d( &mut self, isometry: impl Into<Isometry2d>, arc_angle: f32, radius: f32, color: impl Into<Color>, ) -> Arc2dBuilder<'_, 'w, 's, Config, Clear>

Draw an arc, which is a part of the circumference of a circle, in 2D.

This should be called for each frame the arc needs to be rendered.

§Arguments
  • isometry defines the translation and rotation of the arc.
    • the translation specifies the center of the arc
    • the rotation is counter-clockwise starting from Vec2::Y
  • arc_angle sets the length of this arc, in radians.
  • radius controls the distance from position to this arc, and thus its curvature.
  • color sets the color to draw the arc.
§Example
fn system(mut gizmos: Gizmos) {
    gizmos.arc_2d(Isometry2d::IDENTITY, FRAC_PI_4, 1., GREEN);

    // Arcs have 32 line-segments by default.
    // You may want to increase this for larger arcs.
    gizmos
        .arc_2d(Isometry2d::IDENTITY, FRAC_PI_4, 5., RED)
        .resolution(64);
}
source§

impl<'w, 's, Config, Clear> Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source

pub fn arc_3d( &mut self, angle: f32, radius: f32, isometry: impl Into<Isometry3d>, color: impl Into<Color>, ) -> Arc3dBuilder<'_, 'w, 's, Config, Clear>

Draw an arc, which is a part of the circumference of a circle, in 3D. For default values this is drawing a standard arc. A standard arc is defined as

  • an arc with a center at Vec3::ZERO
  • starting at Vec3::X
  • embedded in the XZ plane
  • rotates counterclockwise

This should be called for each frame the arc needs to be rendered.

§Arguments
  • angle: sets how much of a circle circumference is passed, e.g. PI is half a circle. This value should be in the range (-2 * PI..=2 * PI)
  • radius: distance between the arc and its center point
  • isometry defines the translation and rotation of the arc. - the translation specifies the center of the arc - the rotation is counter-clockwise starting from Vec3::Y
  • color: color of the arc
§Builder methods

The resolution of the arc (i.e. the level of detail) can be adjusted with the .resolution(...) method.

§Example
fn system(mut gizmos: Gizmos) {
    // rotation rotates normal to point in the direction of `Vec3::NEG_ONE`
    let rotation = Quat::from_rotation_arc(Vec3::Y, Vec3::NEG_ONE.normalize());

    gizmos
       .arc_3d(
         270.0_f32.to_radians(),
         0.25,
         Isometry3d::new(Vec3::ONE, rotation),
         ORANGE
         )
         .resolution(100);
}
source

pub fn short_arc_3d_between( &mut self, center: Vec3, from: Vec3, to: Vec3, color: impl Into<Color>, ) -> Arc3dBuilder<'_, 'w, 's, Config, Clear>

Draws the shortest arc between two points (from and to) relative to a specified center point.

§Arguments
  • center: The center point around which the arc is drawn.
  • from: The starting point of the arc.
  • to: The ending point of the arc.
  • color: color of the arc
§Builder methods

The resolution of the arc (i.e. the level of detail) can be adjusted with the .resolution(...) method.

§Examples
fn system(mut gizmos: Gizmos) {
    gizmos.short_arc_3d_between(
       Vec3::ONE,
       Vec3::ONE + Vec3::NEG_ONE,
       Vec3::ZERO,
       ORANGE
       )
       .resolution(100);
}
§Notes
  • This method assumes that the points from and to are distinct from center. If one of the points is coincident with center, nothing is rendered.
  • The arc is drawn as a portion of a circle with a radius equal to the distance from the center to from. If the distance from center to to is not equal to the radius, then the results will behave as if this were the case
source

pub fn long_arc_3d_between( &mut self, center: Vec3, from: Vec3, to: Vec3, color: impl Into<Color>, ) -> Arc3dBuilder<'_, 'w, 's, Config, Clear>

Draws the longest arc between two points (from and to) relative to a specified center point.

§Arguments
  • center: The center point around which the arc is drawn.
  • from: The starting point of the arc.
  • to: The ending point of the arc.
  • color: color of the arc
§Builder methods

The resolution of the arc (i.e. the level of detail) can be adjusted with the .resolution(...) method.

§Examples
fn system(mut gizmos: Gizmos) {
    gizmos.long_arc_3d_between(
       Vec3::ONE,
       Vec3::ONE + Vec3::NEG_ONE,
       Vec3::ZERO,
       ORANGE
       )
       .resolution(100);
}
§Notes
  • This method assumes that the points from and to are distinct from center. If one of the points is coincident with center, nothing is rendered.
  • The arc is drawn as a portion of a circle with a radius equal to the distance from the center to from. If the distance from center to to is not equal to the radius, then the results will behave as if this were the case.
source

pub fn short_arc_2d_between( &mut self, center: Vec2, from: Vec2, to: Vec2, color: impl Into<Color>, ) -> Arc2dBuilder<'_, 'w, 's, Config, Clear>

Draws the shortest arc between two points (from and to) relative to a specified center point.

§Arguments
  • center: The center point around which the arc is drawn.
  • from: The starting point of the arc.
  • to: The ending point of the arc.
  • color: color of the arc
§Builder methods

The resolution of the arc (i.e. the level of detail) can be adjusted with the .resolution(...) method.

§Examples
fn system(mut gizmos: Gizmos) {
    gizmos.short_arc_2d_between(
       Vec2::ZERO,
       Vec2::X,
       Vec2::Y,
       ORANGE
       )
       .resolution(100);
}
§Notes
  • This method assumes that the points from and to are distinct from center. If one of the points is coincident with center, nothing is rendered.
  • The arc is drawn as a portion of a circle with a radius equal to the distance from the center to from. If the distance from center to to is not equal to the radius, then the results will behave as if this were the case
source

pub fn long_arc_2d_between( &mut self, center: Vec2, from: Vec2, to: Vec2, color: impl Into<Color>, ) -> Arc2dBuilder<'_, 'w, 's, Config, Clear>

Draws the longest arc between two points (from and to) relative to a specified center point.

§Arguments
  • center: The center point around which the arc is drawn.
  • from: The starting point of the arc.
  • to: The ending point of the arc.
  • color: color of the arc
§Builder methods

The resolution of the arc (i.e. the level of detail) can be adjusted with the .resolution(...) method.

§Examples
fn system(mut gizmos: Gizmos) {
    gizmos.long_arc_2d_between(
       Vec2::ZERO,
       Vec2::X,
       Vec2::Y,
       ORANGE
       )
       .resolution(100);
}
§Notes
  • This method assumes that the points from and to are distinct from center. If one of the points is coincident with center, nothing is rendered.
  • The arc is drawn as a portion of a circle with a radius equal to the distance from the center to from. If the distance from center to to is not equal to the radius, then the results will behave as if this were the case.
source§

impl<'w, 's, Config, Clear> Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source

pub fn arrow( &mut self, start: Vec3, end: Vec3, color: impl Into<Color>, ) -> ArrowBuilder<'_, 'w, 's, Config, Clear>

Draw an arrow in 3D, from start to end. Has four tips for convenient viewing from any direction.

This should be called for each frame the arrow needs to be rendered.

§Example
fn system(mut gizmos: Gizmos) {
    gizmos.arrow(Vec3::ZERO, Vec3::ONE, GREEN);
}
source

pub fn arrow_2d( &mut self, start: Vec2, end: Vec2, color: impl Into<Color>, ) -> ArrowBuilder<'_, 'w, 's, Config, Clear>

Draw an arrow in 2D (on the xy plane), from start to end.

This should be called for each frame the arrow needs to be rendered.

§Example
fn system(mut gizmos: Gizmos) {
    gizmos.arrow_2d(Vec2::ZERO, Vec2::X, GREEN);
}
source§

impl<'w, 's, Config, Clear> Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source

pub fn axes(&mut self, transform: impl TransformPoint, base_length: f32)

Draw a set of axes local to the given transform (transform), with length scaled by a factor of base_length.

This should be called for each frame the axes need to be rendered.

§Example
fn draw_axes(
    mut gizmos: Gizmos,
    query: Query<&Transform, With<MyComponent>>,
) {
    for &transform in &query {
        gizmos.axes(transform, 1.);
    }
}
source

pub fn axes_2d(&mut self, transform: impl TransformPoint, base_length: f32)

Draw a set of axes local to the given transform (transform), with length scaled by a factor of base_length.

This should be called for each frame the axes need to be rendered.

§Example
fn draw_axes_2d(
    mut gizmos: Gizmos,
    query: Query<&Transform, With<AxesComponent>>,
) {
    for &transform in &query {
        gizmos.axes_2d(transform, 1.);
    }
}
source§

impl<'w, 's, Config, Clear> Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source

pub fn ellipse( &mut self, isometry: impl Into<Isometry3d>, half_size: Vec2, color: impl Into<Color>, ) -> EllipseBuilder<'_, 'w, 's, Config, Clear>

Draw an ellipse in 3D with the given isometry applied.

If isometry == Isometry3d::IDENTITY then

  • the center is at Vec3::ZERO
  • the half_sizes are aligned with the Vec3::X and Vec3::Y axes.

This should be called for each frame the ellipse needs to be rendered.

§Example
fn system(mut gizmos: Gizmos) {
    gizmos.ellipse(Isometry3d::IDENTITY, Vec2::new(1., 2.), GREEN);

    // Ellipses have 32 line-segments by default.
    // You may want to increase this for larger ellipses.
    gizmos
        .ellipse(Isometry3d::IDENTITY, Vec2::new(5., 1.), RED)
        .resolution(64);
}
source

pub fn ellipse_2d( &mut self, isometry: impl Into<Isometry2d>, half_size: Vec2, color: impl Into<Color>, ) -> Ellipse2dBuilder<'_, 'w, 's, Config, Clear>

Draw an ellipse in 2D with the given isometry applied.

If isometry == Isometry2d::IDENTITY then

  • the center is at Vec2::ZERO
  • the half_sizes are aligned with the Vec2::X and Vec2::Y axes.

This should be called for each frame the ellipse needs to be rendered.

§Example
fn system(mut gizmos: Gizmos) {
    gizmos.ellipse_2d(Isometry2d::from_rotation(Rot2::degrees(180.0)), Vec2::new(2., 1.), GREEN);

    // Ellipses have 32 line-segments by default.
    // You may want to increase this for larger ellipses.
    gizmos
        .ellipse_2d(Isometry2d::from_rotation(Rot2::degrees(180.0)), Vec2::new(5., 1.), RED)
        .resolution(64);
}
source

pub fn circle( &mut self, isometry: impl Into<Isometry3d>, radius: f32, color: impl Into<Color>, ) -> EllipseBuilder<'_, 'w, 's, Config, Clear>

Draw a circle in 3D with the given isometry applied.

If isometry == Isometry3d::IDENTITY then

  • the center is at Vec3::ZERO
  • the radius is aligned with the Vec3::X and Vec3::Y axes.
§Example
fn system(mut gizmos: Gizmos) {
    gizmos.circle(Isometry3d::IDENTITY, 1., GREEN);

    // Circles have 32 line-segments by default.
    // You may want to increase this for larger circles.
    gizmos
        .circle(Isometry3d::IDENTITY, 5., RED)
        .resolution(64);
}
source

pub fn circle_2d( &mut self, isometry: impl Into<Isometry2d>, radius: f32, color: impl Into<Color>, ) -> Ellipse2dBuilder<'_, 'w, 's, Config, Clear>

Draw a circle in 2D with the given isometry applied.

If isometry == Isometry2d::IDENTITY then

  • the center is at Vec2::ZERO
  • the radius is aligned with the Vec2::X and Vec2::Y axes.

This should be called for each frame the circle needs to be rendered.

§Example
fn system(mut gizmos: Gizmos) {
    gizmos.circle_2d(Isometry2d::IDENTITY, 1., GREEN);

    // Circles have 32 line-segments by default.
    // You may want to increase this for larger circles.
    gizmos
        .circle_2d(Isometry2d::IDENTITY, 5., RED)
        .resolution(64);
}
source

pub fn sphere( &mut self, isometry: impl Into<Isometry3d>, radius: f32, color: impl Into<Color>, ) -> SphereBuilder<'_, 'w, 's, Config, Clear>

Draw a wireframe sphere in 3D made out of 3 circles around the axes with the given isometry applied.

If isometry == Isometry3d::IDENTITY then

  • the center is at Vec3::ZERO
  • the 3 circles are in the XY, YZ and XZ planes.

This should be called for each frame the sphere needs to be rendered.

§Example
fn system(mut gizmos: Gizmos) {
    gizmos.sphere(Isometry3d::IDENTITY, 1., Color::BLACK);

    // Each circle has 32 line-segments by default.
    // You may want to increase this for larger spheres.
    gizmos
        .sphere(Isometry3d::IDENTITY, 5., Color::BLACK)
        .resolution(64);
}
source§

impl<Config> Gizmos<'_, '_, Config>
where Config: GizmoConfigGroup,

source

pub fn cross( &mut self, isometry: impl Into<Isometry3d>, half_size: f32, color: impl Into<Color>, )

Draw a cross in 3D with the given isometry applied.

If isometry == Isometry3d::IDENTITY then

  • the center is at Vec3::ZERO
  • the half_sizes are aligned with the Vec3::X, Vec3::Y and Vec3::Z axes.

This should be called for each frame the cross needs to be rendered.

§Example
fn system(mut gizmos: Gizmos) {
    gizmos.cross(Isometry3d::IDENTITY, 0.5, WHITE);
}
source

pub fn cross_2d( &mut self, isometry: impl Into<Isometry2d>, half_size: f32, color: impl Into<Color>, )

Draw a cross in 2D with the given isometry applied.

If isometry == Isometry2d::IDENTITY then

  • the center is at Vec3::ZERO
  • the half_sizes are aligned with the Vec3::X and Vec3::Y axes.

This should be called for each frame the cross needs to be rendered.

§Example
fn system(mut gizmos: Gizmos) {
    gizmos.cross_2d(Isometry2d::IDENTITY, 0.5, WHITE);
}
source§

impl<'w, 's, Config, Clear> Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source

pub fn curve_2d( &mut self, curve_2d: impl Curve<Vec2>, times: impl IntoIterator<Item = f32>, color: impl Into<Color>, )

Draw a curve, at the given time points, sampling in 2D.

This should be called for each frame the curve needs to be rendered.

Samples of time points outside of the curve’s domain will be filtered out and won’t contribute to the rendering. If you wish to render the curve outside of its domain you need to create a new curve with an extended domain.

§Arguments
  • curve_2d some type that implements the Curve trait and samples Vec2s
  • times some iterable type yielding f32 which will be used for sampling the curve
  • color the color of the curve
§Example
fn system(mut gizmos: Gizmos) {
    let domain = Interval::UNIT;
    let curve = FunctionCurve::new(domain, |t| Vec2::from(t.sin_cos()));
    gizmos.curve_2d(curve, (0..=100).map(|n| n as f32 / 100.0), RED);
}
source

pub fn curve_3d( &mut self, curve_3d: impl Curve<Vec3>, times: impl IntoIterator<Item = f32>, color: impl Into<Color>, )

Draw a curve, at the given time points, sampling in 3D.

This should be called for each frame the curve needs to be rendered.

Samples of time points outside of the curve’s domain will be filtered out and won’t contribute to the rendering. If you wish to render the curve outside of its domain you need to create a new curve with an extended domain.

§Arguments
  • curve_3d some type that implements the Curve trait and samples Vec3s
  • times some iterable type yielding f32 which will be used for sampling the curve
  • color the color of the curve
§Example
fn system(mut gizmos: Gizmos) {
    let domain = Interval::UNIT;
    let curve = FunctionCurve::new(domain, |t| {
        let (x,y) = t.sin_cos();
        Vec3::new(x, y, t)
    });
    gizmos.curve_3d(curve, (0..=100).map(|n| n as f32 / 100.0), RED);
}
source

pub fn curve_gradient_2d<C>( &mut self, curve_2d: impl Curve<Vec2>, times_with_colors: impl IntoIterator<Item = (f32, C)>, )
where C: Into<Color>,

Draw a curve, at the given time points, sampling in 2D, with a color gradient.

This should be called for each frame the curve needs to be rendered.

Samples of time points outside of the curve’s domain will be filtered out and won’t contribute to the rendering. If you wish to render the curve outside of its domain you need to create a new curve with an extended domain.

§Arguments
  • curve_2d some type that implements the Curve trait and samples Vec2s
  • times_with_colors some iterable type yielding f32 which will be used for sampling the curve together with the color at this position
§Example
fn system(mut gizmos: Gizmos) {
    let domain = Interval::UNIT;
    let curve = FunctionCurve::new(domain, |t| Vec2::from(t.sin_cos()));
    gizmos.curve_gradient_2d(
        curve,
        (0..=100).map(|n| n as f32 / 100.0)
                 .map(|t| (t, GREEN.mix(&RED, t)))
    );
}
source

pub fn curve_gradient_3d<C>( &mut self, curve_3d: impl Curve<Vec3>, times_with_colors: impl IntoIterator<Item = (f32, C)>, )
where C: Into<Color>,

Draw a curve, at the given time points, sampling in 3D, with a color gradient.

This should be called for each frame the curve needs to be rendered.

Samples of time points outside of the curve’s domain will be filtered out and won’t contribute to the rendering. If you wish to render the curve outside of its domain you need to create a new curve with an extended domain.

§Arguments
  • curve_3d some type that implements the Curve trait and samples Vec3s
  • times_with_colors some iterable type yielding f32 which will be used for sampling the curve together with the color at this position
§Example
fn system(mut gizmos: Gizmos) {
    let domain = Interval::UNIT;
    let curve = FunctionCurve::new(domain, |t| {
        let (x,y) = t.sin_cos();
        Vec3::new(x, y, t)
    });
    gizmos.curve_gradient_3d(
        curve,
        (0..=100).map(|n| n as f32 / 100.0)
                 .map(|t| (t, GREEN.mix(&RED, t)))
    );
}
source§

impl<'w, 's, Config, Clear> Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source

pub fn line(&mut self, start: Vec3, end: Vec3, color: impl Into<Color>)

Draw a line in 3D from start to end.

This should be called for each frame the line needs to be rendered.

§Example
fn system(mut gizmos: Gizmos) {
    gizmos.line(Vec3::ZERO, Vec3::X, GREEN);
}
source

pub fn line_gradient<C: Into<Color>>( &mut self, start: Vec3, end: Vec3, start_color: C, end_color: C, )

Draw a line in 3D with a color gradient from start to end.

This should be called for each frame the line needs to be rendered.

§Example
fn system(mut gizmos: Gizmos) {
    gizmos.line_gradient(Vec3::ZERO, Vec3::X, GREEN, RED);
}
source

pub fn ray(&mut self, start: Vec3, vector: Vec3, color: impl Into<Color>)

Draw a line in 3D from start to start + vector.

This should be called for each frame the line needs to be rendered.

§Example
fn system(mut gizmos: Gizmos) {
    gizmos.ray(Vec3::Y, Vec3::X, GREEN);
}
source

pub fn ray_gradient<C: Into<Color>>( &mut self, start: Vec3, vector: Vec3, start_color: C, end_color: C, )

Draw a line in 3D with a color gradient from start to start + vector.

This should be called for each frame the line needs to be rendered.

§Example
fn system(mut gizmos: Gizmos) {
    gizmos.ray_gradient(Vec3::Y, Vec3::X, GREEN, RED);
}
source

pub fn linestrip( &mut self, positions: impl IntoIterator<Item = Vec3>, color: impl Into<Color>, )

Draw a line in 3D made of straight segments between the points.

This should be called for each frame the line needs to be rendered.

§Example
fn system(mut gizmos: Gizmos) {
    gizmos.linestrip([Vec3::ZERO, Vec3::X, Vec3::Y], GREEN);
}
source

pub fn linestrip_gradient<C: Into<Color>>( &mut self, points: impl IntoIterator<Item = (Vec3, C)>, )

Draw a line in 3D made of straight segments between the points, with a color gradient.

This should be called for each frame the lines need to be rendered.

§Example
fn system(mut gizmos: Gizmos) {
    gizmos.linestrip_gradient([
        (Vec3::ZERO, GREEN),
        (Vec3::X, RED),
        (Vec3::Y, BLUE)
    ]);
}
source

pub fn rect( &mut self, isometry: impl Into<Isometry3d>, size: Vec2, color: impl Into<Color>, )

Draw a wireframe rectangle in 3D with the given isometry applied.

If isometry == Isometry3d::IDENTITY then

  • the center is at Vec3::ZERO
  • the sizes are aligned with the Vec3::X and Vec3::Y axes.

This should be called for each frame the rectangle needs to be rendered.

§Example
fn system(mut gizmos: Gizmos) {
    gizmos.rect(Isometry3d::IDENTITY, Vec2::ONE, GREEN);
}
source

pub fn cuboid( &mut self, transform: impl TransformPoint, color: impl Into<Color>, )

Draw a wireframe cube in 3D.

This should be called for each frame the cube needs to be rendered.

§Example
fn system(mut gizmos: Gizmos) {
    gizmos.cuboid(Transform::IDENTITY, GREEN);
}
source

pub fn line_2d(&mut self, start: Vec2, end: Vec2, color: impl Into<Color>)

Draw a line in 2D from start to end.

This should be called for each frame the line needs to be rendered.

§Example
fn system(mut gizmos: Gizmos) {
    gizmos.line_2d(Vec2::ZERO, Vec2::X, GREEN);
}
source

pub fn line_gradient_2d<C: Into<Color>>( &mut self, start: Vec2, end: Vec2, start_color: C, end_color: C, )

Draw a line in 2D with a color gradient from start to end.

This should be called for each frame the line needs to be rendered.

§Example
fn system(mut gizmos: Gizmos) {
    gizmos.line_gradient_2d(Vec2::ZERO, Vec2::X, GREEN, RED);
}
source

pub fn linestrip_2d( &mut self, positions: impl IntoIterator<Item = Vec2>, color: impl Into<Color>, )

Draw a line in 2D made of straight segments between the points.

This should be called for each frame the line needs to be rendered.

§Example
fn system(mut gizmos: Gizmos) {
    gizmos.linestrip_2d([Vec2::ZERO, Vec2::X, Vec2::Y], GREEN);
}
source

pub fn linestrip_gradient_2d<C: Into<Color>>( &mut self, positions: impl IntoIterator<Item = (Vec2, C)>, )

Draw a line in 2D made of straight segments between the points, with a color gradient.

This should be called for each frame the line needs to be rendered.

§Example
fn system(mut gizmos: Gizmos) {
    gizmos.linestrip_gradient_2d([
        (Vec2::ZERO, GREEN),
        (Vec2::X, RED),
        (Vec2::Y, BLUE)
    ]);
}
source

pub fn ray_2d(&mut self, start: Vec2, vector: Vec2, color: impl Into<Color>)

Draw a line in 2D from start to start + vector.

This should be called for each frame the line needs to be rendered.

§Example
fn system(mut gizmos: Gizmos) {
    gizmos.ray_2d(Vec2::Y, Vec2::X, GREEN);
}
source

pub fn ray_gradient_2d<C: Into<Color>>( &mut self, start: Vec2, vector: Vec2, start_color: C, end_color: C, )

Draw a line in 2D with a color gradient from start to start + vector.

This should be called for each frame the line needs to be rendered.

§Example
fn system(mut gizmos: Gizmos) {
    gizmos.line_gradient(Vec3::Y, Vec3::X, GREEN, RED);
}
source

pub fn rect_2d( &mut self, isometry: impl Into<Isometry2d>, size: Vec2, color: impl Into<Color>, )

Draw a wireframe rectangle in 2D with the given isometry applied.

If isometry == Isometry2d::IDENTITY then

  • the center is at Vec2::ZERO
  • the sizes are aligned with the Vec2::X and Vec2::Y axes.

This should be called for each frame the rectangle needs to be rendered.

§Example
fn system(mut gizmos: Gizmos) {
    gizmos.rect_2d(Isometry2d::IDENTITY, Vec2::ONE, GREEN);
}
source§

impl<'w, 's, Config, Clear> Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source

pub fn grid( &mut self, isometry: impl Into<Isometry3d>, cell_count: UVec2, spacing: Vec2, color: impl Into<Color>, ) -> GridBuilder2d<'_, 'w, 's, Config, Clear>

Draw a 2D grid in 3D.

This should be called for each frame the grid needs to be rendered.

The grid’s default orientation aligns with the XY-plane.

§Arguments
  • isometry defines the translation and rotation of the grid. - the translation specifies the center of the grid - defines the orientation of the grid, by default we assume the grid is contained in a plane parallel to the XY plane
  • cell_count: defines the amount of cells in the x and y axes
  • spacing: defines the distance between cells along the x and y axes
  • color: color of the grid
§Builder methods
  • The skew of the grid can be adjusted using the .skew(...), .skew_x(...) or .skew_y(...) methods. They behave very similar to their CSS equivalents.
  • All outer edges can be toggled on or off using .outer_edges(...). Alternatively you can use .outer_edges_x(...) or .outer_edges_y(...) to toggle the outer edges along an axis.
§Example
fn system(mut gizmos: Gizmos) {
    gizmos.grid(
        Isometry3d::IDENTITY,
        UVec2::new(10, 10),
        Vec2::splat(2.),
        GREEN
        )
        .skew_x(0.25)
        .outer_edges();
}
source

pub fn grid_3d( &mut self, isometry: impl Into<Isometry3d>, cell_count: UVec3, spacing: Vec3, color: impl Into<Color>, ) -> GridBuilder3d<'_, 'w, 's, Config, Clear>

Draw a 3D grid of voxel-like cells.

This should be called for each frame the grid needs to be rendered.

§Arguments
  • isometry defines the translation and rotation of the grid. - the translation specifies the center of the grid - defines the orientation of the grid, by default we assume the grid is aligned with all axes
  • cell_count: defines the amount of cells in the x, y and z axes
  • spacing: defines the distance between cells along the x, y and z axes
  • color: color of the grid
§Builder methods
  • The skew of the grid can be adjusted using the .skew(...), .skew_x(...), .skew_y(...) or .skew_z(...) methods. They behave very similar to their CSS equivalents.
  • All outer edges can be toggled on or off using .outer_edges(...). Alternatively you can use .outer_edges_x(...), .outer_edges_y(...) or .outer_edges_z(...) to toggle the outer edges along an axis.
§Example
fn system(mut gizmos: Gizmos) {
    gizmos.grid_3d(
        Isometry3d::IDENTITY,
        UVec3::new(10, 2, 10),
        Vec3::splat(2.),
        GREEN
        )
        .skew_x(0.25)
        .outer_edges();
}
source

pub fn grid_2d( &mut self, isometry: impl Into<Isometry2d>, cell_count: UVec2, spacing: Vec2, color: impl Into<Color>, ) -> GridBuilder2d<'_, 'w, 's, Config, Clear>

Draw a grid in 2D.

This should be called for each frame the grid needs to be rendered.

§Arguments
  • isometry defines the translation and rotation of the grid. - the translation specifies the center of the grid - defines the orientation of the grid, by default we assume the grid is aligned with all axes
  • cell_count: defines the amount of cells in the x and y axes
  • spacing: defines the distance between cells along the x and y axes
  • color: color of the grid
§Builder methods
  • The skew of the grid can be adjusted using the .skew(...), .skew_x(...) or .skew_y(...) methods. They behave very similar to their CSS equivalents.
  • All outer edges can be toggled on or off using .outer_edges(...). Alternatively you can use .outer_edges_x(...) or .outer_edges_y(...) to toggle the outer edges along an axis.
§Example
fn system(mut gizmos: Gizmos) {
    gizmos.grid_2d(
        Isometry2d::IDENTITY,
        UVec2::new(10, 10),
        Vec2::splat(1.),
        GREEN
        )
        .skew_x(0.25)
        .outer_edges();
}
source§

impl<'w, 's, T: GizmoConfigGroup> Gizmos<'w, 's, T>

source

pub fn rounded_rect( &mut self, isometry: impl Into<Isometry3d>, size: Vec2, color: impl Into<Color>, ) -> RoundedRectBuilder<'_, 'w, 's, T>

Draw a wireframe rectangle with rounded corners in 3D.

This should be called for each frame the rectangle needs to be rendered.

§Arguments
  • isometry defines the translation and rotation of the rectangle. - the translation specifies the center of the rectangle - defines orientation of the rectangle, by default we assume the rectangle is contained in a plane parallel to the XY plane.
  • size: defines the size of the rectangle. This refers to the ‘outer size’, similar to a bounding box.
  • color: color of the rectangle
§Builder methods
  • The corner radius can be adjusted with the .corner_radius(...) method.
  • The resolution of the arcs at each corner (i.e. the level of detail) can be adjusted with the .arc_resolution(...) method.
§Example
fn system(mut gizmos: Gizmos) {
    gizmos.rounded_rect(
        Isometry3d::IDENTITY,
        Vec2::ONE,
        GREEN
        )
        .corner_radius(0.25)
        .arc_resolution(10);
}
source

pub fn rounded_rect_2d( &mut self, isometry: impl Into<Isometry2d>, size: Vec2, color: impl Into<Color>, ) -> RoundedRectBuilder<'_, 'w, 's, T>

Draw a wireframe rectangle with rounded corners in 2D.

This should be called for each frame the rectangle needs to be rendered.

§Arguments
  • isometry defines the translation and rotation of the rectangle. - the translation specifies the center of the rectangle - defines orientation of the rectangle, by default we assume the rectangle aligned with all axes.
  • size: defines the size of the rectangle. This refers to the ‘outer size’, similar to a bounding box.
  • color: color of the rectangle
§Builder methods
  • The corner radius can be adjusted with the .corner_radius(...) method.
  • The resolution of the arcs at each corner (i.e. the level of detail) can be adjusted with the .arc_resolution(...) method.
§Example
fn system(mut gizmos: Gizmos) {
    gizmos.rounded_rect_2d(
        Isometry2d::IDENTITY,
        Vec2::ONE,
        GREEN
        )
        .corner_radius(0.25)
        .arc_resolution(10);
}
source

pub fn rounded_cuboid( &mut self, isometry: impl Into<Isometry3d>, size: Vec3, color: impl Into<Color>, ) -> RoundedCuboidBuilder<'_, 'w, 's, T>

Draw a wireframe cuboid with rounded corners in 3D.

This should be called for each frame the cuboid needs to be rendered.

§Arguments
  • isometry defines the translation and rotation of the cuboid. - the translation specifies the center of the cuboid - defines orientation of the cuboid, by default we assume the cuboid aligned with all axes.
  • size: defines the size of the cuboid. This refers to the ‘outer size’, similar to a bounding box.
  • color: color of the cuboid
§Builder methods
  • The edge radius can be adjusted with the .edge_radius(...) method.
  • The resolution of the arcs at each edge (i.e. the level of detail) can be adjusted with the .arc_resolution(...) method.
§Example
fn system(mut gizmos: Gizmos) {
    gizmos.rounded_cuboid(
        Isometry3d::IDENTITY,
        Vec3::ONE,
        GREEN
        )
        .edge_radius(0.25)
        .arc_resolution(10);
}

Trait Implementations§

source§

impl<'w, 's, Config, Clear> GizmoPrimitive2d<Annulus> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = Annulus2dBuilder<'a, 'w, 's, Config, Clear> where Self: 'a

The output of primitive_2d. This is a builder to set non-default values.
source§

fn primitive_2d( &mut self, primitive: &Annulus, isometry: impl Into<Isometry2d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 2D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive2d<Arc2d> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = () where Self: 'a

The output of primitive_2d. This is a builder to set non-default values.
source§

fn primitive_2d( &mut self, primitive: &Arc2d, isometry: impl Into<Isometry2d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 2D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive2d<BoxedPolygon> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = () where Self: 'a

The output of primitive_2d. This is a builder to set non-default values.
source§

fn primitive_2d( &mut self, primitive: &BoxedPolygon, isometry: impl Into<Isometry2d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 2D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive2d<BoxedPolyline2d> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = () where Self: 'a

The output of primitive_2d. This is a builder to set non-default values.
source§

fn primitive_2d( &mut self, primitive: &BoxedPolyline2d, isometry: impl Into<Isometry2d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 2D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive2d<Capsule2d> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = () where Self: 'a

The output of primitive_2d. This is a builder to set non-default values.
source§

fn primitive_2d( &mut self, primitive: &Capsule2d, isometry: impl Into<Isometry2d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 2D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive2d<Circle> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = Ellipse2dBuilder<'a, 'w, 's, Config, Clear> where Self: 'a

The output of primitive_2d. This is a builder to set non-default values.
source§

fn primitive_2d( &mut self, primitive: &Circle, isometry: impl Into<Isometry2d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 2D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive2d<CircularSector> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = () where Self: 'a

The output of primitive_2d. This is a builder to set non-default values.
source§

fn primitive_2d( &mut self, primitive: &CircularSector, isometry: impl Into<Isometry2d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 2D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive2d<CircularSegment> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = () where Self: 'a

The output of primitive_2d. This is a builder to set non-default values.
source§

fn primitive_2d( &mut self, primitive: &CircularSegment, isometry: impl Into<Isometry2d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 2D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive2d<Dir2> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = () where Self: 'a

The output of primitive_2d. This is a builder to set non-default values.
source§

fn primitive_2d( &mut self, primitive: &Dir2, isometry: impl Into<Isometry2d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 2D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive2d<Ellipse> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = Ellipse2dBuilder<'a, 'w, 's, Config, Clear> where Self: 'a

The output of primitive_2d. This is a builder to set non-default values.
source§

fn primitive_2d<'a>( &mut self, primitive: &Ellipse, isometry: impl Into<Isometry2d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 2D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive2d<Line2d> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = Line2dBuilder<'a, 'w, 's, Config, Clear> where Self: 'a

The output of primitive_2d. This is a builder to set non-default values.
source§

fn primitive_2d( &mut self, primitive: &Line2d, isometry: impl Into<Isometry2d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 2D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive2d<Plane2d> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = () where Self: 'a

The output of primitive_2d. This is a builder to set non-default values.
source§

fn primitive_2d( &mut self, primitive: &Plane2d, isometry: impl Into<Isometry2d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 2D primitive with its associated details.
source§

impl<'w, 's, const N: usize, Config, Clear> GizmoPrimitive2d<Polygon<N>> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = () where Self: 'a

The output of primitive_2d. This is a builder to set non-default values.
source§

fn primitive_2d( &mut self, primitive: &Polygon<N>, isometry: impl Into<Isometry2d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 2D primitive with its associated details.
source§

impl<'w, 's, const N: usize, Config, Clear> GizmoPrimitive2d<Polyline2d<N>> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = () where Self: 'a

The output of primitive_2d. This is a builder to set non-default values.
source§

fn primitive_2d( &mut self, primitive: &Polyline2d<N>, isometry: impl Into<Isometry2d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 2D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive2d<Rectangle> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = () where Self: 'a

The output of primitive_2d. This is a builder to set non-default values.
source§

fn primitive_2d( &mut self, primitive: &Rectangle, isometry: impl Into<Isometry2d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 2D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive2d<RegularPolygon> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = () where Self: 'a

The output of primitive_2d. This is a builder to set non-default values.
source§

fn primitive_2d( &mut self, primitive: &RegularPolygon, isometry: impl Into<Isometry2d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 2D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive2d<Rhombus> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = () where Self: 'a

The output of primitive_2d. This is a builder to set non-default values.
source§

fn primitive_2d( &mut self, primitive: &Rhombus, isometry: impl Into<Isometry2d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 2D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive2d<Segment2d> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = Segment2dBuilder<'a, 'w, 's, Config, Clear> where Self: 'a

The output of primitive_2d. This is a builder to set non-default values.
source§

fn primitive_2d( &mut self, primitive: &Segment2d, isometry: impl Into<Isometry2d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 2D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive2d<Triangle2d> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = () where Self: 'a

The output of primitive_2d. This is a builder to set non-default values.
source§

fn primitive_2d( &mut self, primitive: &Triangle2d, isometry: impl Into<Isometry2d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 2D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive3d<BoxedPolyline3d> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = () where Self: 'a

The output of primitive_3d. This is a builder to set non-default values.
source§

fn primitive_3d( &mut self, primitive: &BoxedPolyline3d, isometry: impl Into<Isometry3d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 3D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive3d<Capsule3d> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = Capsule3dBuilder<'a, 'w, 's, Config, Clear> where Self: 'a

The output of primitive_3d. This is a builder to set non-default values.
source§

fn primitive_3d( &mut self, primitive: &Capsule3d, isometry: impl Into<Isometry3d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 3D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive3d<Cone> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = Cone3dBuilder<'a, 'w, 's, Config, Clear> where Self: 'a

The output of primitive_3d. This is a builder to set non-default values.
source§

fn primitive_3d( &mut self, primitive: &Cone, isometry: impl Into<Isometry3d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 3D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive3d<ConicalFrustum> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = ConicalFrustum3dBuilder<'a, 'w, 's, Config, Clear> where Self: 'a

The output of primitive_3d. This is a builder to set non-default values.
source§

fn primitive_3d( &mut self, primitive: &ConicalFrustum, isometry: impl Into<Isometry3d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 3D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive3d<Cuboid> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = () where Self: 'a

The output of primitive_3d. This is a builder to set non-default values.
source§

fn primitive_3d( &mut self, primitive: &Cuboid, isometry: impl Into<Isometry3d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 3D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive3d<Cylinder> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = Cylinder3dBuilder<'a, 'w, 's, Config, Clear> where Self: 'a

The output of primitive_3d. This is a builder to set non-default values.
source§

fn primitive_3d( &mut self, primitive: &Cylinder, isometry: impl Into<Isometry3d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 3D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive3d<Dir3> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = () where Self: 'a

The output of primitive_3d. This is a builder to set non-default values.
source§

fn primitive_3d( &mut self, primitive: &Dir3, isometry: impl Into<Isometry3d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 3D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive3d<Line3d> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = () where Self: 'a

The output of primitive_3d. This is a builder to set non-default values.
source§

fn primitive_3d( &mut self, primitive: &Line3d, isometry: impl Into<Isometry3d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 3D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive3d<Plane3d> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = Plane3dBuilder<'a, 'w, 's, Config, Clear> where Self: 'a

The output of primitive_3d. This is a builder to set non-default values.
source§

fn primitive_3d( &mut self, primitive: &Plane3d, isometry: impl Into<Isometry3d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 3D primitive with its associated details.
source§

impl<'w, 's, const N: usize, Config, Clear> GizmoPrimitive3d<Polyline3d<N>> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = () where Self: 'a

The output of primitive_3d. This is a builder to set non-default values.
source§

fn primitive_3d( &mut self, primitive: &Polyline3d<N>, isometry: impl Into<Isometry3d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 3D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive3d<Segment3d> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = () where Self: 'a

The output of primitive_3d. This is a builder to set non-default values.
source§

fn primitive_3d( &mut self, primitive: &Segment3d, isometry: impl Into<Isometry3d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 3D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive3d<Sphere> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = SphereBuilder<'a, 'w, 's, Config, Clear> where Self: 'a

The output of primitive_3d. This is a builder to set non-default values.
source§

fn primitive_3d( &mut self, primitive: &Sphere, isometry: impl Into<Isometry3d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 3D primitive with its associated details.
source§

impl<'w, 's, T: GizmoConfigGroup> GizmoPrimitive3d<Tetrahedron> for Gizmos<'w, 's, T>

source§

type Output<'a> = () where Self: 'a

The output of primitive_3d. This is a builder to set non-default values.
source§

fn primitive_3d( &mut self, primitive: &Tetrahedron, isometry: impl Into<Isometry3d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 3D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive3d<Torus> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = Torus3dBuilder<'a, 'w, 's, Config, Clear> where Self: 'a

The output of primitive_3d. This is a builder to set non-default values.
source§

fn primitive_3d( &mut self, primitive: &Torus, isometry: impl Into<Isometry3d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 3D primitive with its associated details.
source§

impl<'w, 's, Config, Clear> GizmoPrimitive3d<Triangle3d> for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type Output<'a> = () where Self: 'a

The output of primitive_3d. This is a builder to set non-default values.
source§

fn primitive_3d( &mut self, primitive: &Triangle3d, isometry: impl Into<Isometry3d>, color: impl Into<Color>, ) -> Self::Output<'_>

Renders a 3D primitive with its associated details.
source§

impl<Config, Clear> SystemParam for Gizmos<'_, '_, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync,

source§

type State = GizmosFetchState<Config, Clear>

Used to store data which persists across invocations of a system.
source§

type Item<'w, 's> = Gizmos<'w, 's, Config, Clear>

The item type returned when constructing this system param. The value of this associated type should be Self, instantiated with new lifetimes. Read more
source§

fn init_state(world: &mut World, system_meta: &mut SystemMeta) -> Self::State

Registers any World access used by this SystemParam and creates a new instance of this param’s State.
source§

unsafe fn new_archetype( state: &mut Self::State, archetype: &Archetype, system_meta: &mut SystemMeta, )

For the specified Archetype, registers the components accessed by this SystemParam (if applicable).a Read more
source§

fn apply(state: &mut Self::State, system_meta: &SystemMeta, world: &mut World)

Applies any deferred mutations stored in this SystemParam’s state. This is used to apply Commands during apply_deferred.
source§

unsafe fn validate_param( state: &Self::State, system_meta: &SystemMeta, world: UnsafeWorldCell<'_>, ) -> bool

Validates that the param can be acquired by the get_param. Built-in executors use this to prevent systems with invalid params from running. For nested SystemParams validation will fail if any delegated validation fails. Read more
source§

unsafe fn get_param<'w, 's>( state: &'s mut Self::State, system_meta: &SystemMeta, world: UnsafeWorldCell<'w>, change_tick: Tick, ) -> Self::Item<'w, 's>

Creates a parameter to be passed into a SystemParamFunction. Read more
source§

fn queue( state: &mut Self::State, system_meta: &SystemMeta, world: DeferredWorld<'_>, )

Queues any deferred mutations to be applied at the next apply_deferred.
source§

impl<'w, 's, Config, Clear> ReadOnlySystemParam for Gizmos<'w, 's, Config, Clear>
where Config: GizmoConfigGroup, Clear: 'static + Send + Sync, Deferred<'s, GizmoBuffer<Config, Clear>>: ReadOnlySystemParam, Res<'w, GizmoConfigStore>: ReadOnlySystemParam,

Auto Trait Implementations§

§

impl<'w, 's, Config, Clear> Freeze for Gizmos<'w, 's, Config, Clear>

§

impl<'w, 's, Config, Clear> RefUnwindSafe for Gizmos<'w, 's, Config, Clear>
where Config: RefUnwindSafe, Clear: RefUnwindSafe,

§

impl<'w, 's, Config, Clear> Send for Gizmos<'w, 's, Config, Clear>

§

impl<'w, 's, Config, Clear> Sync for Gizmos<'w, 's, Config, Clear>

§

impl<'w, 's, Config, Clear> Unpin for Gizmos<'w, 's, Config, Clear>

§

impl<'w, 's, Config = DefaultGizmoConfigGroup, Clear = ()> !UnwindSafe for Gizmos<'w, 's, Config, Clear>

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T, U> AsBindGroupShaderType<U> for T
where U: ShaderType, &'a T: for<'a> Into<U>,

source§

fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U

Return the T ShaderType for self. When used in AsBindGroup derives, it is safe to assume that all images in self exist.
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> Downcast<T> for T

source§

fn downcast(&self) -> &T

source§

impl<T> Downcast for T
where T: Any,

source§

fn into_any(self: Box<T>) -> Box<dyn Any>

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
source§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
source§

fn as_any(&self) -> &(dyn Any + 'static)

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
source§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
source§

impl<T> DowncastSync for T
where T: Any + Send + Sync,

source§

fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + Sync + Send>

Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T> Instrument for T

source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> IntoEither for T

source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

source§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<T> Upcast<T> for T

source§

fn upcast(&self) -> Option<&T>

source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

source§

fn vzip(self) -> V

source§

impl<T> WithSubscriber for T

source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
source§

impl<T> ConditionalSend for T
where T: Send,

source§

impl<T> Settings for T
where T: 'static + Send + Sync,

source§

impl<T> WasmNotSend for T
where T: Send,

source§

impl<T> WasmNotSendSync for T

source§

impl<T> WasmNotSync for T
where T: Sync,