pub struct TnuaAnimatingState<State> { /* private fields */ }
Expand description
Utility for deciding which animation to play.
Add TnuaAnimatingState<State>
as a component, where State
is a data type - usually an
enum
- that determines which animation to play. Each frame, decide (with the help of
TnuaController
) which animation should
be played and the animation’s parameters (like speed) and feed it to the TnuaAnimatingState
.
Use the emitted TnuaAnimatingStateDirective
to determine if this is a new animation or an
existing one (possibly with different parameters), and use that information to work the actual
animation player.
enum AnimationState {
Standing,
Running(Float),
}
fn animating_system(
mut query: &mut Query<(
&mut TnuaAnimatingState<AnimationState>,
&TnuaController,
&mut AnimationPlayer,
)>,
animation_nodes: Res<AnimationNodes>,
) {
for (mut animating_state, controller, mut animation_player) in query.iter_mut() {
match animating_state.update_by_discriminant({
let Some((_, basis_state)) = controller.concrete_basis::<TnuaBuiltinWalk>()
else {
continue;
};
let speed = basis_state.running_velocity.length();
if 0.01 < speed {
AnimationState::Running(speed)
} else {
AnimationState::Standing
}
}) {
TnuaAnimatingStateDirective::Maintain { state } => {
if let AnimationState::Running(speed) = state {
if let Some(active_animation) = animation_player.animation_mut(animation_nodes.running) {
active_animation.set_speed(*speed);
}
}
}
TnuaAnimatingStateDirective::Alter {
// We don't need the old state here, but it's available for transition
// animations.
old_state: _,
state,
} => {
animation_player.stop_all();
match state {
AnimationState::Standing => {
animation_player
.start(animation_nodes.standing)
.set_speed(1.0)
.repeat();
}
AnimationState::Running(speed) => {
animation_player
.start(animation_nodes.running)
.set_speed(*speed)
.repeat();
}
}
}
}
}
}
Implementations§
Source§impl<State> TnuaAnimatingState<State>
impl<State> TnuaAnimatingState<State>
Sourcepub fn update_by(
&mut self,
new_state: State,
comparison: impl FnOnce(&State, &State) -> bool,
) -> TnuaAnimatingStateDirective<'_, State>
pub fn update_by( &mut self, new_state: State, comparison: impl FnOnce(&State, &State) -> bool, ) -> TnuaAnimatingStateDirective<'_, State>
Consider a new animation to play.
The comparison function decides if its the same animation (possibly with different parameters) or a different animation.
Sourcepub fn update_by_value(
&mut self,
new_state: State,
) -> TnuaAnimatingStateDirective<'_, State>where
State: PartialEq,
pub fn update_by_value(
&mut self,
new_state: State,
) -> TnuaAnimatingStateDirective<'_, State>where
State: PartialEq,
Consider a new animation to play.
The new animation is considered the same if and only if it is equal to the old animation.
Sourcepub fn update_by_discriminant(
&mut self,
new_state: State,
) -> TnuaAnimatingStateDirective<'_, State>
pub fn update_by_discriminant( &mut self, new_state: State, ) -> TnuaAnimatingStateDirective<'_, State>
Consider a new animation to play.
The new animation is considered the same if it is the same variant of the enum as the old animation.
If the State
is not an enum
, using this method will not result in undefined behavior,
but the behavior is unspecified.
Trait Implementations§
Source§impl<State> Component for TnuaAnimatingState<State>
impl<State> Component for TnuaAnimatingState<State>
Source§const STORAGE_TYPE: StorageType = bevy::ecs::component::StorageType::Table
const STORAGE_TYPE: StorageType = bevy::ecs::component::StorageType::Table
Source§fn register_required_components(
requiree: ComponentId,
components: &mut Components,
storages: &mut Storages,
required_components: &mut RequiredComponents,
inheritance_depth: u16,
)
fn register_required_components( requiree: ComponentId, components: &mut Components, storages: &mut Storages, required_components: &mut RequiredComponents, inheritance_depth: u16, )
Source§fn register_component_hooks(hooks: &mut ComponentHooks)
fn register_component_hooks(hooks: &mut ComponentHooks)
ComponentHooks
.Auto Trait Implementations§
impl<State> Freeze for TnuaAnimatingState<State>where
State: Freeze,
impl<State> RefUnwindSafe for TnuaAnimatingState<State>where
State: RefUnwindSafe,
impl<State> Send for TnuaAnimatingState<State>where
State: Send,
impl<State> Sync for TnuaAnimatingState<State>where
State: Sync,
impl<State> Unpin for TnuaAnimatingState<State>where
State: Unpin,
impl<State> UnwindSafe for TnuaAnimatingState<State>where
State: UnwindSafe,
Blanket Implementations§
Source§impl<T, U> AsBindGroupShaderType<U> for T
impl<T, U> AsBindGroupShaderType<U> for T
Source§fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U
fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U
T
ShaderType
for self
. When used in AsBindGroup
derives, it is safe to assume that all images in self
exist.Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<C> Bundle for Cwhere
C: Component,
impl<C> Bundle for Cwhere
C: Component,
fn component_ids( components: &mut Components, storages: &mut Storages, ids: &mut impl FnMut(ComponentId), )
unsafe fn from_components<T, F>(ctx: &mut T, func: &mut F) -> C
Source§fn register_required_components(
components: &mut Components,
storages: &mut Storages,
required_components: &mut RequiredComponents,
)
fn register_required_components( components: &mut Components, storages: &mut Storages, required_components: &mut RequiredComponents, )
Bundle
.Source§fn get_component_ids(
components: &Components,
ids: &mut impl FnMut(Option<ComponentId>),
)
fn get_component_ids( components: &Components, ids: &mut impl FnMut(Option<ComponentId>), )
Source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
Source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
.Source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.Source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.Source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.Source§impl<T> DowncastSync for T
impl<T> DowncastSync for T
Source§impl<C> DynamicBundle for Cwhere
C: Component,
impl<C> DynamicBundle for Cwhere
C: Component,
fn get_components(self, func: &mut impl FnMut(StorageType, OwningPtr<'_>))
Source§impl<T> FromWorld for Twhere
T: Default,
impl<T> FromWorld for Twhere
T: Default,
Source§fn from_world(_world: &mut World) -> T
fn from_world(_world: &mut World) -> T
Creates Self
using default()
.
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more