#[repr(C)]pub struct Rotation<T, const D: usize> { /* private fields */ }
Expand description
A rotation matrix.
This is also known as an element of a Special Orthogonal (SO) group.
The Rotation
type can either represent a 2D or 3D rotation, represented as a matrix.
For a rotation based on quaternions, see UnitQuaternion
instead.
Note that instead of using the Rotation
type in your code directly, you should use one
of its aliases: Rotation2
, or Rotation3
. Though
keep in mind that all the documentation of all the methods of these aliases will also appears on
this page.
§Construction
- Identity
identity
- From a 2D rotation angle
new
… - From an existing 2D matrix or rotations
from_matrix
,rotation_between
,powf
… - From a 3D axis and/or angles
new
,from_euler_angles
,from_axis_angle
… - From a 3D eye position and target point
look_at
,look_at_lh
,rotation_between
… - From an existing 3D matrix or rotations
from_matrix
,rotation_between
,powf
…
§Transformation and composition
Note that transforming vectors and points can be done by multiplication, e.g., rotation * point
.
Composing an rotation with another transformation can also be done by multiplication or division.
- 3D axis and angle extraction
angle
,euler_angles
,scaled_axis
,angle_to
… - 2D angle extraction
angle
,angle_to
… - Transformation of a vector or a point
transform_vector
,inverse_transform_point
… - Transposition and inversion
transpose
,inverse
… - Interpolation
slerp
…
§Conversion
Implementations§
source§impl<T, const D: usize> Rotation<T, D>
impl<T, const D: usize> Rotation<T, D>
sourcepub const fn from_matrix_unchecked(matrix: SMatrix<T, D, D>) -> Self
pub const fn from_matrix_unchecked(matrix: SMatrix<T, D, D>) -> Self
Creates a new rotation from the given square matrix.
The matrix orthonormality is not checked.
§Example
let mat = Matrix3::new(0.8660254, -0.5, 0.0,
0.5, 0.8660254, 0.0,
0.0, 0.0, 1.0);
let rot = Rotation3::from_matrix_unchecked(mat);
assert_eq!(*rot.matrix(), mat);
let mat = Matrix2::new(0.8660254, -0.5,
0.5, 0.8660254);
let rot = Rotation2::from_matrix_unchecked(mat);
assert_eq!(*rot.matrix(), mat);
source§impl<T: Scalar, const D: usize> Rotation<T, D>
impl<T: Scalar, const D: usize> Rotation<T, D>
§Conversion to a matrix
sourcepub fn matrix(&self) -> &SMatrix<T, D, D>
pub fn matrix(&self) -> &SMatrix<T, D, D>
A reference to the underlying matrix representation of this rotation.
§Example
let rot = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
let expected = Matrix3::new(0.8660254, -0.5, 0.0,
0.5, 0.8660254, 0.0,
0.0, 0.0, 1.0);
assert_eq!(*rot.matrix(), expected);
let rot = Rotation2::new(f32::consts::FRAC_PI_6);
let expected = Matrix2::new(0.8660254, -0.5,
0.5, 0.8660254);
assert_eq!(*rot.matrix(), expected);
sourcepub unsafe fn matrix_mut(&mut self) -> &mut SMatrix<T, D, D>
👎Deprecated: Use .matrix_mut_unchecked()
instead.
pub unsafe fn matrix_mut(&mut self) -> &mut SMatrix<T, D, D>
.matrix_mut_unchecked()
instead.A mutable reference to the underlying matrix representation of this rotation.
§Safety
Invariants of the rotation matrix should not be violated.
sourcepub fn matrix_mut_unchecked(&mut self) -> &mut SMatrix<T, D, D>
pub fn matrix_mut_unchecked(&mut self) -> &mut SMatrix<T, D, D>
A mutable reference to the underlying matrix representation of this rotation.
This is suffixed by “_unchecked” because this allows the user to replace the matrix by another one that is non-inversible or non-orthonormal. If one of those properties is broken, subsequent method calls may return bogus results.
sourcepub fn into_inner(self) -> SMatrix<T, D, D>
pub fn into_inner(self) -> SMatrix<T, D, D>
Unwraps the underlying matrix.
§Example
let rot = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
let mat = rot.into_inner();
let expected = Matrix3::new(0.8660254, -0.5, 0.0,
0.5, 0.8660254, 0.0,
0.0, 0.0, 1.0);
assert_eq!(mat, expected);
let rot = Rotation2::new(f32::consts::FRAC_PI_6);
let mat = rot.into_inner();
let expected = Matrix2::new(0.8660254, -0.5,
0.5, 0.8660254);
assert_eq!(mat, expected);
sourcepub fn unwrap(self) -> SMatrix<T, D, D>
👎Deprecated: use .into_inner()
instead
pub fn unwrap(self) -> SMatrix<T, D, D>
.into_inner()
insteadUnwraps the underlying matrix.
Deprecated: Use Rotation::into_inner
instead.
sourcepub fn to_homogeneous(
&self
) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>where
T: Zero + One,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
pub fn to_homogeneous(
&self
) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>where
T: Zero + One,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Converts this rotation into its equivalent homogeneous transformation matrix.
This is the same as self.into()
.
§Example
let rot = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
let expected = Matrix4::new(0.8660254, -0.5, 0.0, 0.0,
0.5, 0.8660254, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0);
assert_eq!(rot.to_homogeneous(), expected);
let rot = Rotation2::new(f32::consts::FRAC_PI_6);
let expected = Matrix3::new(0.8660254, -0.5, 0.0,
0.5, 0.8660254, 0.0,
0.0, 0.0, 1.0);
assert_eq!(rot.to_homogeneous(), expected);
source§impl<T: Scalar, const D: usize> Rotation<T, D>
impl<T: Scalar, const D: usize> Rotation<T, D>
§Transposition and inversion
sourcepub fn transpose(&self) -> Self
pub fn transpose(&self) -> Self
Transposes self
.
Same as .inverse()
because the inverse of a rotation matrix is its transpose.
§Example
let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
let tr_rot = rot.transpose();
assert_relative_eq!(rot * tr_rot, Rotation3::identity(), epsilon = 1.0e-6);
assert_relative_eq!(tr_rot * rot, Rotation3::identity(), epsilon = 1.0e-6);
let rot = Rotation2::new(1.2);
let tr_rot = rot.transpose();
assert_relative_eq!(rot * tr_rot, Rotation2::identity(), epsilon = 1.0e-6);
assert_relative_eq!(tr_rot * rot, Rotation2::identity(), epsilon = 1.0e-6);
sourcepub fn inverse(&self) -> Self
pub fn inverse(&self) -> Self
Inverts self
.
Same as .transpose()
because the inverse of a rotation matrix is its transpose.
§Example
let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
let inv = rot.inverse();
assert_relative_eq!(rot * inv, Rotation3::identity(), epsilon = 1.0e-6);
assert_relative_eq!(inv * rot, Rotation3::identity(), epsilon = 1.0e-6);
let rot = Rotation2::new(1.2);
let inv = rot.inverse();
assert_relative_eq!(rot * inv, Rotation2::identity(), epsilon = 1.0e-6);
assert_relative_eq!(inv * rot, Rotation2::identity(), epsilon = 1.0e-6);
sourcepub fn transpose_mut(&mut self)
pub fn transpose_mut(&mut self)
Transposes self
in-place.
Same as .inverse_mut()
because the inverse of a rotation matrix is its transpose.
§Example
let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
let mut tr_rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
tr_rot.transpose_mut();
assert_relative_eq!(rot * tr_rot, Rotation3::identity(), epsilon = 1.0e-6);
assert_relative_eq!(tr_rot * rot, Rotation3::identity(), epsilon = 1.0e-6);
let rot = Rotation2::new(1.2);
let mut tr_rot = Rotation2::new(1.2);
tr_rot.transpose_mut();
assert_relative_eq!(rot * tr_rot, Rotation2::identity(), epsilon = 1.0e-6);
assert_relative_eq!(tr_rot * rot, Rotation2::identity(), epsilon = 1.0e-6);
sourcepub fn inverse_mut(&mut self)
pub fn inverse_mut(&mut self)
Inverts self
in-place.
Same as .transpose_mut()
because the inverse of a rotation matrix is its transpose.
§Example
let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
let mut inv = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
inv.inverse_mut();
assert_relative_eq!(rot * inv, Rotation3::identity(), epsilon = 1.0e-6);
assert_relative_eq!(inv * rot, Rotation3::identity(), epsilon = 1.0e-6);
let rot = Rotation2::new(1.2);
let mut inv = Rotation2::new(1.2);
inv.inverse_mut();
assert_relative_eq!(rot * inv, Rotation2::identity(), epsilon = 1.0e-6);
assert_relative_eq!(inv * rot, Rotation2::identity(), epsilon = 1.0e-6);
source§impl<T: SimdRealField, const D: usize> Rotation<T, D>where
T::Element: SimdRealField,
impl<T: SimdRealField, const D: usize> Rotation<T, D>where
T::Element: SimdRealField,
§Transformation of a vector or a point
sourcepub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
pub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
Rotate the given point.
This is the same as the multiplication self * pt
.
§Example
let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2);
let transformed_point = rot.transform_point(&Point3::new(1.0, 2.0, 3.0));
assert_relative_eq!(transformed_point, Point3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
sourcepub fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>
pub fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>
Rotate the given vector.
This is the same as the multiplication self * v
.
§Example
let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2);
let transformed_vector = rot.transform_vector(&Vector3::new(1.0, 2.0, 3.0));
assert_relative_eq!(transformed_vector, Vector3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
sourcepub fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
pub fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
Rotate the given point by the inverse of this rotation. This may be cheaper than inverting the rotation and then transforming the given point.
§Example
let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2);
let transformed_point = rot.inverse_transform_point(&Point3::new(1.0, 2.0, 3.0));
assert_relative_eq!(transformed_point, Point3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
sourcepub fn inverse_transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>
pub fn inverse_transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>
Rotate the given vector by the inverse of this rotation. This may be cheaper than inverting the rotation and then transforming the given vector.
§Example
let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2);
let transformed_vector = rot.inverse_transform_vector(&Vector3::new(1.0, 2.0, 3.0));
assert_relative_eq!(transformed_vector, Vector3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
sourcepub fn inverse_transform_unit_vector(
&self,
v: &Unit<SVector<T, D>>
) -> Unit<SVector<T, D>>
pub fn inverse_transform_unit_vector( &self, v: &Unit<SVector<T, D>> ) -> Unit<SVector<T, D>>
Rotate the given vector by the inverse of this rotation. This may be cheaper than inverting the rotation and then transforming the given vector.
§Example
let rot = Rotation3::new(Vector3::z() * f32::consts::FRAC_PI_2);
let transformed_vector = rot.inverse_transform_unit_vector(&Vector3::x_axis());
assert_relative_eq!(transformed_vector, -Vector3::y_axis(), epsilon = 1.0e-6);
source§impl<T, const D: usize> Rotation<T, D>
impl<T, const D: usize> Rotation<T, D>
§Identity
sourcepub fn identity() -> Rotation<T, D>
pub fn identity() -> Rotation<T, D>
Creates a new square identity rotation of the given dimension
.
§Example
let rot1 = Rotation2::identity();
let rot2 = Rotation2::new(std::f32::consts::FRAC_PI_2);
assert_eq!(rot1 * rot2, rot2);
assert_eq!(rot2 * rot1, rot2);
let rot1 = Rotation3::identity();
let rot2 = Rotation3::from_axis_angle(&Vector3::z_axis(), std::f32::consts::FRAC_PI_2);
assert_eq!(rot1 * rot2, rot2);
assert_eq!(rot2 * rot1, rot2);
source§impl<T: SimdRealField> Rotation<T, 2>
impl<T: SimdRealField> Rotation<T, 2>
§Interpolation
sourcepub fn slerp(&self, other: &Self, t: T) -> Selfwhere
T::Element: SimdRealField,
pub fn slerp(&self, other: &Self, t: T) -> Selfwhere
T::Element: SimdRealField,
Spherical linear interpolation between two rotation matrices.
§Examples:
let rot1 = Rotation2::new(std::f32::consts::FRAC_PI_4);
let rot2 = Rotation2::new(-std::f32::consts::PI);
let rot = rot1.slerp(&rot2, 1.0 / 3.0);
assert_relative_eq!(rot.angle(), std::f32::consts::FRAC_PI_2);
source§impl<T: SimdRealField> Rotation<T, 3>
impl<T: SimdRealField> Rotation<T, 3>
sourcepub fn slerp(&self, other: &Self, t: T) -> Selfwhere
T: RealField,
pub fn slerp(&self, other: &Self, t: T) -> Selfwhere
T: RealField,
Spherical linear interpolation between two rotation matrices.
Panics if the angle between both rotations is 180 degrees (in which case the interpolation
is not well-defined). Use .try_slerp
instead to avoid the panic.
§Examples:
let q1 = Rotation3::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
let q2 = Rotation3::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);
let q = q1.slerp(&q2, 1.0 / 3.0);
assert_eq!(q.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
sourcepub fn try_slerp(&self, other: &Self, t: T, epsilon: T) -> Option<Self>where
T: RealField,
pub fn try_slerp(&self, other: &Self, t: T, epsilon: T) -> Option<Self>where
T: RealField,
Computes the spherical linear interpolation between two rotation matrices or returns None
if both rotations are approximately 180 degrees apart (in which case the interpolation is
not well-defined).
§Arguments
self
: the first rotation to interpolate from.other
: the second rotation to interpolate toward.t
: the interpolation parameter. Should be between 0 and 1.epsilon
: the value below which the sinus of the angle separating both rotations must be to returnNone
.
source§impl<T: SimdRealField> Rotation<T, 2>
impl<T: SimdRealField> Rotation<T, 2>
§Construction from a 2D rotation angle
sourcepub fn new(angle: T) -> Self
pub fn new(angle: T) -> Self
Builds a 2 dimensional rotation matrix from an angle in radian.
§Example
let rot = Rotation2::new(f32::consts::FRAC_PI_2);
assert_relative_eq!(rot * Point2::new(3.0, 4.0), Point2::new(-4.0, 3.0));
sourcepub fn from_scaled_axis<SB: Storage<T, U1>>(
axisangle: Vector<T, U1, SB>
) -> Self
pub fn from_scaled_axis<SB: Storage<T, U1>>( axisangle: Vector<T, U1, SB> ) -> Self
Builds a 2 dimensional rotation matrix from an angle in radian wrapped in a 1-dimensional vector.
This is generally used in the context of generic programming. Using
the ::new(angle)
method instead is more common.
source§impl<T: SimdRealField> Rotation<T, 2>
impl<T: SimdRealField> Rotation<T, 2>
§Construction from an existing 2D matrix or rotations
sourcepub fn from_basis_unchecked(basis: &[Vector2<T>; 2]) -> Self
pub fn from_basis_unchecked(basis: &[Vector2<T>; 2]) -> Self
Builds a rotation from a basis assumed to be orthonormal.
In order to get a valid rotation matrix, the input must be an orthonormal basis, i.e., all vectors are normalized, and the are all orthogonal to each other. These invariants are not checked by this method.
sourcepub fn from_matrix(m: &Matrix2<T>) -> Selfwhere
T: RealField,
pub fn from_matrix(m: &Matrix2<T>) -> Selfwhere
T: RealField,
Builds a rotation matrix by extracting the rotation part of the given transformation m
.
This is an iterative method. See .from_matrix_eps
to provide mover
convergence parameters and starting solution.
This implements “A Robust Method to Extract the Rotational Part of Deformations” by Müller et al.
sourcepub fn from_matrix_eps(
m: &Matrix2<T>,
eps: T,
max_iter: usize,
guess: Self
) -> Selfwhere
T: RealField,
pub fn from_matrix_eps(
m: &Matrix2<T>,
eps: T,
max_iter: usize,
guess: Self
) -> Selfwhere
T: RealField,
Builds a rotation matrix by extracting the rotation part of the given transformation m
.
This implements “A Robust Method to Extract the Rotational Part of Deformations” by Müller et al.
§Parameters
m
: the matrix from which the rotational part is to be extracted.eps
: the angular errors tolerated between the current rotation and the optimal one.max_iter
: the maximum number of iterations. Loops indefinitely until convergence if set to0
.guess
: an estimate of the solution. Convergence will be significantly faster if an initial solution close to the actual solution is provided. Can be set toRotation2::identity()
if no other guesses come to mind.
sourcepub fn rotation_between<SB, SC>(
a: &Vector<T, U2, SB>,
b: &Vector<T, U2, SC>
) -> Self
pub fn rotation_between<SB, SC>( a: &Vector<T, U2, SB>, b: &Vector<T, U2, SC> ) -> Self
The rotation matrix required to align a
and b
but with its angle.
This is the rotation R
such that (R * a).angle(b) == 0 && (R * a).dot(b).is_positive()
.
§Example
let a = Vector2::new(1.0, 2.0);
let b = Vector2::new(2.0, 1.0);
let rot = Rotation2::rotation_between(&a, &b);
assert_relative_eq!(rot * a, b);
assert_relative_eq!(rot.inverse() * b, a);
sourcepub fn scaled_rotation_between<SB, SC>(
a: &Vector<T, U2, SB>,
b: &Vector<T, U2, SC>,
s: T
) -> Self
pub fn scaled_rotation_between<SB, SC>( a: &Vector<T, U2, SB>, b: &Vector<T, U2, SC>, s: T ) -> Self
The smallest rotation needed to make a
and b
collinear and point toward the same
direction, raised to the power s
.
§Example
let a = Vector2::new(1.0, 2.0);
let b = Vector2::new(2.0, 1.0);
let rot2 = Rotation2::scaled_rotation_between(&a, &b, 0.2);
let rot5 = Rotation2::scaled_rotation_between(&a, &b, 0.5);
assert_relative_eq!(rot2 * rot2 * rot2 * rot2 * rot2 * a, b, epsilon = 1.0e-6);
assert_relative_eq!(rot5 * rot5 * a, b, epsilon = 1.0e-6);
sourcepub fn rotation_to(&self, other: &Self) -> Self
pub fn rotation_to(&self, other: &Self) -> Self
The rotation matrix needed to make self
and other
coincide.
The result is such that: self.rotation_to(other) * self == other
.
§Example
let rot1 = Rotation2::new(0.1);
let rot2 = Rotation2::new(1.7);
let rot_to = rot1.rotation_to(&rot2);
assert_relative_eq!(rot_to * rot1, rot2);
assert_relative_eq!(rot_to.inverse() * rot2, rot1);
sourcepub fn renormalize(&mut self)where
T: RealField,
pub fn renormalize(&mut self)where
T: RealField,
Ensure this rotation is an orthonormal rotation matrix. This is useful when repeated computations might cause the matrix from progressively not being orthonormal anymore.
source§impl<T: SimdRealField> Rotation<T, 2>
impl<T: SimdRealField> Rotation<T, 2>
§2D angle extraction
sourcepub fn angle(&self) -> T
pub fn angle(&self) -> T
The rotation angle.
§Example
let rot = Rotation2::new(1.78);
assert_relative_eq!(rot.angle(), 1.78);
sourcepub fn angle_to(&self, other: &Self) -> T
pub fn angle_to(&self, other: &Self) -> T
The rotation angle needed to make self
and other
coincide.
§Example
let rot1 = Rotation2::new(0.1);
let rot2 = Rotation2::new(1.7);
assert_relative_eq!(rot1.angle_to(&rot2), 1.6);
sourcepub fn scaled_axis(&self) -> SVector<T, 1>
pub fn scaled_axis(&self) -> SVector<T, 1>
The rotation angle returned as a 1-dimensional vector.
This is generally used in the context of generic programming. Using
the .angle()
method instead is more common.
source§impl<T: SimdRealField> Rotation<T, 3>where
T::Element: SimdRealField,
impl<T: SimdRealField> Rotation<T, 3>where
T::Element: SimdRealField,
§Construction from a 3D axis and/or angles
sourcepub fn new<SB: Storage<T, U3>>(axisangle: Vector<T, U3, SB>) -> Self
pub fn new<SB: Storage<T, U3>>(axisangle: Vector<T, U3, SB>) -> Self
Builds a 3 dimensional rotation matrix from an axis and an angle.
§Arguments
axisangle
- A vector representing the rotation. Its magnitude is the amount of rotation in radian. Its direction is the axis of rotation.
§Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
let rot = Rotation3::new(axisangle);
assert_relative_eq!(rot * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
assert_relative_eq!(rot * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
// A zero vector yields an identity.
assert_eq!(Rotation3::new(Vector3::<f32>::zeros()), Rotation3::identity());
sourcepub fn from_scaled_axis<SB: Storage<T, U3>>(
axisangle: Vector<T, U3, SB>
) -> Self
pub fn from_scaled_axis<SB: Storage<T, U3>>( axisangle: Vector<T, U3, SB> ) -> Self
Builds a 3D rotation matrix from an axis scaled by the rotation angle.
This is the same as Self::new(axisangle)
.
§Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
let rot = Rotation3::new(axisangle);
assert_relative_eq!(rot * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
assert_relative_eq!(rot * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
// A zero vector yields an identity.
assert_eq!(Rotation3::from_scaled_axis(Vector3::<f32>::zeros()), Rotation3::identity());
sourcepub fn from_axis_angle<SB>(axis: &Unit<Vector<T, U3, SB>>, angle: T) -> Self
pub fn from_axis_angle<SB>(axis: &Unit<Vector<T, U3, SB>>, angle: T) -> Self
Builds a 3D rotation matrix from an axis and a rotation angle.
§Example
let axis = Vector3::y_axis();
let angle = f32::consts::FRAC_PI_2;
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
let rot = Rotation3::from_axis_angle(&axis, angle);
assert_eq!(rot.axis().unwrap(), axis);
assert_eq!(rot.angle(), angle);
assert_relative_eq!(rot * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
assert_relative_eq!(rot * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
// A zero vector yields an identity.
assert_eq!(Rotation3::from_scaled_axis(Vector3::<f32>::zeros()), Rotation3::identity());
sourcepub fn from_euler_angles(roll: T, pitch: T, yaw: T) -> Self
pub fn from_euler_angles(roll: T, pitch: T, yaw: T) -> Self
Creates a new rotation from Euler angles.
The primitive rotations are applied in order: 1 roll − 2 pitch − 3 yaw.
§Example
let rot = Rotation3::from_euler_angles(0.1, 0.2, 0.3);
let euler = rot.euler_angles();
assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6);
assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6);
assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);
source§impl<T: SimdRealField> Rotation<T, 3>where
T::Element: SimdRealField,
impl<T: SimdRealField> Rotation<T, 3>where
T::Element: SimdRealField,
§Construction from a 3D eye position and target point
sourcepub fn face_towards<SB, SC>(
dir: &Vector<T, U3, SB>,
up: &Vector<T, U3, SC>
) -> Self
pub fn face_towards<SB, SC>( dir: &Vector<T, U3, SB>, up: &Vector<T, U3, SC> ) -> Self
Creates a rotation that corresponds to the local frame of an observer standing at the
origin and looking toward dir
.
It maps the z
axis to the direction dir
.
§Arguments
- dir - The look direction, that is, direction the matrix
z
axis will be aligned with. - up - The vertical direction. The only requirement of this parameter is to not be
collinear to
dir
. Non-collinearity is not checked.
§Example
let dir = Vector3::new(1.0, 2.0, 3.0);
let up = Vector3::y();
let rot = Rotation3::face_towards(&dir, &up);
assert_relative_eq!(rot * Vector3::z(), dir.normalize());
sourcepub fn new_observer_frames<SB, SC>(
dir: &Vector<T, U3, SB>,
up: &Vector<T, U3, SC>
) -> Self
👎Deprecated: renamed to face_towards
pub fn new_observer_frames<SB, SC>( dir: &Vector<T, U3, SB>, up: &Vector<T, U3, SC> ) -> Self
face_towards
Deprecated: Use Rotation3::face_towards
instead.
sourcepub fn look_at_rh<SB, SC>(
dir: &Vector<T, U3, SB>,
up: &Vector<T, U3, SC>
) -> Self
pub fn look_at_rh<SB, SC>( dir: &Vector<T, U3, SB>, up: &Vector<T, U3, SC> ) -> Self
Builds a right-handed look-at view matrix without translation.
It maps the view direction dir
to the negative z
axis.
This conforms to the common notion of right handed look-at matrix from the computer
graphics community.
§Arguments
- dir - The direction toward which the camera looks.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
dir
.
§Example
let dir = Vector3::new(1.0, 2.0, 3.0);
let up = Vector3::y();
let rot = Rotation3::look_at_rh(&dir, &up);
assert_relative_eq!(rot * dir.normalize(), -Vector3::z());
sourcepub fn look_at_lh<SB, SC>(
dir: &Vector<T, U3, SB>,
up: &Vector<T, U3, SC>
) -> Self
pub fn look_at_lh<SB, SC>( dir: &Vector<T, U3, SB>, up: &Vector<T, U3, SC> ) -> Self
Builds a left-handed look-at view matrix without translation.
It maps the view direction dir
to the positive z
axis.
This conforms to the common notion of left handed look-at matrix from the computer
graphics community.
§Arguments
- dir - The direction toward which the camera looks.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
dir
.
§Example
let dir = Vector3::new(1.0, 2.0, 3.0);
let up = Vector3::y();
let rot = Rotation3::look_at_lh(&dir, &up);
assert_relative_eq!(rot * dir.normalize(), Vector3::z());
source§impl<T: SimdRealField> Rotation<T, 3>where
T::Element: SimdRealField,
impl<T: SimdRealField> Rotation<T, 3>where
T::Element: SimdRealField,
§Construction from an existing 3D matrix or rotations
sourcepub fn rotation_between<SB, SC>(
a: &Vector<T, U3, SB>,
b: &Vector<T, U3, SC>
) -> Option<Self>
pub fn rotation_between<SB, SC>( a: &Vector<T, U3, SB>, b: &Vector<T, U3, SC> ) -> Option<Self>
The rotation matrix required to align a
and b
but with its angle.
This is the rotation R
such that (R * a).angle(b) == 0 && (R * a).dot(b).is_positive()
.
§Example
let a = Vector3::new(1.0, 2.0, 3.0);
let b = Vector3::new(3.0, 1.0, 2.0);
let rot = Rotation3::rotation_between(&a, &b).unwrap();
assert_relative_eq!(rot * a, b, epsilon = 1.0e-6);
assert_relative_eq!(rot.inverse() * b, a, epsilon = 1.0e-6);
sourcepub fn scaled_rotation_between<SB, SC>(
a: &Vector<T, U3, SB>,
b: &Vector<T, U3, SC>,
n: T
) -> Option<Self>
pub fn scaled_rotation_between<SB, SC>( a: &Vector<T, U3, SB>, b: &Vector<T, U3, SC>, n: T ) -> Option<Self>
The smallest rotation needed to make a
and b
collinear and point toward the same
direction, raised to the power s
.
§Example
let a = Vector3::new(1.0, 2.0, 3.0);
let b = Vector3::new(3.0, 1.0, 2.0);
let rot2 = Rotation3::scaled_rotation_between(&a, &b, 0.2).unwrap();
let rot5 = Rotation3::scaled_rotation_between(&a, &b, 0.5).unwrap();
assert_relative_eq!(rot2 * rot2 * rot2 * rot2 * rot2 * a, b, epsilon = 1.0e-6);
assert_relative_eq!(rot5 * rot5 * a, b, epsilon = 1.0e-6);
sourcepub fn rotation_to(&self, other: &Self) -> Self
pub fn rotation_to(&self, other: &Self) -> Self
The rotation matrix needed to make self
and other
coincide.
The result is such that: self.rotation_to(other) * self == other
.
§Example
let rot1 = Rotation3::from_axis_angle(&Vector3::y_axis(), 1.0);
let rot2 = Rotation3::from_axis_angle(&Vector3::x_axis(), 0.1);
let rot_to = rot1.rotation_to(&rot2);
assert_relative_eq!(rot_to * rot1, rot2, epsilon = 1.0e-6);
sourcepub fn powf(&self, n: T) -> Selfwhere
T: RealField,
pub fn powf(&self, n: T) -> Selfwhere
T: RealField,
Raise the rotation to a given floating power, i.e., returns the rotation with the same
axis as self
and an angle equal to self.angle()
multiplied by n
.
§Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let angle = 1.2;
let rot = Rotation3::from_axis_angle(&axis, angle);
let pow = rot.powf(2.0);
assert_relative_eq!(pow.axis().unwrap(), axis, epsilon = 1.0e-6);
assert_eq!(pow.angle(), 2.4);
sourcepub fn from_basis_unchecked(basis: &[Vector3<T>; 3]) -> Self
pub fn from_basis_unchecked(basis: &[Vector3<T>; 3]) -> Self
Builds a rotation from a basis assumed to be orthonormal.
In order to get a valid rotation matrix, the input must be an orthonormal basis, i.e., all vectors are normalized, and the are all orthogonal to each other. These invariants are not checked by this method.
sourcepub fn from_matrix(m: &Matrix3<T>) -> Selfwhere
T: RealField,
pub fn from_matrix(m: &Matrix3<T>) -> Selfwhere
T: RealField,
Builds a rotation matrix by extracting the rotation part of the given transformation m
.
This is an iterative method. See .from_matrix_eps
to provide mover
convergence parameters and starting solution.
This implements “A Robust Method to Extract the Rotational Part of Deformations” by Müller et al.
sourcepub fn from_matrix_eps(
m: &Matrix3<T>,
eps: T,
max_iter: usize,
guess: Self
) -> Selfwhere
T: RealField,
pub fn from_matrix_eps(
m: &Matrix3<T>,
eps: T,
max_iter: usize,
guess: Self
) -> Selfwhere
T: RealField,
Builds a rotation matrix by extracting the rotation part of the given transformation m
.
This implements “A Robust Method to Extract the Rotational Part of Deformations” by Müller et al.
§Parameters
m
: the matrix from which the rotational part is to be extracted.eps
: the angular errors tolerated between the current rotation and the optimal one.max_iter
: the maximum number of iterations. Loops indefinitely until convergence if set to0
.guess
: a guess of the solution. Convergence will be significantly faster if an initial solution close to the actual solution is provided. Can be set toRotation3::identity()
if no other guesses come to mind.
sourcepub fn renormalize(&mut self)where
T: RealField,
pub fn renormalize(&mut self)where
T: RealField,
Ensure this rotation is an orthonormal rotation matrix. This is useful when repeated computations might cause the matrix from progressively not being orthonormal anymore.
source§impl<T: SimdRealField> Rotation<T, 3>
impl<T: SimdRealField> Rotation<T, 3>
§3D axis and angle extraction
sourcepub fn angle(&self) -> T
pub fn angle(&self) -> T
The rotation angle in [0; pi].
§Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let rot = Rotation3::from_axis_angle(&axis, 1.78);
assert_relative_eq!(rot.angle(), 1.78);
sourcepub fn axis(&self) -> Option<Unit<Vector3<T>>>where
T: RealField,
pub fn axis(&self) -> Option<Unit<Vector3<T>>>where
T: RealField,
The rotation axis. Returns None
if the rotation angle is zero or PI.
§Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let angle = 1.2;
let rot = Rotation3::from_axis_angle(&axis, angle);
assert_relative_eq!(rot.axis().unwrap(), axis);
// Case with a zero angle.
let rot = Rotation3::from_axis_angle(&axis, 0.0);
assert!(rot.axis().is_none());
sourcepub fn scaled_axis(&self) -> Vector3<T>where
T: RealField,
pub fn scaled_axis(&self) -> Vector3<T>where
T: RealField,
The rotation axis multiplied by the rotation angle.
§Example
let axisangle = Vector3::new(0.1, 0.2, 0.3);
let rot = Rotation3::new(axisangle);
assert_relative_eq!(rot.scaled_axis(), axisangle, epsilon = 1.0e-6);
sourcepub fn axis_angle(&self) -> Option<(Unit<Vector3<T>>, T)>where
T: RealField,
pub fn axis_angle(&self) -> Option<(Unit<Vector3<T>>, T)>where
T: RealField,
The rotation axis and angle in (0, pi] of this rotation matrix.
Returns None
if the angle is zero.
§Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let angle = 1.2;
let rot = Rotation3::from_axis_angle(&axis, angle);
let axis_angle = rot.axis_angle().unwrap();
assert_relative_eq!(axis_angle.0, axis);
assert_relative_eq!(axis_angle.1, angle);
// Case with a zero angle.
let rot = Rotation3::from_axis_angle(&axis, 0.0);
assert!(rot.axis_angle().is_none());
sourcepub fn angle_to(&self, other: &Self) -> Twhere
T::Element: SimdRealField,
pub fn angle_to(&self, other: &Self) -> Twhere
T::Element: SimdRealField,
The rotation angle needed to make self
and other
coincide.
§Example
let rot1 = Rotation3::from_axis_angle(&Vector3::y_axis(), 1.0);
let rot2 = Rotation3::from_axis_angle(&Vector3::x_axis(), 0.1);
assert_relative_eq!(rot1.angle_to(&rot2), 1.0045657, epsilon = 1.0e-6);
sourcepub fn to_euler_angles(self) -> (T, T, T)where
T: RealField,
👎Deprecated: This is renamed to use .euler_angles()
.
pub fn to_euler_angles(self) -> (T, T, T)where
T: RealField,
.euler_angles()
.Creates Euler angles from a rotation.
The angles are produced in the form (roll, pitch, yaw).
sourcepub fn euler_angles(&self) -> (T, T, T)where
T: RealField,
pub fn euler_angles(&self) -> (T, T, T)where
T: RealField,
Euler angles corresponding to this rotation from a rotation.
The angles are produced in the form (roll, pitch, yaw).
§Example
let rot = Rotation3::from_euler_angles(0.1, 0.2, 0.3);
let euler = rot.euler_angles();
assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6);
assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6);
assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);
sourcepub fn euler_angles_ordered(
&self,
seq: [Unit<Vector3<T>>; 3],
extrinsic: bool
) -> ([T; 3], bool)
pub fn euler_angles_ordered( &self, seq: [Unit<Vector3<T>>; 3], extrinsic: bool ) -> ([T; 3], bool)
Represent this rotation as Euler angles.
Returns the angles produced in the order provided by seq parameter, along with the observability flag. The Euler axes passed to seq must form an orthonormal basis. If the rotation is gimbal locked, then the observability flag is false.
§Panics
Panics if the Euler axes in seq
are not orthonormal.
§Example 1:
use std::f64::consts::PI;
use approx::assert_relative_eq;
use nalgebra::{Matrix3, Rotation3, Unit, Vector3};
// 3-1-2
let n = [
Unit::new_unchecked(Vector3::new(0.0, 0.0, 1.0)),
Unit::new_unchecked(Vector3::new(1.0, 0.0, 0.0)),
Unit::new_unchecked(Vector3::new(0.0, 1.0, 0.0)),
];
let r1 = Rotation3::from_axis_angle(&n[2], 20.0 * PI / 180.0);
let r2 = Rotation3::from_axis_angle(&n[1], 30.0 * PI / 180.0);
let r3 = Rotation3::from_axis_angle(&n[0], 45.0 * PI / 180.0);
let d = r3 * r2 * r1;
let (angles, observable) = d.euler_angles_ordered(n, false);
assert!(observable);
assert_relative_eq!(angles[0] * 180.0 / PI, 45.0, epsilon = 1e-12);
assert_relative_eq!(angles[1] * 180.0 / PI, 30.0, epsilon = 1e-12);
assert_relative_eq!(angles[2] * 180.0 / PI, 20.0, epsilon = 1e-12);
§Example 2:
use std::f64::consts::PI;
use approx::assert_relative_eq;
use nalgebra::{Matrix3, Rotation3, Unit, Vector3};
let sqrt_2 = 2.0_f64.sqrt();
let n = [
Unit::new_unchecked(Vector3::new(1.0 / sqrt_2, 1.0 / sqrt_2, 0.0)),
Unit::new_unchecked(Vector3::new(1.0 / sqrt_2, -1.0 / sqrt_2, 0.0)),
Unit::new_unchecked(Vector3::new(0.0, 0.0, 1.0)),
];
let r1 = Rotation3::from_axis_angle(&n[2], 20.0 * PI / 180.0);
let r2 = Rotation3::from_axis_angle(&n[1], 30.0 * PI / 180.0);
let r3 = Rotation3::from_axis_angle(&n[0], 45.0 * PI / 180.0);
let d = r3 * r2 * r1;
let (angles, observable) = d.euler_angles_ordered(n, false);
assert!(observable);
assert_relative_eq!(angles[0] * 180.0 / PI, 45.0, epsilon = 1e-12);
assert_relative_eq!(angles[1] * 180.0 / PI, 30.0, epsilon = 1e-12);
assert_relative_eq!(angles[2] * 180.0 / PI, 20.0, epsilon = 1e-12);
Algorithm based on: Malcolm D. Shuster, F. Landis Markley, “General formula for extraction the Euler angles”, Journal of guidance, control, and dynamics, vol. 29.1, pp. 215-221. 2006, and modified to be able to produce extrinsic rotations.
Trait Implementations§
source§impl<T, const D: usize> AbsDiffEq for Rotation<T, D>
impl<T, const D: usize> AbsDiffEq for Rotation<T, D>
source§fn default_epsilon() -> Self::Epsilon
fn default_epsilon() -> Self::Epsilon
source§fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
source§fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
AbsDiffEq::abs_diff_eq
.source§impl<T: SimdRealField, const D: usize> AbstractRotation<T, D> for Rotation<T, D>where
T::Element: SimdRealField,
impl<T: SimdRealField, const D: usize> AbstractRotation<T, D> for Rotation<T, D>where
T::Element: SimdRealField,
source§fn inverse_mut(&mut self)
fn inverse_mut(&mut self)
self
to its inverse.source§fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>
fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>
source§fn transform_point(&self, p: &Point<T, D>) -> Point<T, D>
fn transform_point(&self, p: &Point<T, D>) -> Point<T, D>
source§fn inverse_transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>
fn inverse_transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>
source§fn inverse_transform_unit_vector(
&self,
v: &Unit<SVector<T, D>>
) -> Unit<SVector<T, D>>
fn inverse_transform_unit_vector( &self, v: &Unit<SVector<T, D>> ) -> Unit<SVector<T, D>>
source§fn inverse_transform_point(&self, p: &Point<T, D>) -> Point<T, D>
fn inverse_transform_point(&self, p: &Point<T, D>) -> Point<T, D>
source§impl<'a, 'b, T: SimdRealField, const D: usize> Div<&'b Isometry<T, Rotation<T, D>, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, const D: usize> Div<&'b Isometry<T, Rotation<T, D>, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField, const D: usize> Div<&'b Isometry<T, Rotation<T, D>, D>> for Rotation<T, D>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, const D: usize> Div<&'b Isometry<T, Rotation<T, D>, D>> for Rotation<T, D>where
T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField> Div<&'b Rotation<T, 2>> for &'a UnitComplex<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Div<&'b Rotation<T, 2>> for &'a UnitComplex<T>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField> Div<&'b Rotation<T, 2>> for UnitComplex<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Rotation<T, 2>> for UnitComplex<T>where
T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField> Div<&'b Rotation<T, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Div<&'b Rotation<T, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField> Div<&'b Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField, const D: usize> Div<&'b Rotation<T, D>> for &'a Isometry<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, const D: usize> Div<&'b Rotation<T, D>> for &'a Isometry<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField, const D: usize> Div<&'b Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, const D: usize> Div<&'b Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
source§impl<'a, 'b, T, C, const D: usize> Div<&'b Rotation<T, D>> for &'a Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Div<&'b Rotation<T, D>> for &'a Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<'b, T: SimdRealField, const D: usize> Div<&'b Rotation<T, D>> for Isometry<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, const D: usize> Div<&'b Rotation<T, D>> for Isometry<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField, const D: usize> Div<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, const D: usize> Div<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
source§impl<'b, T, C, const D: usize> Div<&'b Rotation<T, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Div<&'b Rotation<T, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<'a, 'b, T, R1, C1, SA, const D2: usize> Div<&'b Rotation<T, D2>> for &'a Matrix<T, R1, C1, SA>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
R1: Dim,
C1: Dim,
SA: Storage<T, R1, C1>,
DefaultAllocator: Allocator<R1, Const<D2>>,
ShapeConstraint: AreMultipliable<R1, C1, Const<D2>, Const<D2>>,
impl<'a, 'b, T, R1, C1, SA, const D2: usize> Div<&'b Rotation<T, D2>> for &'a Matrix<T, R1, C1, SA>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
R1: Dim,
C1: Dim,
SA: Storage<T, R1, C1>,
DefaultAllocator: Allocator<R1, Const<D2>>,
ShapeConstraint: AreMultipliable<R1, C1, Const<D2>, Const<D2>>,
source§impl<'b, T, R1, C1, SA, const D2: usize> Div<&'b Rotation<T, D2>> for Matrix<T, R1, C1, SA>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
R1: Dim,
C1: Dim,
SA: Storage<T, R1, C1>,
DefaultAllocator: Allocator<R1, Const<D2>>,
ShapeConstraint: AreMultipliable<R1, C1, Const<D2>, Const<D2>>,
impl<'b, T, R1, C1, SA, const D2: usize> Div<&'b Rotation<T, D2>> for Matrix<T, R1, C1, SA>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
R1: Dim,
C1: Dim,
SA: Storage<T, R1, C1>,
DefaultAllocator: Allocator<R1, Const<D2>>,
ShapeConstraint: AreMultipliable<R1, C1, Const<D2>, Const<D2>>,
source§impl<'a, 'b, T: SimdRealField, const D: usize> Div<&'b Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, const D: usize> Div<&'b Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField, const D: usize> Div<&'b Similarity<T, Rotation<T, D>, D>> for Rotation<T, D>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, const D: usize> Div<&'b Similarity<T, Rotation<T, D>, D>> for Rotation<T, D>where
T::Element: SimdRealField,
source§impl<'a, 'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for &'a Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for &'a Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<'a, 'b, T: SimdRealField> Div<&'b Unit<Complex<T>>> for &'a Rotation<T, 2>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Div<&'b Unit<Complex<T>>> for &'a Rotation<T, 2>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField> Div<&'b Unit<Complex<T>>> for Rotation<T, 2>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Unit<Complex<T>>> for Rotation<T, 2>where
T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for &'a Rotation<T, 3>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for &'a Rotation<T, 3>where
T::Element: SimdRealField,
§type Output = Unit<Quaternion<T>>
type Output = Unit<Quaternion<T>>
/
operator.source§impl<'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for Rotation<T, 3>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for Rotation<T, 3>where
T::Element: SimdRealField,
§type Output = Unit<Quaternion<T>>
type Output = Unit<Quaternion<T>>
/
operator.source§impl<'a, T: SimdRealField, const D: usize> Div<Isometry<T, Rotation<T, D>, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, const D: usize> Div<Isometry<T, Rotation<T, D>, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
source§impl<T: SimdRealField, const D: usize> Div<Isometry<T, Rotation<T, D>, D>> for Rotation<T, D>where
T::Element: SimdRealField,
impl<T: SimdRealField, const D: usize> Div<Isometry<T, Rotation<T, D>, D>> for Rotation<T, D>where
T::Element: SimdRealField,
source§impl<'a, T: SimdRealField> Div<Rotation<T, 2>> for &'a UnitComplex<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<Rotation<T, 2>> for &'a UnitComplex<T>where
T::Element: SimdRealField,
source§impl<T: SimdRealField> Div<Rotation<T, 2>> for UnitComplex<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Rotation<T, 2>> for UnitComplex<T>where
T::Element: SimdRealField,
source§impl<'a, T: SimdRealField> Div<Rotation<T, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<Rotation<T, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<T: SimdRealField> Div<Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'a, T: SimdRealField, const D: usize> Div<Rotation<T, D>> for &'a Isometry<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, const D: usize> Div<Rotation<T, D>> for &'a Isometry<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
source§impl<'a, T: SimdRealField, const D: usize> Div<Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, const D: usize> Div<Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
source§impl<'a, T, C, const D: usize> Div<Rotation<T, D>> for &'a Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Div<Rotation<T, D>> for &'a Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<T: SimdRealField, const D: usize> Div<Rotation<T, D>> for Isometry<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
impl<T: SimdRealField, const D: usize> Div<Rotation<T, D>> for Isometry<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
source§impl<T: SimdRealField, const D: usize> Div<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
impl<T: SimdRealField, const D: usize> Div<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
source§impl<T, C, const D: usize> Div<Rotation<T, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Div<Rotation<T, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<'a, T, R1, C1, SA, const D2: usize> Div<Rotation<T, D2>> for &'a Matrix<T, R1, C1, SA>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
R1: Dim,
C1: Dim,
SA: Storage<T, R1, C1>,
DefaultAllocator: Allocator<R1, Const<D2>>,
ShapeConstraint: AreMultipliable<R1, C1, Const<D2>, Const<D2>>,
impl<'a, T, R1, C1, SA, const D2: usize> Div<Rotation<T, D2>> for &'a Matrix<T, R1, C1, SA>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
R1: Dim,
C1: Dim,
SA: Storage<T, R1, C1>,
DefaultAllocator: Allocator<R1, Const<D2>>,
ShapeConstraint: AreMultipliable<R1, C1, Const<D2>, Const<D2>>,
source§impl<T, R1, C1, SA, const D2: usize> Div<Rotation<T, D2>> for Matrix<T, R1, C1, SA>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
R1: Dim,
C1: Dim,
SA: Storage<T, R1, C1>,
DefaultAllocator: Allocator<R1, Const<D2>>,
ShapeConstraint: AreMultipliable<R1, C1, Const<D2>, Const<D2>>,
impl<T, R1, C1, SA, const D2: usize> Div<Rotation<T, D2>> for Matrix<T, R1, C1, SA>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
R1: Dim,
C1: Dim,
SA: Storage<T, R1, C1>,
DefaultAllocator: Allocator<R1, Const<D2>>,
ShapeConstraint: AreMultipliable<R1, C1, Const<D2>, Const<D2>>,
source§impl<'a, T: SimdRealField, const D: usize> Div<Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, const D: usize> Div<Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
source§impl<T: SimdRealField, const D: usize> Div<Similarity<T, Rotation<T, D>, D>> for Rotation<T, D>where
T::Element: SimdRealField,
impl<T: SimdRealField, const D: usize> Div<Similarity<T, Rotation<T, D>, D>> for Rotation<T, D>where
T::Element: SimdRealField,
source§impl<'a, T, C, const D: usize> Div<Transform<T, C, D>> for &'a Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Div<Transform<T, C, D>> for &'a Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<T, C, const D: usize> Div<Transform<T, C, D>> for Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Div<Transform<T, C, D>> for Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<'a, T: SimdRealField> Div<Unit<Complex<T>>> for &'a Rotation<T, 2>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<Unit<Complex<T>>> for &'a Rotation<T, 2>where
T::Element: SimdRealField,
source§impl<T: SimdRealField> Div<Unit<Complex<T>>> for Rotation<T, 2>where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Unit<Complex<T>>> for Rotation<T, 2>where
T::Element: SimdRealField,
source§impl<'a, T: SimdRealField> Div<Unit<Quaternion<T>>> for &'a Rotation<T, 3>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<Unit<Quaternion<T>>> for &'a Rotation<T, 3>where
T::Element: SimdRealField,
§type Output = Unit<Quaternion<T>>
type Output = Unit<Quaternion<T>>
/
operator.source§impl<T: SimdRealField> Div<Unit<Quaternion<T>>> for Rotation<T, 3>where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Unit<Quaternion<T>>> for Rotation<T, 3>where
T::Element: SimdRealField,
§type Output = Unit<Quaternion<T>>
type Output = Unit<Quaternion<T>>
/
operator.source§impl<'b, T: SimdRealField> DivAssign<&'b Rotation<T, 2>> for UnitComplex<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> DivAssign<&'b Rotation<T, 2>> for UnitComplex<T>where
T::Element: SimdRealField,
source§fn div_assign(&mut self, rhs: &'b Rotation<T, 2>)
fn div_assign(&mut self, rhs: &'b Rotation<T, 2>)
/=
operation. Read moresource§impl<'b, T: SimdRealField> DivAssign<&'b Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> DivAssign<&'b Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§fn div_assign(&mut self, rhs: &'b Rotation<T, 3>)
fn div_assign(&mut self, rhs: &'b Rotation<T, 3>)
/=
operation. Read moresource§impl<'b, T, const R1: usize, const C1: usize> DivAssign<&'b Rotation<T, C1>> for SMatrix<T, R1, C1>
impl<'b, T, const R1: usize, const C1: usize> DivAssign<&'b Rotation<T, C1>> for SMatrix<T, R1, C1>
source§fn div_assign(&mut self, right: &'b Rotation<T, C1>)
fn div_assign(&mut self, right: &'b Rotation<T, C1>)
/=
operation. Read moresource§impl<'b, T, const D: usize> DivAssign<&'b Rotation<T, D>> for Isometry<T, Rotation<T, D>, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + SimdRealField,
T::Element: SimdRealField,
impl<'b, T, const D: usize> DivAssign<&'b Rotation<T, D>> for Isometry<T, Rotation<T, D>, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + SimdRealField,
T::Element: SimdRealField,
source§fn div_assign(&mut self, rhs: &'b Rotation<T, D>)
fn div_assign(&mut self, rhs: &'b Rotation<T, D>)
/=
operation. Read moresource§impl<'b, T, const D: usize> DivAssign<&'b Rotation<T, D>> for Rotation<T, D>
impl<'b, T, const D: usize> DivAssign<&'b Rotation<T, D>> for Rotation<T, D>
source§fn div_assign(&mut self, right: &'b Rotation<T, D>)
fn div_assign(&mut self, right: &'b Rotation<T, D>)
/=
operation. Read moresource§impl<'b, T, const D: usize> DivAssign<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + SimdRealField,
T::Element: SimdRealField,
impl<'b, T, const D: usize> DivAssign<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + SimdRealField,
T::Element: SimdRealField,
source§fn div_assign(&mut self, rhs: &'b Rotation<T, D>)
fn div_assign(&mut self, rhs: &'b Rotation<T, D>)
/=
operation. Read moresource§impl<'b, T, C, const D: usize> DivAssign<&'b Rotation<T, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> DivAssign<&'b Rotation<T, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§fn div_assign(&mut self, rhs: &'b Rotation<T, D>)
fn div_assign(&mut self, rhs: &'b Rotation<T, D>)
/=
operation. Read moresource§impl<'b, T: SimdRealField> DivAssign<&'b Unit<Complex<T>>> for Rotation<T, 2>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> DivAssign<&'b Unit<Complex<T>>> for Rotation<T, 2>where
T::Element: SimdRealField,
source§fn div_assign(&mut self, rhs: &'b UnitComplex<T>)
fn div_assign(&mut self, rhs: &'b UnitComplex<T>)
/=
operation. Read moresource§impl<T: SimdRealField> DivAssign<Rotation<T, 2>> for UnitComplex<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> DivAssign<Rotation<T, 2>> for UnitComplex<T>where
T::Element: SimdRealField,
source§fn div_assign(&mut self, rhs: Rotation<T, 2>)
fn div_assign(&mut self, rhs: Rotation<T, 2>)
/=
operation. Read moresource§impl<T: SimdRealField> DivAssign<Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> DivAssign<Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§fn div_assign(&mut self, rhs: Rotation<T, 3>)
fn div_assign(&mut self, rhs: Rotation<T, 3>)
/=
operation. Read moresource§impl<T, const R1: usize, const C1: usize> DivAssign<Rotation<T, C1>> for SMatrix<T, R1, C1>
impl<T, const R1: usize, const C1: usize> DivAssign<Rotation<T, C1>> for SMatrix<T, R1, C1>
source§fn div_assign(&mut self, right: Rotation<T, C1>)
fn div_assign(&mut self, right: Rotation<T, C1>)
/=
operation. Read moresource§impl<T, const D: usize> DivAssign<Rotation<T, D>> for Isometry<T, Rotation<T, D>, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + SimdRealField,
T::Element: SimdRealField,
impl<T, const D: usize> DivAssign<Rotation<T, D>> for Isometry<T, Rotation<T, D>, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + SimdRealField,
T::Element: SimdRealField,
source§fn div_assign(&mut self, rhs: Rotation<T, D>)
fn div_assign(&mut self, rhs: Rotation<T, D>)
/=
operation. Read moresource§impl<T, const D: usize> DivAssign<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + SimdRealField,
T::Element: SimdRealField,
impl<T, const D: usize> DivAssign<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + SimdRealField,
T::Element: SimdRealField,
source§fn div_assign(&mut self, rhs: Rotation<T, D>)
fn div_assign(&mut self, rhs: Rotation<T, D>)
/=
operation. Read moresource§impl<T, C, const D: usize> DivAssign<Rotation<T, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> DivAssign<Rotation<T, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§fn div_assign(&mut self, rhs: Rotation<T, D>)
fn div_assign(&mut self, rhs: Rotation<T, D>)
/=
operation. Read moresource§impl<T: SimdRealField> DivAssign<Unit<Complex<T>>> for Rotation<T, 2>where
T::Element: SimdRealField,
impl<T: SimdRealField> DivAssign<Unit<Complex<T>>> for Rotation<T, 2>where
T::Element: SimdRealField,
source§fn div_assign(&mut self, rhs: UnitComplex<T>)
fn div_assign(&mut self, rhs: UnitComplex<T>)
/=
operation. Read moresource§impl<T, const D: usize> DivAssign for Rotation<T, D>
impl<T, const D: usize> DivAssign for Rotation<T, D>
source§fn div_assign(&mut self, right: Rotation<T, D>)
fn div_assign(&mut self, right: Rotation<T, D>)
/=
operation. Read moresource§impl<T, const D: usize> From<[Rotation<<T as SimdValue>::Element, D>; 16]> for Rotation<T, D>
impl<T, const D: usize> From<[Rotation<<T as SimdValue>::Element, D>; 16]> for Rotation<T, D>
source§impl<T: SimdRealField> From<Rotation<T, 2>> for UnitComplex<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> From<Rotation<T, 2>> for UnitComplex<T>where
T::Element: SimdRealField,
source§impl<T: SimdRealField> From<Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> From<Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Isometry<T, Rotation<T, D>, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Isometry<T, Rotation<T, D>, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField, const D: usize> Mul<&'b Isometry<T, Rotation<T, D>, D>> for Rotation<T, D>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, const D: usize> Mul<&'b Isometry<T, Rotation<T, D>, D>> for Rotation<T, D>where
T::Element: SimdRealField,
source§impl<'a, 'b, T, R2, C2, SB, const D1: usize> Mul<&'b Matrix<T, R2, C2, SB>> for &'a Rotation<T, D1>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
R2: Dim,
C2: Dim,
SB: Storage<T, R2, C2>,
DefaultAllocator: Allocator<Const<D1>, C2>,
ShapeConstraint: AreMultipliable<Const<D1>, Const<D1>, R2, C2>,
impl<'a, 'b, T, R2, C2, SB, const D1: usize> Mul<&'b Matrix<T, R2, C2, SB>> for &'a Rotation<T, D1>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
R2: Dim,
C2: Dim,
SB: Storage<T, R2, C2>,
DefaultAllocator: Allocator<Const<D1>, C2>,
ShapeConstraint: AreMultipliable<Const<D1>, Const<D1>, R2, C2>,
source§impl<'b, T, R2, C2, SB, const D1: usize> Mul<&'b Matrix<T, R2, C2, SB>> for Rotation<T, D1>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
R2: Dim,
C2: Dim,
SB: Storage<T, R2, C2>,
DefaultAllocator: Allocator<Const<D1>, C2>,
ShapeConstraint: AreMultipliable<Const<D1>, Const<D1>, R2, C2>,
impl<'b, T, R2, C2, SB, const D1: usize> Mul<&'b Matrix<T, R2, C2, SB>> for Rotation<T, D1>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
R2: Dim,
C2: Dim,
SB: Storage<T, R2, C2>,
DefaultAllocator: Allocator<Const<D1>, C2>,
ShapeConstraint: AreMultipliable<Const<D1>, Const<D1>, R2, C2>,
source§impl<'a, 'b, T, const D: usize> Mul<&'b OPoint<T, Const<D>>> for &'a Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
ShapeConstraint: AreMultipliable<Const<D>, Const<D>, Const<D>, U1>,
impl<'a, 'b, T, const D: usize> Mul<&'b OPoint<T, Const<D>>> for &'a Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
ShapeConstraint: AreMultipliable<Const<D>, Const<D>, Const<D>, U1>,
source§impl<'b, T, const D: usize> Mul<&'b OPoint<T, Const<D>>> for Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
ShapeConstraint: AreMultipliable<Const<D>, Const<D>, Const<D>, U1>,
impl<'b, T, const D: usize> Mul<&'b OPoint<T, Const<D>>> for Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
ShapeConstraint: AreMultipliable<Const<D>, Const<D>, Const<D>, U1>,
source§impl<'a, 'b, T: SimdRealField> Mul<&'b Rotation<T, 2>> for &'a UnitComplex<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Rotation<T, 2>> for &'a UnitComplex<T>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField> Mul<&'b Rotation<T, 2>> for UnitComplex<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Rotation<T, 2>> for UnitComplex<T>where
T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField> Mul<&'b Rotation<T, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Rotation<T, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField> Mul<&'b Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for &'a Isometry<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for &'a Isometry<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
source§impl<'a, 'b, T, C, const D: usize> Mul<&'b Rotation<T, D>> for &'a Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Mul<&'b Rotation<T, D>> for &'a Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for &'a Translation<T, D>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for &'a Translation<T, D>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for Isometry<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for Isometry<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
source§impl<'b, T, C, const D: usize> Mul<&'b Rotation<T, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Mul<&'b Rotation<T, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for Translation<T, D>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for Translation<T, D>where
T::Element: SimdRealField,
source§impl<'a, 'b, T, R1, C1, SA, const D2: usize> Mul<&'b Rotation<T, D2>> for &'a Matrix<T, R1, C1, SA>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
R1: Dim,
C1: Dim,
SA: Storage<T, R1, C1>,
DefaultAllocator: Allocator<R1, Const<D2>>,
ShapeConstraint: AreMultipliable<R1, C1, Const<D2>, Const<D2>>,
impl<'a, 'b, T, R1, C1, SA, const D2: usize> Mul<&'b Rotation<T, D2>> for &'a Matrix<T, R1, C1, SA>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
R1: Dim,
C1: Dim,
SA: Storage<T, R1, C1>,
DefaultAllocator: Allocator<R1, Const<D2>>,
ShapeConstraint: AreMultipliable<R1, C1, Const<D2>, Const<D2>>,
source§impl<'b, T, R1, C1, SA, const D2: usize> Mul<&'b Rotation<T, D2>> for Matrix<T, R1, C1, SA>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
R1: Dim,
C1: Dim,
SA: Storage<T, R1, C1>,
DefaultAllocator: Allocator<R1, Const<D2>>,
ShapeConstraint: AreMultipliable<R1, C1, Const<D2>, Const<D2>>,
impl<'b, T, R1, C1, SA, const D2: usize> Mul<&'b Rotation<T, D2>> for Matrix<T, R1, C1, SA>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
R1: Dim,
C1: Dim,
SA: Storage<T, R1, C1>,
DefaultAllocator: Allocator<R1, Const<D2>>,
ShapeConstraint: AreMultipliable<R1, C1, Const<D2>, Const<D2>>,
source§impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField, const D: usize> Mul<&'b Similarity<T, Rotation<T, D>, D>> for Rotation<T, D>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, const D: usize> Mul<&'b Similarity<T, Rotation<T, D>, D>> for Rotation<T, D>where
T::Element: SimdRealField,
source§impl<'a, 'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Translation<T, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Translation<T, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField, const D: usize> Mul<&'b Translation<T, D>> for Rotation<T, D>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, const D: usize> Mul<&'b Translation<T, D>> for Rotation<T, D>where
T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Complex<T>>> for &'a Rotation<T, 2>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Complex<T>>> for &'a Rotation<T, 2>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField> Mul<&'b Unit<Complex<T>>> for Rotation<T, 2>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Unit<Complex<T>>> for Rotation<T, 2>where
T::Element: SimdRealField,
source§impl<'a, 'b, T, S, const D: usize> Mul<&'b Unit<Matrix<T, Const<D>, Const<1>, S>>> for &'a Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
S: Storage<T, Const<D>>,
ShapeConstraint: AreMultipliable<Const<D>, Const<D>, Const<D>, U1>,
impl<'a, 'b, T, S, const D: usize> Mul<&'b Unit<Matrix<T, Const<D>, Const<1>, S>>> for &'a Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
S: Storage<T, Const<D>>,
ShapeConstraint: AreMultipliable<Const<D>, Const<D>, Const<D>, U1>,
source§impl<'b, T, S, const D: usize> Mul<&'b Unit<Matrix<T, Const<D>, Const<1>, S>>> for Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
S: Storage<T, Const<D>>,
ShapeConstraint: AreMultipliable<Const<D>, Const<D>, Const<D>, U1>,
impl<'b, T, S, const D: usize> Mul<&'b Unit<Matrix<T, Const<D>, Const<1>, S>>> for Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
S: Storage<T, Const<D>>,
ShapeConstraint: AreMultipliable<Const<D>, Const<D>, Const<D>, U1>,
source§impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for &'a Rotation<T, 3>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for &'a Rotation<T, 3>where
T::Element: SimdRealField,
§type Output = Unit<Quaternion<T>>
type Output = Unit<Quaternion<T>>
*
operator.source§impl<'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for Rotation<T, 3>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for Rotation<T, 3>where
T::Element: SimdRealField,
§type Output = Unit<Quaternion<T>>
type Output = Unit<Quaternion<T>>
*
operator.source§impl<'a, T: SimdRealField, const D: usize> Mul<Isometry<T, Rotation<T, D>, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, const D: usize> Mul<Isometry<T, Rotation<T, D>, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
source§impl<T: SimdRealField, const D: usize> Mul<Isometry<T, Rotation<T, D>, D>> for Rotation<T, D>where
T::Element: SimdRealField,
impl<T: SimdRealField, const D: usize> Mul<Isometry<T, Rotation<T, D>, D>> for Rotation<T, D>where
T::Element: SimdRealField,
source§impl<'a, T, R2, C2, SB, const D1: usize> Mul<Matrix<T, R2, C2, SB>> for &'a Rotation<T, D1>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
R2: Dim,
C2: Dim,
SB: Storage<T, R2, C2>,
DefaultAllocator: Allocator<Const<D1>, C2>,
ShapeConstraint: AreMultipliable<Const<D1>, Const<D1>, R2, C2>,
impl<'a, T, R2, C2, SB, const D1: usize> Mul<Matrix<T, R2, C2, SB>> for &'a Rotation<T, D1>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
R2: Dim,
C2: Dim,
SB: Storage<T, R2, C2>,
DefaultAllocator: Allocator<Const<D1>, C2>,
ShapeConstraint: AreMultipliable<Const<D1>, Const<D1>, R2, C2>,
source§impl<T, R2, C2, SB, const D1: usize> Mul<Matrix<T, R2, C2, SB>> for Rotation<T, D1>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
R2: Dim,
C2: Dim,
SB: Storage<T, R2, C2>,
DefaultAllocator: Allocator<Const<D1>, C2>,
ShapeConstraint: AreMultipliable<Const<D1>, Const<D1>, R2, C2>,
impl<T, R2, C2, SB, const D1: usize> Mul<Matrix<T, R2, C2, SB>> for Rotation<T, D1>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
R2: Dim,
C2: Dim,
SB: Storage<T, R2, C2>,
DefaultAllocator: Allocator<Const<D1>, C2>,
ShapeConstraint: AreMultipliable<Const<D1>, Const<D1>, R2, C2>,
source§impl<'a, T, const D: usize> Mul<OPoint<T, Const<D>>> for &'a Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
ShapeConstraint: AreMultipliable<Const<D>, Const<D>, Const<D>, U1>,
impl<'a, T, const D: usize> Mul<OPoint<T, Const<D>>> for &'a Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
ShapeConstraint: AreMultipliable<Const<D>, Const<D>, Const<D>, U1>,
source§impl<T, const D: usize> Mul<OPoint<T, Const<D>>> for Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
ShapeConstraint: AreMultipliable<Const<D>, Const<D>, Const<D>, U1>,
impl<T, const D: usize> Mul<OPoint<T, Const<D>>> for Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
ShapeConstraint: AreMultipliable<Const<D>, Const<D>, Const<D>, U1>,
source§impl<'a, T: SimdRealField> Mul<Rotation<T, 2>> for &'a UnitComplex<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Rotation<T, 2>> for &'a UnitComplex<T>where
T::Element: SimdRealField,
source§impl<T: SimdRealField> Mul<Rotation<T, 2>> for UnitComplex<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Rotation<T, 2>> for UnitComplex<T>where
T::Element: SimdRealField,
source§impl<'a, T: SimdRealField> Mul<Rotation<T, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Rotation<T, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<T: SimdRealField> Mul<Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'a, T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for &'a Isometry<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for &'a Isometry<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
source§impl<'a, T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
source§impl<'a, T, C, const D: usize> Mul<Rotation<T, D>> for &'a Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Mul<Rotation<T, D>> for &'a Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<'a, T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for &'a Translation<T, D>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for &'a Translation<T, D>where
T::Element: SimdRealField,
source§impl<T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for Isometry<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
impl<T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for Isometry<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
source§impl<T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
impl<T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
source§impl<T, C, const D: usize> Mul<Rotation<T, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Mul<Rotation<T, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for Translation<T, D>where
T::Element: SimdRealField,
impl<T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for Translation<T, D>where
T::Element: SimdRealField,
source§impl<'a, T, R1, C1, SA, const D2: usize> Mul<Rotation<T, D2>> for &'a Matrix<T, R1, C1, SA>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
R1: Dim,
C1: Dim,
SA: Storage<T, R1, C1>,
DefaultAllocator: Allocator<R1, Const<D2>>,
ShapeConstraint: AreMultipliable<R1, C1, Const<D2>, Const<D2>>,
impl<'a, T, R1, C1, SA, const D2: usize> Mul<Rotation<T, D2>> for &'a Matrix<T, R1, C1, SA>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
R1: Dim,
C1: Dim,
SA: Storage<T, R1, C1>,
DefaultAllocator: Allocator<R1, Const<D2>>,
ShapeConstraint: AreMultipliable<R1, C1, Const<D2>, Const<D2>>,
source§impl<T, R1, C1, SA, const D2: usize> Mul<Rotation<T, D2>> for Matrix<T, R1, C1, SA>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
R1: Dim,
C1: Dim,
SA: Storage<T, R1, C1>,
DefaultAllocator: Allocator<R1, Const<D2>>,
ShapeConstraint: AreMultipliable<R1, C1, Const<D2>, Const<D2>>,
impl<T, R1, C1, SA, const D2: usize> Mul<Rotation<T, D2>> for Matrix<T, R1, C1, SA>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
R1: Dim,
C1: Dim,
SA: Storage<T, R1, C1>,
DefaultAllocator: Allocator<R1, Const<D2>>,
ShapeConstraint: AreMultipliable<R1, C1, Const<D2>, Const<D2>>,
source§impl<'a, T: SimdRealField, const D: usize> Mul<Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, const D: usize> Mul<Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
source§impl<T: SimdRealField, const D: usize> Mul<Similarity<T, Rotation<T, D>, D>> for Rotation<T, D>where
T::Element: SimdRealField,
impl<T: SimdRealField, const D: usize> Mul<Similarity<T, Rotation<T, D>, D>> for Rotation<T, D>where
T::Element: SimdRealField,
source§impl<'a, T, C, const D: usize> Mul<Transform<T, C, D>> for &'a Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Mul<Transform<T, C, D>> for &'a Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<T, C, const D: usize> Mul<Transform<T, C, D>> for Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Mul<Transform<T, C, D>> for Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<'a, T: SimdRealField, const D: usize> Mul<Translation<T, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, const D: usize> Mul<Translation<T, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
source§impl<T: SimdRealField, const D: usize> Mul<Translation<T, D>> for Rotation<T, D>where
T::Element: SimdRealField,
impl<T: SimdRealField, const D: usize> Mul<Translation<T, D>> for Rotation<T, D>where
T::Element: SimdRealField,
source§impl<'a, T: SimdRealField> Mul<Unit<Complex<T>>> for &'a Rotation<T, 2>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Unit<Complex<T>>> for &'a Rotation<T, 2>where
T::Element: SimdRealField,
source§impl<T: SimdRealField> Mul<Unit<Complex<T>>> for Rotation<T, 2>where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Unit<Complex<T>>> for Rotation<T, 2>where
T::Element: SimdRealField,
source§impl<'a, T, S, const D: usize> Mul<Unit<Matrix<T, Const<D>, Const<1>, S>>> for &'a Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
S: Storage<T, Const<D>>,
ShapeConstraint: AreMultipliable<Const<D>, Const<D>, Const<D>, U1>,
impl<'a, T, S, const D: usize> Mul<Unit<Matrix<T, Const<D>, Const<1>, S>>> for &'a Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
S: Storage<T, Const<D>>,
ShapeConstraint: AreMultipliable<Const<D>, Const<D>, Const<D>, U1>,
source§impl<T, S, const D: usize> Mul<Unit<Matrix<T, Const<D>, Const<1>, S>>> for Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
S: Storage<T, Const<D>>,
ShapeConstraint: AreMultipliable<Const<D>, Const<D>, Const<D>, U1>,
impl<T, S, const D: usize> Mul<Unit<Matrix<T, Const<D>, Const<1>, S>>> for Rotation<T, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
S: Storage<T, Const<D>>,
ShapeConstraint: AreMultipliable<Const<D>, Const<D>, Const<D>, U1>,
source§impl<'a, T: SimdRealField> Mul<Unit<Quaternion<T>>> for &'a Rotation<T, 3>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Unit<Quaternion<T>>> for &'a Rotation<T, 3>where
T::Element: SimdRealField,
§type Output = Unit<Quaternion<T>>
type Output = Unit<Quaternion<T>>
*
operator.source§impl<T: SimdRealField> Mul<Unit<Quaternion<T>>> for Rotation<T, 3>where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Unit<Quaternion<T>>> for Rotation<T, 3>where
T::Element: SimdRealField,
§type Output = Unit<Quaternion<T>>
type Output = Unit<Quaternion<T>>
*
operator.source§impl<'b, T: SimdRealField> MulAssign<&'b Rotation<T, 2>> for UnitComplex<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> MulAssign<&'b Rotation<T, 2>> for UnitComplex<T>where
T::Element: SimdRealField,
source§fn mul_assign(&mut self, rhs: &'b Rotation<T, 2>)
fn mul_assign(&mut self, rhs: &'b Rotation<T, 2>)
*=
operation. Read moresource§impl<'b, T: SimdRealField> MulAssign<&'b Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> MulAssign<&'b Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§fn mul_assign(&mut self, rhs: &'b Rotation<T, 3>)
fn mul_assign(&mut self, rhs: &'b Rotation<T, 3>)
*=
operation. Read moresource§impl<'b, T, const R1: usize, const C1: usize> MulAssign<&'b Rotation<T, C1>> for SMatrix<T, R1, C1>
impl<'b, T, const R1: usize, const C1: usize> MulAssign<&'b Rotation<T, C1>> for SMatrix<T, R1, C1>
source§fn mul_assign(&mut self, right: &'b Rotation<T, C1>)
fn mul_assign(&mut self, right: &'b Rotation<T, C1>)
*=
operation. Read moresource§impl<'b, T, const D: usize> MulAssign<&'b Rotation<T, D>> for Isometry<T, Rotation<T, D>, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + SimdRealField,
T::Element: SimdRealField,
impl<'b, T, const D: usize> MulAssign<&'b Rotation<T, D>> for Isometry<T, Rotation<T, D>, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + SimdRealField,
T::Element: SimdRealField,
source§fn mul_assign(&mut self, rhs: &'b Rotation<T, D>)
fn mul_assign(&mut self, rhs: &'b Rotation<T, D>)
*=
operation. Read moresource§impl<'b, T, const D: usize> MulAssign<&'b Rotation<T, D>> for Rotation<T, D>
impl<'b, T, const D: usize> MulAssign<&'b Rotation<T, D>> for Rotation<T, D>
source§fn mul_assign(&mut self, right: &'b Rotation<T, D>)
fn mul_assign(&mut self, right: &'b Rotation<T, D>)
*=
operation. Read moresource§impl<'b, T, const D: usize> MulAssign<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + SimdRealField,
T::Element: SimdRealField,
impl<'b, T, const D: usize> MulAssign<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + SimdRealField,
T::Element: SimdRealField,
source§fn mul_assign(&mut self, rhs: &'b Rotation<T, D>)
fn mul_assign(&mut self, rhs: &'b Rotation<T, D>)
*=
operation. Read moresource§impl<'b, T, C, const D: usize> MulAssign<&'b Rotation<T, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> MulAssign<&'b Rotation<T, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§fn mul_assign(&mut self, rhs: &'b Rotation<T, D>)
fn mul_assign(&mut self, rhs: &'b Rotation<T, D>)
*=
operation. Read moresource§impl<'b, T: SimdRealField> MulAssign<&'b Unit<Complex<T>>> for Rotation<T, 2>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> MulAssign<&'b Unit<Complex<T>>> for Rotation<T, 2>where
T::Element: SimdRealField,
source§fn mul_assign(&mut self, rhs: &'b UnitComplex<T>)
fn mul_assign(&mut self, rhs: &'b UnitComplex<T>)
*=
operation. Read moresource§impl<T: SimdRealField> MulAssign<Rotation<T, 2>> for UnitComplex<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> MulAssign<Rotation<T, 2>> for UnitComplex<T>where
T::Element: SimdRealField,
source§fn mul_assign(&mut self, rhs: Rotation<T, 2>)
fn mul_assign(&mut self, rhs: Rotation<T, 2>)
*=
operation. Read moresource§impl<T: SimdRealField> MulAssign<Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> MulAssign<Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§fn mul_assign(&mut self, rhs: Rotation<T, 3>)
fn mul_assign(&mut self, rhs: Rotation<T, 3>)
*=
operation. Read moresource§impl<T, const R1: usize, const C1: usize> MulAssign<Rotation<T, C1>> for SMatrix<T, R1, C1>
impl<T, const R1: usize, const C1: usize> MulAssign<Rotation<T, C1>> for SMatrix<T, R1, C1>
source§fn mul_assign(&mut self, right: Rotation<T, C1>)
fn mul_assign(&mut self, right: Rotation<T, C1>)
*=
operation. Read moresource§impl<T, const D: usize> MulAssign<Rotation<T, D>> for Isometry<T, Rotation<T, D>, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + SimdRealField,
T::Element: SimdRealField,
impl<T, const D: usize> MulAssign<Rotation<T, D>> for Isometry<T, Rotation<T, D>, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + SimdRealField,
T::Element: SimdRealField,
source§fn mul_assign(&mut self, rhs: Rotation<T, D>)
fn mul_assign(&mut self, rhs: Rotation<T, D>)
*=
operation. Read moresource§impl<T, const D: usize> MulAssign<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + SimdRealField,
T::Element: SimdRealField,
impl<T, const D: usize> MulAssign<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + SimdRealField,
T::Element: SimdRealField,
source§fn mul_assign(&mut self, rhs: Rotation<T, D>)
fn mul_assign(&mut self, rhs: Rotation<T, D>)
*=
operation. Read moresource§impl<T, C, const D: usize> MulAssign<Rotation<T, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> MulAssign<Rotation<T, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§fn mul_assign(&mut self, rhs: Rotation<T, D>)
fn mul_assign(&mut self, rhs: Rotation<T, D>)
*=
operation. Read moresource§impl<T: SimdRealField> MulAssign<Unit<Complex<T>>> for Rotation<T, 2>where
T::Element: SimdRealField,
impl<T: SimdRealField> MulAssign<Unit<Complex<T>>> for Rotation<T, 2>where
T::Element: SimdRealField,
source§fn mul_assign(&mut self, rhs: UnitComplex<T>)
fn mul_assign(&mut self, rhs: UnitComplex<T>)
*=
operation. Read moresource§impl<T, const D: usize> MulAssign for Rotation<T, D>
impl<T, const D: usize> MulAssign for Rotation<T, D>
source§fn mul_assign(&mut self, right: Rotation<T, D>)
fn mul_assign(&mut self, right: Rotation<T, D>)
*=
operation. Read moresource§impl<T: Scalar + PartialEq, const D: usize> PartialEq for Rotation<T, D>
impl<T: Scalar + PartialEq, const D: usize> PartialEq for Rotation<T, D>
source§impl<T, const D: usize> RelativeEq for Rotation<T, D>
impl<T, const D: usize> RelativeEq for Rotation<T, D>
source§fn default_max_relative() -> Self::Epsilon
fn default_max_relative() -> Self::Epsilon
source§fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
fn relative_eq( &self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon ) -> bool
source§fn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
fn relative_ne( &self, other: &Rhs, epsilon: Self::Epsilon, max_relative: Self::Epsilon ) -> bool
RelativeEq::relative_eq
.source§impl<T, const D: usize> SimdValue for Rotation<T, D>
impl<T, const D: usize> SimdValue for Rotation<T, D>
§type Element = Rotation<<T as SimdValue>::Element, D>
type Element = Rotation<<T as SimdValue>::Element, D>
§type SimdBool = <T as SimdValue>::SimdBool
type SimdBool = <T as SimdValue>::SimdBool
self
.source§unsafe fn extract_unchecked(&self, i: usize) -> Self::Element
unsafe fn extract_unchecked(&self, i: usize) -> Self::Element
self
without bound-checking. Read moresource§unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element)
unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element)
source§impl<T1, T2, R, const D: usize> SubsetOf<Isometry<T2, R, D>> for Rotation<T1, D>
impl<T1, T2, R, const D: usize> SubsetOf<Isometry<T2, R, D>> for Rotation<T1, D>
source§fn to_superset(&self) -> Isometry<T2, R, D>
fn to_superset(&self) -> Isometry<T2, R, D>
self
to the equivalent element of its superset.source§fn is_in_subset(iso: &Isometry<T2, R, D>) -> bool
fn is_in_subset(iso: &Isometry<T2, R, D>) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(iso: &Isometry<T2, R, D>) -> Self
fn from_superset_unchecked(iso: &Isometry<T2, R, D>) -> Self
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2, const D: usize> SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<<Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer<T2>>> for Rotation<T1, D>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>,
DefaultAllocator: Allocator<Const<D>, Const<D>, Buffer<T1> = ArrayStorage<T1, D, D>> + Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T1, T2, const D: usize> SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<<Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer<T2>>> for Rotation<T1, D>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>,
DefaultAllocator: Allocator<Const<D>, Const<D>, Buffer<T1> = ArrayStorage<T1, D, D>> + Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§fn to_superset(
&self
) -> OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
fn to_superset( &self ) -> OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
self
to the equivalent element of its superset.source§fn is_in_subset(
m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
) -> bool
fn is_in_subset( m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> ) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(
m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
) -> Self
fn from_superset_unchecked( m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> ) -> Self
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2> SubsetOf<Rotation<T2, 2>> for UnitComplex<T1>
impl<T1, T2> SubsetOf<Rotation<T2, 2>> for UnitComplex<T1>
source§fn to_superset(&self) -> Rotation2<T2>
fn to_superset(&self) -> Rotation2<T2>
self
to the equivalent element of its superset.source§fn is_in_subset(rot: &Rotation2<T2>) -> bool
fn is_in_subset(rot: &Rotation2<T2>) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(rot: &Rotation2<T2>) -> Self
fn from_superset_unchecked(rot: &Rotation2<T2>) -> Self
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2> SubsetOf<Rotation<T2, 3>> for UnitQuaternion<T1>
impl<T1, T2> SubsetOf<Rotation<T2, 3>> for UnitQuaternion<T1>
source§fn to_superset(&self) -> Rotation3<T2>
fn to_superset(&self) -> Rotation3<T2>
self
to the equivalent element of its superset.source§fn is_in_subset(rot: &Rotation3<T2>) -> bool
fn is_in_subset(rot: &Rotation3<T2>) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(rot: &Rotation3<T2>) -> Self
fn from_superset_unchecked(rot: &Rotation3<T2>) -> Self
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2, const D: usize> SubsetOf<Rotation<T2, D>> for Rotation<T1, D>
impl<T1, T2, const D: usize> SubsetOf<Rotation<T2, D>> for Rotation<T1, D>
source§fn to_superset(&self) -> Rotation<T2, D>
fn to_superset(&self) -> Rotation<T2, D>
self
to the equivalent element of its superset.source§fn is_in_subset(rot: &Rotation<T2, D>) -> bool
fn is_in_subset(rot: &Rotation<T2, D>) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(rot: &Rotation<T2, D>) -> Self
fn from_superset_unchecked(rot: &Rotation<T2, D>) -> Self
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2, R, const D: usize> SubsetOf<Similarity<T2, R, D>> for Rotation<T1, D>
impl<T1, T2, R, const D: usize> SubsetOf<Similarity<T2, R, D>> for Rotation<T1, D>
source§fn to_superset(&self) -> Similarity<T2, R, D>
fn to_superset(&self) -> Similarity<T2, R, D>
self
to the equivalent element of its superset.source§fn is_in_subset(sim: &Similarity<T2, R, D>) -> bool
fn is_in_subset(sim: &Similarity<T2, R, D>) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(sim: &Similarity<T2, R, D>) -> Self
fn from_superset_unchecked(sim: &Similarity<T2, R, D>) -> Self
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Rotation<T1, D>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T1, T2, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Rotation<T1, D>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§fn to_superset(&self) -> Transform<T2, C, D>
fn to_superset(&self) -> Transform<T2, C, D>
self
to the equivalent element of its superset.source§fn is_in_subset(t: &Transform<T2, C, D>) -> bool
fn is_in_subset(t: &Transform<T2, C, D>) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(t: &Transform<T2, C, D>) -> Self
fn from_superset_unchecked(t: &Transform<T2, C, D>) -> Self
self.to_superset
but without any property checks. Always succeeds.source§impl<T, const D: usize> UlpsEq for Rotation<T, D>
impl<T, const D: usize> UlpsEq for Rotation<T, D>
impl<T: Copy, const D: usize> Copy for Rotation<T, D>
impl<T: Scalar + Eq, const D: usize> Eq for Rotation<T, D>
Auto Trait Implementations§
impl<T, const D: usize> Freeze for Rotation<T, D>where
T: Freeze,
impl<T, const D: usize> RefUnwindSafe for Rotation<T, D>where
T: RefUnwindSafe,
impl<T, const D: usize> Send for Rotation<T, D>where
T: Send,
impl<T, const D: usize> Sync for Rotation<T, D>where
T: Sync,
impl<T, const D: usize> Unpin for Rotation<T, D>where
T: Unpin,
impl<T, const D: usize> UnwindSafe for Rotation<T, D>where
T: UnwindSafe,
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.