pub struct GizmoAsset { /* private fields */ }
Expand description
A collection of gizmos.
Has the same gizmo drawing API as Gizmos
.
Implementations§
Source§impl GizmoAsset
impl GizmoAsset
Sourcepub fn new() -> Self
pub fn new() -> Self
Create a new GizmoAsset
.
Sourcepub fn config_typeid(&self) -> TypeId
pub fn config_typeid(&self) -> TypeId
The type of the gizmo’s configuration group.
Methods from Deref<Target = GizmoBuffer<ErasedGizmoConfigGroup, ()>>§
Sourcepub fn arc_2d(
&mut self,
isometry: impl Into<Isometry2d>,
arc_angle: f32,
radius: f32,
color: impl Into<Color>,
) -> Arc2dBuilder<'_, Config, Clear>
pub fn arc_2d( &mut self, isometry: impl Into<Isometry2d>, arc_angle: f32, radius: f32, color: impl Into<Color>, ) -> Arc2dBuilder<'_, Config, Clear>
Draw an arc, which is a part of the circumference of a circle, in 2D.
This should be called for each frame the arc needs to be rendered.
§Arguments
isometry
defines the translation and rotation of the arc.- the translation specifies the center of the arc
- the rotation is counter-clockwise starting from
Vec2::Y
arc_angle
sets the length of this arc, in radians.radius
controls the distance fromposition
to this arc, and thus its curvature.color
sets the color to draw the arc.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.arc_2d(Isometry2d::IDENTITY, FRAC_PI_4, 1., GREEN);
// Arcs have 32 line-segments by default.
// You may want to increase this for larger arcs.
gizmos
.arc_2d(Isometry2d::IDENTITY, FRAC_PI_4, 5., RED)
.resolution(64);
}
Sourcepub fn arc_3d(
&mut self,
angle: f32,
radius: f32,
isometry: impl Into<Isometry3d>,
color: impl Into<Color>,
) -> Arc3dBuilder<'_, Config, Clear>
pub fn arc_3d( &mut self, angle: f32, radius: f32, isometry: impl Into<Isometry3d>, color: impl Into<Color>, ) -> Arc3dBuilder<'_, Config, Clear>
Draw an arc, which is a part of the circumference of a circle, in 3D. For default values this is drawing a standard arc. A standard arc is defined as
- an arc with a center at
Vec3::ZERO
- starting at
Vec3::X
- embedded in the XZ plane
- rotates counterclockwise
This should be called for each frame the arc needs to be rendered.
§Arguments
angle
: sets how much of a circle circumference is passed, e.g. PI is half a circle. This value should be in the range (-2 * PI..=2 * PI)radius
: distance between the arc and its center pointisometry
defines the translation and rotation of the arc.- the translation specifies the center of the arc
- the rotation is counter-clockwise starting from
Vec3::Y
color
: color of the arc
§Builder methods
The resolution of the arc (i.e. the level of detail) can be adjusted with the
.resolution(...)
method.
§Example
fn system(mut gizmos: Gizmos) {
// rotation rotates normal to point in the direction of `Vec3::NEG_ONE`
let rotation = Quat::from_rotation_arc(Vec3::Y, Vec3::NEG_ONE.normalize());
gizmos
.arc_3d(
270.0_f32.to_radians(),
0.25,
Isometry3d::new(Vec3::ONE, rotation),
ORANGE
)
.resolution(100);
}
Sourcepub fn short_arc_3d_between(
&mut self,
center: Vec3,
from: Vec3,
to: Vec3,
color: impl Into<Color>,
) -> Arc3dBuilder<'_, Config, Clear>
pub fn short_arc_3d_between( &mut self, center: Vec3, from: Vec3, to: Vec3, color: impl Into<Color>, ) -> Arc3dBuilder<'_, Config, Clear>
Draws the shortest arc between two points (from
and to
) relative to a specified center
point.
§Arguments
center
: The center point around which the arc is drawn.from
: The starting point of the arc.to
: The ending point of the arc.color
: color of the arc
§Builder methods
The resolution of the arc (i.e. the level of detail) can be adjusted with the
.resolution(...)
method.
§Examples
fn system(mut gizmos: Gizmos) {
gizmos.short_arc_3d_between(
Vec3::ONE,
Vec3::ONE + Vec3::NEG_ONE,
Vec3::ZERO,
ORANGE
)
.resolution(100);
}
§Notes
- This method assumes that the points
from
andto
are distinct fromcenter
. If one of the points is coincident withcenter
, nothing is rendered. - The arc is drawn as a portion of a circle with a radius equal to the distance from the
center
tofrom
. If the distance fromcenter
toto
is not equal to the radius, then the results will behave as if this were the case
Sourcepub fn long_arc_3d_between(
&mut self,
center: Vec3,
from: Vec3,
to: Vec3,
color: impl Into<Color>,
) -> Arc3dBuilder<'_, Config, Clear>
pub fn long_arc_3d_between( &mut self, center: Vec3, from: Vec3, to: Vec3, color: impl Into<Color>, ) -> Arc3dBuilder<'_, Config, Clear>
Draws the longest arc between two points (from
and to
) relative to a specified center
point.
§Arguments
center
: The center point around which the arc is drawn.from
: The starting point of the arc.to
: The ending point of the arc.color
: color of the arc
§Builder methods
The resolution of the arc (i.e. the level of detail) can be adjusted with the
.resolution(...)
method.
§Examples
fn system(mut gizmos: Gizmos) {
gizmos.long_arc_3d_between(
Vec3::ONE,
Vec3::ONE + Vec3::NEG_ONE,
Vec3::ZERO,
ORANGE
)
.resolution(100);
}
§Notes
- This method assumes that the points
from
andto
are distinct fromcenter
. If one of the points is coincident withcenter
, nothing is rendered. - The arc is drawn as a portion of a circle with a radius equal to the distance from the
center
tofrom
. If the distance fromcenter
toto
is not equal to the radius, then the results will behave as if this were the case.
Sourcepub fn short_arc_2d_between(
&mut self,
center: Vec2,
from: Vec2,
to: Vec2,
color: impl Into<Color>,
) -> Arc2dBuilder<'_, Config, Clear>
pub fn short_arc_2d_between( &mut self, center: Vec2, from: Vec2, to: Vec2, color: impl Into<Color>, ) -> Arc2dBuilder<'_, Config, Clear>
Draws the shortest arc between two points (from
and to
) relative to a specified center
point.
§Arguments
center
: The center point around which the arc is drawn.from
: The starting point of the arc.to
: The ending point of the arc.color
: color of the arc
§Builder methods
The resolution of the arc (i.e. the level of detail) can be adjusted with the
.resolution(...)
method.
§Examples
fn system(mut gizmos: Gizmos) {
gizmos.short_arc_2d_between(
Vec2::ZERO,
Vec2::X,
Vec2::Y,
ORANGE
)
.resolution(100);
}
§Notes
- This method assumes that the points
from
andto
are distinct fromcenter
. If one of the points is coincident withcenter
, nothing is rendered. - The arc is drawn as a portion of a circle with a radius equal to the distance from the
center
tofrom
. If the distance fromcenter
toto
is not equal to the radius, then the results will behave as if this were the case
Sourcepub fn long_arc_2d_between(
&mut self,
center: Vec2,
from: Vec2,
to: Vec2,
color: impl Into<Color>,
) -> Arc2dBuilder<'_, Config, Clear>
pub fn long_arc_2d_between( &mut self, center: Vec2, from: Vec2, to: Vec2, color: impl Into<Color>, ) -> Arc2dBuilder<'_, Config, Clear>
Draws the longest arc between two points (from
and to
) relative to a specified center
point.
§Arguments
center
: The center point around which the arc is drawn.from
: The starting point of the arc.to
: The ending point of the arc.color
: color of the arc
§Builder methods
The resolution of the arc (i.e. the level of detail) can be adjusted with the
.resolution(...)
method.
§Examples
fn system(mut gizmos: Gizmos) {
gizmos.long_arc_2d_between(
Vec2::ZERO,
Vec2::X,
Vec2::Y,
ORANGE
)
.resolution(100);
}
§Notes
- This method assumes that the points
from
andto
are distinct fromcenter
. If one of the points is coincident withcenter
, nothing is rendered. - The arc is drawn as a portion of a circle with a radius equal to the distance from the
center
tofrom
. If the distance fromcenter
toto
is not equal to the radius, then the results will behave as if this were the case.
Sourcepub fn arrow(
&mut self,
start: Vec3,
end: Vec3,
color: impl Into<Color>,
) -> ArrowBuilder<'_, Config, Clear>
pub fn arrow( &mut self, start: Vec3, end: Vec3, color: impl Into<Color>, ) -> ArrowBuilder<'_, Config, Clear>
Draw an arrow in 3D, from start
to end
. Has four tips for convenient viewing from any direction.
This should be called for each frame the arrow needs to be rendered.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.arrow(Vec3::ZERO, Vec3::ONE, GREEN);
}
Sourcepub fn arrow_2d(
&mut self,
start: Vec2,
end: Vec2,
color: impl Into<Color>,
) -> ArrowBuilder<'_, Config, Clear>
pub fn arrow_2d( &mut self, start: Vec2, end: Vec2, color: impl Into<Color>, ) -> ArrowBuilder<'_, Config, Clear>
Draw an arrow in 2D (on the xy plane), from start
to end
.
This should be called for each frame the arrow needs to be rendered.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.arrow_2d(Vec2::ZERO, Vec2::X, GREEN);
}
Sourcepub fn axes(&mut self, transform: impl TransformPoint, base_length: f32)
pub fn axes(&mut self, transform: impl TransformPoint, base_length: f32)
Draw a set of axes local to the given transform (transform
), with length scaled by a factor
of base_length
.
This should be called for each frame the axes need to be rendered.
§Example
fn draw_axes(
mut gizmos: Gizmos,
query: Query<&Transform, With<MyComponent>>,
) {
for &transform in &query {
gizmos.axes(transform, 1.);
}
}
Sourcepub fn axes_2d(&mut self, transform: impl TransformPoint, base_length: f32)
pub fn axes_2d(&mut self, transform: impl TransformPoint, base_length: f32)
Draw a set of axes local to the given transform (transform
), with length scaled by a factor
of base_length
.
This should be called for each frame the axes need to be rendered.
§Example
fn draw_axes_2d(
mut gizmos: Gizmos,
query: Query<&Transform, With<AxesComponent>>,
) {
for &transform in &query {
gizmos.axes_2d(transform, 1.);
}
}
Sourcepub fn ellipse(
&mut self,
isometry: impl Into<Isometry3d>,
half_size: Vec2,
color: impl Into<Color>,
) -> EllipseBuilder<'_, Config, Clear>
pub fn ellipse( &mut self, isometry: impl Into<Isometry3d>, half_size: Vec2, color: impl Into<Color>, ) -> EllipseBuilder<'_, Config, Clear>
Draw an ellipse in 3D with the given isometry
applied.
If isometry == Isometry3d::IDENTITY
then
- the center is at
Vec3::ZERO
- the
half_sizes
are aligned with theVec3::X
andVec3::Y
axes.
This should be called for each frame the ellipse needs to be rendered.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.ellipse(Isometry3d::IDENTITY, Vec2::new(1., 2.), GREEN);
// Ellipses have 32 line-segments by default.
// You may want to increase this for larger ellipses.
gizmos
.ellipse(Isometry3d::IDENTITY, Vec2::new(5., 1.), RED)
.resolution(64);
}
Sourcepub fn ellipse_2d(
&mut self,
isometry: impl Into<Isometry2d>,
half_size: Vec2,
color: impl Into<Color>,
) -> Ellipse2dBuilder<'_, Config, Clear>
pub fn ellipse_2d( &mut self, isometry: impl Into<Isometry2d>, half_size: Vec2, color: impl Into<Color>, ) -> Ellipse2dBuilder<'_, Config, Clear>
Draw an ellipse in 2D with the given isometry
applied.
If isometry == Isometry2d::IDENTITY
then
- the center is at
Vec2::ZERO
- the
half_sizes
are aligned with theVec2::X
andVec2::Y
axes.
This should be called for each frame the ellipse needs to be rendered.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.ellipse_2d(Isometry2d::from_rotation(Rot2::degrees(180.0)), Vec2::new(2., 1.), GREEN);
// Ellipses have 32 line-segments by default.
// You may want to increase this for larger ellipses.
gizmos
.ellipse_2d(Isometry2d::from_rotation(Rot2::degrees(180.0)), Vec2::new(5., 1.), RED)
.resolution(64);
}
Sourcepub fn circle(
&mut self,
isometry: impl Into<Isometry3d>,
radius: f32,
color: impl Into<Color>,
) -> EllipseBuilder<'_, Config, Clear>
pub fn circle( &mut self, isometry: impl Into<Isometry3d>, radius: f32, color: impl Into<Color>, ) -> EllipseBuilder<'_, Config, Clear>
Draw a circle in 3D with the given isometry
applied.
If isometry == Isometry3d::IDENTITY
then
- the center is at
Vec3::ZERO
- the radius is aligned with the
Vec3::X
andVec3::Y
axes.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.circle(Isometry3d::IDENTITY, 1., GREEN);
// Circles have 32 line-segments by default.
// You may want to increase this for larger circles.
gizmos
.circle(Isometry3d::IDENTITY, 5., RED)
.resolution(64);
}
Sourcepub fn circle_2d(
&mut self,
isometry: impl Into<Isometry2d>,
radius: f32,
color: impl Into<Color>,
) -> Ellipse2dBuilder<'_, Config, Clear>
pub fn circle_2d( &mut self, isometry: impl Into<Isometry2d>, radius: f32, color: impl Into<Color>, ) -> Ellipse2dBuilder<'_, Config, Clear>
Draw a circle in 2D with the given isometry
applied.
If isometry == Isometry2d::IDENTITY
then
- the center is at
Vec2::ZERO
- the radius is aligned with the
Vec2::X
andVec2::Y
axes.
This should be called for each frame the circle needs to be rendered.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.circle_2d(Isometry2d::IDENTITY, 1., GREEN);
// Circles have 32 line-segments by default.
// You may want to increase this for larger circles.
gizmos
.circle_2d(Isometry2d::IDENTITY, 5., RED)
.resolution(64);
}
Sourcepub fn sphere(
&mut self,
isometry: impl Into<Isometry3d>,
radius: f32,
color: impl Into<Color>,
) -> SphereBuilder<'_, Config, Clear>
pub fn sphere( &mut self, isometry: impl Into<Isometry3d>, radius: f32, color: impl Into<Color>, ) -> SphereBuilder<'_, Config, Clear>
Draw a wireframe sphere in 3D made out of 3 circles around the axes with the given
isometry
applied.
If isometry == Isometry3d::IDENTITY
then
- the center is at
Vec3::ZERO
- the 3 circles are in the XY, YZ and XZ planes.
This should be called for each frame the sphere needs to be rendered.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.sphere(Isometry3d::IDENTITY, 1., Color::BLACK);
// Each circle has 32 line-segments by default.
// You may want to increase this for larger spheres.
gizmos
.sphere(Isometry3d::IDENTITY, 5., Color::BLACK)
.resolution(64);
}
Sourcepub fn cross(
&mut self,
isometry: impl Into<Isometry3d>,
half_size: f32,
color: impl Into<Color>,
)
pub fn cross( &mut self, isometry: impl Into<Isometry3d>, half_size: f32, color: impl Into<Color>, )
Draw a cross in 3D with the given isometry
applied.
If isometry == Isometry3d::IDENTITY
then
- the center is at
Vec3::ZERO
- the
half_size
s are aligned with theVec3::X
,Vec3::Y
andVec3::Z
axes.
This should be called for each frame the cross needs to be rendered.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.cross(Isometry3d::IDENTITY, 0.5, WHITE);
}
Sourcepub fn cross_2d(
&mut self,
isometry: impl Into<Isometry2d>,
half_size: f32,
color: impl Into<Color>,
)
pub fn cross_2d( &mut self, isometry: impl Into<Isometry2d>, half_size: f32, color: impl Into<Color>, )
Draw a cross in 2D with the given isometry
applied.
If isometry == Isometry2d::IDENTITY
then
- the center is at
Vec3::ZERO
- the
half_size
s are aligned with theVec3::X
andVec3::Y
axes.
This should be called for each frame the cross needs to be rendered.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.cross_2d(Isometry2d::IDENTITY, 0.5, WHITE);
}
Sourcepub fn curve_2d(
&mut self,
curve_2d: impl Curve<Vec2>,
times: impl IntoIterator<Item = f32>,
color: impl Into<Color>,
)
pub fn curve_2d( &mut self, curve_2d: impl Curve<Vec2>, times: impl IntoIterator<Item = f32>, color: impl Into<Color>, )
Draw a curve, at the given time points, sampling in 2D.
This should be called for each frame the curve needs to be rendered.
Samples of time points outside of the curve’s domain will be filtered out and won’t contribute to the rendering. If you wish to render the curve outside of its domain you need to create a new curve with an extended domain.
§Arguments
curve_2d
some type that implements theCurve
trait and samplesVec2
stimes
some iterable type yieldingf32
which will be used for sampling the curvecolor
the color of the curve
§Example
fn system(mut gizmos: Gizmos) {
let domain = Interval::UNIT;
let curve = FunctionCurve::new(domain, |t| Vec2::from(t.sin_cos()));
gizmos.curve_2d(curve, (0..=100).map(|n| n as f32 / 100.0), RED);
}
Sourcepub fn curve_3d(
&mut self,
curve_3d: impl Curve<Vec3>,
times: impl IntoIterator<Item = f32>,
color: impl Into<Color>,
)
pub fn curve_3d( &mut self, curve_3d: impl Curve<Vec3>, times: impl IntoIterator<Item = f32>, color: impl Into<Color>, )
Draw a curve, at the given time points, sampling in 3D.
This should be called for each frame the curve needs to be rendered.
Samples of time points outside of the curve’s domain will be filtered out and won’t contribute to the rendering. If you wish to render the curve outside of its domain you need to create a new curve with an extended domain.
§Arguments
curve_3d
some type that implements theCurve
trait and samplesVec3
stimes
some iterable type yieldingf32
which will be used for sampling the curvecolor
the color of the curve
§Example
fn system(mut gizmos: Gizmos) {
let domain = Interval::UNIT;
let curve = FunctionCurve::new(domain, |t| {
let (x,y) = t.sin_cos();
Vec3::new(x, y, t)
});
gizmos.curve_3d(curve, (0..=100).map(|n| n as f32 / 100.0), RED);
}
Sourcepub fn curve_gradient_2d<C>(
&mut self,
curve_2d: impl Curve<Vec2>,
times_with_colors: impl IntoIterator<Item = (f32, C)>,
)
pub fn curve_gradient_2d<C>( &mut self, curve_2d: impl Curve<Vec2>, times_with_colors: impl IntoIterator<Item = (f32, C)>, )
Draw a curve, at the given time points, sampling in 2D, with a color gradient.
This should be called for each frame the curve needs to be rendered.
Samples of time points outside of the curve’s domain will be filtered out and won’t contribute to the rendering. If you wish to render the curve outside of its domain you need to create a new curve with an extended domain.
§Arguments
curve_2d
some type that implements theCurve
trait and samplesVec2
stimes_with_colors
some iterable type yieldingf32
which will be used for sampling the curve together with the color at this position
§Example
fn system(mut gizmos: Gizmos) {
let domain = Interval::UNIT;
let curve = FunctionCurve::new(domain, |t| Vec2::from(t.sin_cos()));
gizmos.curve_gradient_2d(
curve,
(0..=100).map(|n| n as f32 / 100.0)
.map(|t| (t, GREEN.mix(&RED, t)))
);
}
Sourcepub fn curve_gradient_3d<C>(
&mut self,
curve_3d: impl Curve<Vec3>,
times_with_colors: impl IntoIterator<Item = (f32, C)>,
)
pub fn curve_gradient_3d<C>( &mut self, curve_3d: impl Curve<Vec3>, times_with_colors: impl IntoIterator<Item = (f32, C)>, )
Draw a curve, at the given time points, sampling in 3D, with a color gradient.
This should be called for each frame the curve needs to be rendered.
Samples of time points outside of the curve’s domain will be filtered out and won’t contribute to the rendering. If you wish to render the curve outside of its domain you need to create a new curve with an extended domain.
§Arguments
curve_3d
some type that implements theCurve
trait and samplesVec3
stimes_with_colors
some iterable type yieldingf32
which will be used for sampling the curve together with the color at this position
§Example
fn system(mut gizmos: Gizmos) {
let domain = Interval::UNIT;
let curve = FunctionCurve::new(domain, |t| {
let (x,y) = t.sin_cos();
Vec3::new(x, y, t)
});
gizmos.curve_gradient_3d(
curve,
(0..=100).map(|n| n as f32 / 100.0)
.map(|t| (t, GREEN.mix(&RED, t)))
);
}
Sourcepub fn buffer(&self) -> GizmoBufferView<'_>
pub fn buffer(&self) -> GizmoBufferView<'_>
Read-only view into the buffers data.
Sourcepub fn line(&mut self, start: Vec3, end: Vec3, color: impl Into<Color>)
pub fn line(&mut self, start: Vec3, end: Vec3, color: impl Into<Color>)
Draw a line in 3D from start
to end
.
This should be called for each frame the line needs to be rendered.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.line(Vec3::ZERO, Vec3::X, GREEN);
}
Sourcepub fn line_gradient<C: Into<Color>>(
&mut self,
start: Vec3,
end: Vec3,
start_color: C,
end_color: C,
)
pub fn line_gradient<C: Into<Color>>( &mut self, start: Vec3, end: Vec3, start_color: C, end_color: C, )
Draw a line in 3D with a color gradient from start
to end
.
This should be called for each frame the line needs to be rendered.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.line_gradient(Vec3::ZERO, Vec3::X, GREEN, RED);
}
Sourcepub fn ray(&mut self, start: Vec3, vector: Vec3, color: impl Into<Color>)
pub fn ray(&mut self, start: Vec3, vector: Vec3, color: impl Into<Color>)
Draw a line in 3D from start
to start + vector
.
This should be called for each frame the line needs to be rendered.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.ray(Vec3::Y, Vec3::X, GREEN);
}
Sourcepub fn ray_gradient<C: Into<Color>>(
&mut self,
start: Vec3,
vector: Vec3,
start_color: C,
end_color: C,
)
pub fn ray_gradient<C: Into<Color>>( &mut self, start: Vec3, vector: Vec3, start_color: C, end_color: C, )
Draw a line in 3D with a color gradient from start
to start + vector
.
This should be called for each frame the line needs to be rendered.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.ray_gradient(Vec3::Y, Vec3::X, GREEN, RED);
}
Sourcepub fn linestrip(
&mut self,
positions: impl IntoIterator<Item = Vec3>,
color: impl Into<Color>,
)
pub fn linestrip( &mut self, positions: impl IntoIterator<Item = Vec3>, color: impl Into<Color>, )
Draw a line in 3D made of straight segments between the points.
This should be called for each frame the line needs to be rendered.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.linestrip([Vec3::ZERO, Vec3::X, Vec3::Y], GREEN);
}
Sourcepub fn linestrip_gradient<C: Into<Color>>(
&mut self,
points: impl IntoIterator<Item = (Vec3, C)>,
)
pub fn linestrip_gradient<C: Into<Color>>( &mut self, points: impl IntoIterator<Item = (Vec3, C)>, )
Draw a line in 3D made of straight segments between the points, with a color gradient.
This should be called for each frame the lines need to be rendered.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.linestrip_gradient([
(Vec3::ZERO, GREEN),
(Vec3::X, RED),
(Vec3::Y, BLUE)
]);
}
Sourcepub fn rect(
&mut self,
isometry: impl Into<Isometry3d>,
size: Vec2,
color: impl Into<Color>,
)
pub fn rect( &mut self, isometry: impl Into<Isometry3d>, size: Vec2, color: impl Into<Color>, )
Draw a wireframe rectangle in 3D with the given isometry
applied.
If isometry == Isometry3d::IDENTITY
then
- the center is at
Vec3::ZERO
- the sizes are aligned with the
Vec3::X
andVec3::Y
axes.
This should be called for each frame the rectangle needs to be rendered.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.rect(Isometry3d::IDENTITY, Vec2::ONE, GREEN);
}
Sourcepub fn cuboid(
&mut self,
transform: impl TransformPoint,
color: impl Into<Color>,
)
pub fn cuboid( &mut self, transform: impl TransformPoint, color: impl Into<Color>, )
Draw a wireframe cube in 3D.
This should be called for each frame the cube needs to be rendered.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.cuboid(Transform::IDENTITY, GREEN);
}
Sourcepub fn line_2d(&mut self, start: Vec2, end: Vec2, color: impl Into<Color>)
pub fn line_2d(&mut self, start: Vec2, end: Vec2, color: impl Into<Color>)
Draw a line in 2D from start
to end
.
This should be called for each frame the line needs to be rendered.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.line_2d(Vec2::ZERO, Vec2::X, GREEN);
}
Sourcepub fn line_gradient_2d<C: Into<Color>>(
&mut self,
start: Vec2,
end: Vec2,
start_color: C,
end_color: C,
)
pub fn line_gradient_2d<C: Into<Color>>( &mut self, start: Vec2, end: Vec2, start_color: C, end_color: C, )
Draw a line in 2D with a color gradient from start
to end
.
This should be called for each frame the line needs to be rendered.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.line_gradient_2d(Vec2::ZERO, Vec2::X, GREEN, RED);
}
Sourcepub fn linestrip_2d(
&mut self,
positions: impl IntoIterator<Item = Vec2>,
color: impl Into<Color>,
)
pub fn linestrip_2d( &mut self, positions: impl IntoIterator<Item = Vec2>, color: impl Into<Color>, )
Draw a line in 2D made of straight segments between the points.
This should be called for each frame the line needs to be rendered.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.linestrip_2d([Vec2::ZERO, Vec2::X, Vec2::Y], GREEN);
}
Sourcepub fn linestrip_gradient_2d<C: Into<Color>>(
&mut self,
positions: impl IntoIterator<Item = (Vec2, C)>,
)
pub fn linestrip_gradient_2d<C: Into<Color>>( &mut self, positions: impl IntoIterator<Item = (Vec2, C)>, )
Draw a line in 2D made of straight segments between the points, with a color gradient.
This should be called for each frame the line needs to be rendered.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.linestrip_gradient_2d([
(Vec2::ZERO, GREEN),
(Vec2::X, RED),
(Vec2::Y, BLUE)
]);
}
Sourcepub fn ray_2d(&mut self, start: Vec2, vector: Vec2, color: impl Into<Color>)
pub fn ray_2d(&mut self, start: Vec2, vector: Vec2, color: impl Into<Color>)
Draw a line in 2D from start
to start + vector
.
This should be called for each frame the line needs to be rendered.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.ray_2d(Vec2::Y, Vec2::X, GREEN);
}
Sourcepub fn ray_gradient_2d<C: Into<Color>>(
&mut self,
start: Vec2,
vector: Vec2,
start_color: C,
end_color: C,
)
pub fn ray_gradient_2d<C: Into<Color>>( &mut self, start: Vec2, vector: Vec2, start_color: C, end_color: C, )
Draw a line in 2D with a color gradient from start
to start + vector
.
This should be called for each frame the line needs to be rendered.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.line_gradient(Vec3::Y, Vec3::X, GREEN, RED);
}
Sourcepub fn rect_2d(
&mut self,
isometry: impl Into<Isometry2d>,
size: Vec2,
color: impl Into<Color>,
)
pub fn rect_2d( &mut self, isometry: impl Into<Isometry2d>, size: Vec2, color: impl Into<Color>, )
Draw a wireframe rectangle in 2D with the given isometry
applied.
If isometry == Isometry2d::IDENTITY
then
- the center is at
Vec2::ZERO
- the sizes are aligned with the
Vec2::X
andVec2::Y
axes.
This should be called for each frame the rectangle needs to be rendered.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.rect_2d(Isometry2d::IDENTITY, Vec2::ONE, GREEN);
}
Sourcepub fn grid(
&mut self,
isometry: impl Into<Isometry3d>,
cell_count: UVec2,
spacing: Vec2,
color: impl Into<Color>,
) -> GridBuilder2d<'_, Config, Clear>
pub fn grid( &mut self, isometry: impl Into<Isometry3d>, cell_count: UVec2, spacing: Vec2, color: impl Into<Color>, ) -> GridBuilder2d<'_, Config, Clear>
Draw a 2D grid in 3D.
This should be called for each frame the grid needs to be rendered.
The grid’s default orientation aligns with the XY-plane.
§Arguments
isometry
defines the translation and rotation of the grid.- the translation specifies the center of the grid
- defines the orientation of the grid, by default we assume the grid is contained in a plane parallel to the XY plane
cell_count
: defines the amount of cells in the x and y axesspacing
: defines the distance between cells along the x and y axescolor
: color of the grid
§Builder methods
- The skew of the grid can be adjusted using the
.skew(...)
,.skew_x(...)
or.skew_y(...)
methods. They behave very similar to their CSS equivalents. - All outer edges can be toggled on or off using
.outer_edges(...)
. Alternatively you can use.outer_edges_x(...)
or.outer_edges_y(...)
to toggle the outer edges along an axis.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.grid(
Isometry3d::IDENTITY,
UVec2::new(10, 10),
Vec2::splat(2.),
GREEN
)
.skew_x(0.25)
.outer_edges();
}
Sourcepub fn grid_3d(
&mut self,
isometry: impl Into<Isometry3d>,
cell_count: UVec3,
spacing: Vec3,
color: impl Into<Color>,
) -> GridBuilder3d<'_, Config, Clear>
pub fn grid_3d( &mut self, isometry: impl Into<Isometry3d>, cell_count: UVec3, spacing: Vec3, color: impl Into<Color>, ) -> GridBuilder3d<'_, Config, Clear>
Draw a 3D grid of voxel-like cells.
This should be called for each frame the grid needs to be rendered.
§Arguments
isometry
defines the translation and rotation of the grid.- the translation specifies the center of the grid
- defines the orientation of the grid, by default we assume the grid is aligned with all axes
cell_count
: defines the amount of cells in the x, y and z axesspacing
: defines the distance between cells along the x, y and z axescolor
: color of the grid
§Builder methods
- The skew of the grid can be adjusted using the
.skew(...)
,.skew_x(...)
,.skew_y(...)
or.skew_z(...)
methods. They behave very similar to their CSS equivalents. - All outer edges can be toggled on or off using
.outer_edges(...)
. Alternatively you can use.outer_edges_x(...)
,.outer_edges_y(...)
or.outer_edges_z(...)
to toggle the outer edges along an axis.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.grid_3d(
Isometry3d::IDENTITY,
UVec3::new(10, 2, 10),
Vec3::splat(2.),
GREEN
)
.skew_x(0.25)
.outer_edges();
}
Sourcepub fn grid_2d(
&mut self,
isometry: impl Into<Isometry2d>,
cell_count: UVec2,
spacing: Vec2,
color: impl Into<Color>,
) -> GridBuilder2d<'_, Config, Clear>
pub fn grid_2d( &mut self, isometry: impl Into<Isometry2d>, cell_count: UVec2, spacing: Vec2, color: impl Into<Color>, ) -> GridBuilder2d<'_, Config, Clear>
Draw a grid in 2D.
This should be called for each frame the grid needs to be rendered.
§Arguments
isometry
defines the translation and rotation of the grid.- the translation specifies the center of the grid
- defines the orientation of the grid, by default we assume the grid is aligned with all axes
cell_count
: defines the amount of cells in the x and y axesspacing
: defines the distance between cells along the x and y axescolor
: color of the grid
§Builder methods
- The skew of the grid can be adjusted using the
.skew(...)
,.skew_x(...)
or.skew_y(...)
methods. They behave very similar to their CSS equivalents. - All outer edges can be toggled on or off using
.outer_edges(...)
. Alternatively you can use.outer_edges_x(...)
or.outer_edges_y(...)
to toggle the outer edges along an axis.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.grid_2d(
Isometry2d::IDENTITY,
UVec2::new(10, 10),
Vec2::splat(1.),
GREEN
)
.skew_x(0.25)
.outer_edges();
}
Sourcepub fn rounded_rect(
&mut self,
isometry: impl Into<Isometry3d>,
size: Vec2,
color: impl Into<Color>,
) -> RoundedRectBuilder<'_, Config, Clear>
pub fn rounded_rect( &mut self, isometry: impl Into<Isometry3d>, size: Vec2, color: impl Into<Color>, ) -> RoundedRectBuilder<'_, Config, Clear>
Draw a wireframe rectangle with rounded corners in 3D.
This should be called for each frame the rectangle needs to be rendered.
§Arguments
isometry
defines the translation and rotation of the rectangle.- the translation specifies the center of the rectangle
- defines orientation of the rectangle, by default we assume the rectangle is contained in a plane parallel to the XY plane.
size
: defines the size of the rectangle. This refers to the ‘outer size’, similar to a bounding box.color
: color of the rectangle
§Builder methods
- The corner radius can be adjusted with the
.corner_radius(...)
method. - The resolution of the arcs at each corner (i.e. the level of detail) can be adjusted with the
.arc_resolution(...)
method.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.rounded_rect(
Isometry3d::IDENTITY,
Vec2::ONE,
GREEN
)
.corner_radius(0.25)
.arc_resolution(10);
}
Sourcepub fn rounded_rect_2d(
&mut self,
isometry: impl Into<Isometry2d>,
size: Vec2,
color: impl Into<Color>,
) -> RoundedRectBuilder<'_, Config, Clear>
pub fn rounded_rect_2d( &mut self, isometry: impl Into<Isometry2d>, size: Vec2, color: impl Into<Color>, ) -> RoundedRectBuilder<'_, Config, Clear>
Draw a wireframe rectangle with rounded corners in 2D.
This should be called for each frame the rectangle needs to be rendered.
§Arguments
isometry
defines the translation and rotation of the rectangle.- the translation specifies the center of the rectangle
- defines orientation of the rectangle, by default we assume the rectangle aligned with all axes.
size
: defines the size of the rectangle. This refers to the ‘outer size’, similar to a bounding box.color
: color of the rectangle
§Builder methods
- The corner radius can be adjusted with the
.corner_radius(...)
method. - The resolution of the arcs at each corner (i.e. the level of detail) can be adjusted with the
.arc_resolution(...)
method.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.rounded_rect_2d(
Isometry2d::IDENTITY,
Vec2::ONE,
GREEN
)
.corner_radius(0.25)
.arc_resolution(10);
}
Sourcepub fn rounded_cuboid(
&mut self,
isometry: impl Into<Isometry3d>,
size: Vec3,
color: impl Into<Color>,
) -> RoundedCuboidBuilder<'_, Config, Clear>
pub fn rounded_cuboid( &mut self, isometry: impl Into<Isometry3d>, size: Vec3, color: impl Into<Color>, ) -> RoundedCuboidBuilder<'_, Config, Clear>
Draw a wireframe cuboid with rounded corners in 3D.
This should be called for each frame the cuboid needs to be rendered.
§Arguments
isometry
defines the translation and rotation of the cuboid.- the translation specifies the center of the cuboid
- defines orientation of the cuboid, by default we assume the cuboid aligned with all axes.
size
: defines the size of the cuboid. This refers to the ‘outer size’, similar to a bounding box.color
: color of the cuboid
§Builder methods
- The edge radius can be adjusted with the
.edge_radius(...)
method. - The resolution of the arcs at each edge (i.e. the level of detail) can be adjusted with the
.arc_resolution(...)
method.
§Example
fn system(mut gizmos: Gizmos) {
gizmos.rounded_cuboid(
Isometry3d::IDENTITY,
Vec3::ONE,
GREEN
)
.edge_radius(0.25)
.arc_resolution(10);
}
Trait Implementations§
Source§impl Clone for GizmoAsset
impl Clone for GizmoAsset
Source§fn clone(&self) -> GizmoAsset
fn clone(&self) -> GizmoAsset
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moreSource§impl Debug for GizmoAsset
impl Debug for GizmoAsset
Source§impl Default for GizmoAsset
impl Default for GizmoAsset
Source§impl Deref for GizmoAsset
impl Deref for GizmoAsset
Source§type Target = GizmoBuffer<ErasedGizmoConfigGroup, ()>
type Target = GizmoBuffer<ErasedGizmoConfigGroup, ()>
Source§impl DerefMut for GizmoAsset
impl DerefMut for GizmoAsset
Source§impl TypePath for GizmoAsset
impl TypePath for GizmoAsset
Source§fn type_path() -> &'static str
fn type_path() -> &'static str
Source§fn short_type_path() -> &'static str
fn short_type_path() -> &'static str
Source§fn type_ident() -> Option<&'static str>
fn type_ident() -> Option<&'static str>
Source§fn crate_name() -> Option<&'static str>
fn crate_name() -> Option<&'static str>
Source§impl VisitAssetDependencies for GizmoAsset
impl VisitAssetDependencies for GizmoAsset
fn visit_dependencies(&self, visit: &mut impl FnMut(UntypedAssetId))
impl Asset for GizmoAsset
Auto Trait Implementations§
impl Freeze for GizmoAsset
impl RefUnwindSafe for GizmoAsset
impl Send for GizmoAsset
impl Sync for GizmoAsset
impl Unpin for GizmoAsset
impl UnwindSafe for GizmoAsset
Blanket Implementations§
Source§impl<T, U> AsBindGroupShaderType<U> for T
impl<T, U> AsBindGroupShaderType<U> for T
Source§fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U
fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U
T
ShaderType
for self
. When used in AsBindGroup
derives, it is safe to assume that all images in self
exist.Source§impl<A> AssetContainer for Awhere
A: Asset,
impl<A> AssetContainer for Awhere
A: Asset,
fn insert(self: Box<A>, id: UntypedAssetId, world: &mut World)
fn asset_type_name(&self) -> &'static str
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
Source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
, which can then be
downcast
into Box<dyn ConcreteType>
where ConcreteType
implements Trait
.Source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
, which can then be further
downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.Source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.Source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.Source§impl<T> DowncastSend for T
impl<T> DowncastSend for T
Source§impl<T> DynamicTypePath for Twhere
T: TypePath,
impl<T> DynamicTypePath for Twhere
T: TypePath,
Source§fn reflect_type_path(&self) -> &str
fn reflect_type_path(&self) -> &str
TypePath::type_path
.Source§fn reflect_short_type_path(&self) -> &str
fn reflect_short_type_path(&self) -> &str
Source§fn reflect_type_ident(&self) -> Option<&str>
fn reflect_type_ident(&self) -> Option<&str>
TypePath::type_ident
.Source§fn reflect_crate_name(&self) -> Option<&str>
fn reflect_crate_name(&self) -> Option<&str>
TypePath::crate_name
.Source§fn reflect_module_path(&self) -> Option<&str>
fn reflect_module_path(&self) -> Option<&str>
Source§impl<T> FromWorld for Twhere
T: Default,
impl<T> FromWorld for Twhere
T: Default,
Source§fn from_world(_world: &mut World) -> T
fn from_world(_world: &mut World) -> T
Creates Self
using default()
.
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more